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Abstract

The distribution of primes is quite irregular. However, it is conjectured that if p is

the smallest prime greater than n! + 1, then p− n! is also prime. We give a sufficient

condition that guarantees when this conjecture is true. In particular, we prove that if

a prime number p satisfies n! + 1 < p < n! + r2, where r is the smallest prime larger

than a given natural number n, then p−n! is also a prime. Similarly we treat another

conjecture: If p is the largest prime smaller than n!−1, then n!−p is also prime. Then
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we establish further sufficient conditions also for the case when n! is replaced by q#,

which is the product of all primes not exceeding the prime q.

1 Primes near factorials

Throughout this paper let n ∈ N be an arbitrary fixed natural number. Let n! = 1 · 2 · · ·n
be its factorial.

Our main results are contained in Theorems 3,5,17, and 18. First, we present two well-
known lemmas which illustrate that there are no primes in a close neighborhood above n!+1
and below n!− 1.

Lemma 1. If a prime p > n! + 1, then p > n! + n.

Proof. This lemma immediately follows from the fact that the consecutive numbers

n! + 2, n! + 3, . . . , n! + n

are all composite.

Similarly we can prove the second lemma.

Lemma 2. If a prime p < n!− 1 and n > 3, then p < n!− n.

The assumption n > 3 excludes the undesirable initial case n = p = 3 for which the
inequality p < n!− n is obviously not valid.

Recall [9] that primes of the form n! + 1 are said to be factorial primes. For instance, if

n = 1, 2, 3, 11, 27, 37, 41, 73, 77, 116, 154, 320, 340, 399, 427, 872, . . .

then n! + 1 is prime. Primes of the form n!− 1 are also called factorial primes. We get them
for

n = 3, 4, 6, 7, 12, 14, 30, 32, 33, 38, 94, 166, 324, 379, 469, 546, 974, . . .

Now we present the first of our main theorems.

Theorem 3. Let r be the smallest prime such that r > n. If a prime p satisfies

n! + 1 < p < n! + r2, (1)

then p− n! is also prime.

Proof. The case n = 1 is obvious. So let n > 1 and let p be a prime satisfying (1). Assume
to the contrary that p− n! is composite. Then there exist a prime m and an integer k ≥ m
such that

p− n! = mk.

From this and the inequality p− n! < r2 from (1), we observe that m < r and therefore, the
prime m satisfies the inequality m ≤ n. Since m | n! and m | (p − n!), we find that m | p,
which contradicts the assumption that p is prime and the fact that p > n! + 1 > n ≥ m.
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Example 4. Let n = 5. Then r2 = 49 and for consecutive primes after 5! we have

5! = 120 = 127− 7 = 131− 11 = 137− 17 = 139− 19 = 149− 29

= 151− 31 = 157− 37 = 163− 43 = 167− 47 (2)

= 173− 53 = 179− 59 = 181− 61 = 191− 71 = 193− 73 = 197− 7 · 11.

So all these differences of primes yield the same number 5! = 120. We observe that there are
even more consecutive primes p > n! + 1 than those satisfying (1) for which p − n! is also
prime. Namely, the inequality (1) yields only the first two lines of (2), but we can continue
in this manner until the underlined difference (cf. Table 1 below for n = 5).

Theorem 5. Let n > 2 and let s be the largest prime such that s < n. If a prime p satisfies

n!− s2 < p < n!− 1, (3)

then n!− p is also prime.

The proof is done similarly as in Theorem 3. The additional assumption n > 2 only
guarantees the existence of s.

Example 6. Take n = 7 in Theorem 5. Then s2 = 25 and

7! = 5040 = 5039 + 1 = 5023 + 17 = 5021 + 19

= 5011 + 29 = 5009 + 31 = 5003 + 37 = 4999 + 41 = 4997 + 43

= 4987 + 53 = 4973 + 67 = 4969 + 71 = 4967 + 73 = 4957 + 83

= 4951 + 89 = 4943 + 97 = 4937 + 103 = 4933 + 107 = 4931 + 109 = 4919 + 112.

All these sums of primes yield the same number 7! = 5040. We again get more consecutive
primes p than those satisfying (3) for which n!− p is prime until the underlined sum, see the
last two columns of Table 1 and Remark 11. Theorem 5 thus reminds us of the well-known
Goldbach conjecture [9, p. 79].

2 Further examples and open problems

In Figure 1, we observe a remarkable distribution of primes near n!.
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...
• n! + r2

{

Here for each prime p we have that p− n! is also prime by Theorem 3.

• n! + n
{

There are no primes by Lemma 1.

• n! + 1 A possible factorial prime.
• n!

• n!− 1 A possible factorial prime.
{

There are no primes by Lemma 2.

• n!− n
{

Here for each prime p we have that n!− p is also prime by Theorem 5.

• n!− s2
...

• 3
• 2
• 1

Figure 1: Distribution of primes near n! for n > 2.
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Figure 2: The number of consecutive primes p just above n!+1 for which p−n! is also prime
for all n ≤ 486.

4



It could happen, however, that the open intervals (n! + 1, n! + r2) and (n! − s2, n! − 1)
appearing in (1) and (3) do not contain any prime number, although no such example is
known. Therefore, Theorems 3 and 5 do not imply that the following conjectures are true.

Conjecture 7. If p is the smallest prime greater than n! + 1, then p− n! is also prime.

Conjecture 8. If p is the largest prime smaller than n!− 1, then n!− p is also prime.

Remark 9. From the well-known Stirling formula [10, p. 343]

lim
n→∞

n!

nne−n
√
n
=

√
2π,

we find an asymptotic expression for the factorial n! ≈
√
2π nne−n

√
n and thus

ln(n!) ≈ n ln(n)− n+ 0.5 ln(n) + 0.5 ln(2π).

According to the celebrated Gauss prime number theorem [9], the probability that n is a
prime number is about 1/ ln(n). Hence, consecutive primes on the order of n! should differ
by about ln(n!) which is approximately

ln(n!) = n ln(n)− n+O(ln(n)) as n → ∞, (4)

where O(·) stands for the usual Landau symbol. However, this is by relation (4) much
less than r2 (> n2) appearing on the right-hand side of (1). This provides support that
Conjecture 7 (and similarly Conjecture 8) might be true.

Example 10. Another argument for the validity of Conjectures 7 and 8 are numerical tests.
The statements of Theorems 3 and 5 for n = 2, 3, . . . , 10 are given in Table 1.

Numerical tests calculated by Maple for all n ≤ 500 indicate that if p is the smallest
prime greater than n! + 1 for which p− n! is composite, then p− n! is always the product of
two not necessarily different primes, cf. Table 2. In Figure 2, we see an increasing trend of
the number of consecutive primes p above n! + 1 for which p− n! is also prime.

Another open problem is whether the difference p − n! from the last column of Table 2
is always the product of two (not necessarily different) primes that are greater than n.

Remark 11. If the upper bound n! + r2 appearing in (1) is a prime p̃, then N1 = N2 in
Table 1, since the difference p̃−n! = (n!+ r2)−n! = r2 is composite. Hence, the sequence of
consecutive primes p just above n! + 1, for which p−n! is also prime, finishes before n! + r2.
For instance, 2! + 32 = 11, 3! + 52 = 31, and 6! + 72 = 769 are primes, cf. Table 1 for
n ∈ {2, 3, 6}. Also 100! + 1012 and 350! + 3532 are primes, cf. Table 2 for n ∈ {100, 350}.

On the other hand, the lower bound n! − s2 appearing in (3) is never prime except for
the trivial case n = 3 when N3 = N4 = 1. The reason is that s | n!, and thus s | (n!− s2).
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n N1 N2 N3 N4

2 2 2 − −
3 6 6 1 1
4 6 7 2 6
5 9 14 1 10
6 7 7 2 10
7 12 17 2 17
8 8 15 3 10
9 11 18 3 4
10 7 11 5 8

Table 1: HereN1 denotes the number of primes satisfying (1), N2 is the number of consecutive
primes just above n! + 1 for which p−n! is prime, N3 is the number of primes satisfying (3),
N4 is the number of consecutive primes just below n!− 1 for which n!− p is prime, N1 ≤ N2,
and N3 ≤ N4.

n N1 N2 p− n!
10 7 11 169 = 132

50 27 34 3481 = 592

100 30 30 10201 = 1012

150 37 48 31133 = 163 · 191
200 54 89 76729 = 2772

250 55 79 88579 = 283 · 313
300 77 121 176959 = 311 · 569
350 76 76 124609 = 3532

400 85 122 242321 = 443 · 547
450 95 133 307297 = 487 · 631
500 95 105 294319 = 521 · 569

Table 2: HereN1 denotes the number of primes satisfying (1), N2 is the number of consecutive
primes just above n! + 1 for which p− n! is also prime, and p is the smallest prime greater
than n! + 1 for which p− n! is composite.
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Remark 12. The verification of Conjecture 7 for any n ≤ 4003 follows from sequence A037153
in the On-Line Encyclopedia of Integer Sequences (OEIS) [11]. Also see sequences A033932,
A037151, and A087421. The verification of Conjecture 8 for n ≤ 1000 follows from A037155.
Conjectures 7 and 8 are also related to a paper by Flórez and James [1]. Nevertheless, one
has to keep in mind the so-called strong law of small numbers [2, 3, 5, 6, 7], when the validity
of some apparent regular pattern is violated for n ≫ 1.

Now we will modify our previous results to another class of numbers.

3 Primes near primorials

From now on, let q be an arbitrary fixed prime. Denote by q# the product of all primes not
exceeding q, i.e., q# = 2 · 3 · 5 · · · q. It is called the primorial of q.

Conjecture 13. If p is the smallest prime greater than q#+ 1, then p− q# is also prime.

Conjecture 14. If p is the largest prime smaller than q#− 1, then q#− p is also prime.

The classical proof of Euclid’s theorem on the infinity of primes is done by contradiction
[9]. It is assumed that there exist only a finite number of primes and that the largest prime
is q. Then one investigates the number q#+1 which leads to a contradiction, since q#+1 is
a new prime or q#+1 is composite and divisible by a prime greater than q. For this reason,
prime numbers of the form q#+ 1 are called Euclidean primes, see e.g.,[8]. For example,

2# + 1 = 3, 3# + 1 = 7, 5# + 1 = 31, 7# + 1 = 211, 11# + 1 = 2311

are Euclidean primes. However, not every number of this form is prime, since

13# + 1 = 2 · 3 · 5 · 7 · 11 · 13 + 1 = 59 · 509.

Note that q#+ 1 is a Euclidean prime only for

q = 2, 3, 5, 7, 11, 31, 379, . . .

Similarly we can investigate numbers of the form q#− 1, which are primes for

q = 3, 5, 11, 13, 41, 89, 317, 337, 991, . . .

In this case they are called primorial primes.

Lemma 15. If a prime p > q#+ 1, then p > q#+ q.

Proof. Since the consecutive numbers

q#+ 2, q#+ 3, . . . , q#+ q

are all composite, the lemma follows.
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Similarly we can prove the next lemma.

Lemma 16. If a prime p < q#− 1 and q > 3, then p < q#− q.

Theorem 17. Let q < r be consecutive primes. If a prime p satisfies

q#+ 1 < p < q#+ r2, (5)

then p− q# is also prime.

Proof. We shall proceed similarly as in the proof of Theorem 3. Let p be a prime satisfying
(5). Suppose to the contrary that p− q# is composite. Then there exist a prime m and an
integer k ≥ m such that

p− q# = mk. (6)

From this and the inequality p − q# < r2 arising from (5), we see that mk < r2 and thus
m ≤ q < r. Since m | q# and m | (p−q#) by (6), we find that m | p which is a contradiction
with the assumption that p is prime and the fact that p > q#+ 1 > q ≥ m.

In a similar way we can prove the following statement.

Theorem 18. Let s < q be consecutive primes. If a prime p satisfies

q#− s2 < p < q#− 1, (7)

then q#− p is also prime.

Example 19. To illustrate the meaning of Lemmas 15 and 16 and also Theorems 17 and 18,
we set q = 13. We observe similar remarkable properties of consecutive primes near q#± 1
as in Examples 4 and 6, namely,

13# = 30030 = 30047− 17 = 30059− 29 = 30071− 41 = 30089− 59 = 30091− 61

= 30097− 67 = 30103− 73 = 30109− 79 = 30113− 83 = 30119− 89

= 30133− 103 = 30137− 107 = 30139− 109 = 30161− 131 = 30169− 139

= 30181− 151 = 30187− 157 = 30197− 167 = 30203− 173 = 30211− 181

= 30223− 193 = 30241− 211 = 30253− 223 = 30259− 229 = 30269− 239

= 30271− 241 = 30293− 263 = 30307− 277 = 30313− 283 = 30319− 172,

13# = 30030 = 30029 + 1 = 30013 + 17 = 30011 + 19 = 29989 + 41 = 29983 + 47

= 29959 + 71 = 29947 + 83 = 29927 + 103 = 29921 + 109 = 29917 + 113

= 29881 + 149 = 29879 + 151 = 29873 + 157 = 29867 + 163 = 29863 + 167

= 29851 + 179 = 29837 + 193 = 29833 + 197 = 29819 + 211 = 29803 + 227

= 29789 + 241 = 29761 + 269 = 29759 + 271 = 29753 + 277 = 29741 + 172.
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n Q1 Q2 Q3 Q4

2 2 2 − −
3 6 6 1 1
5 10 10 1 6
7 19 19 4 22
11 23 25 7 19
13 29 29 9 23
17 25 36 10 33
19 38 42 20 32

Table 3: HereQ1 denotes the number of primes satisfying (5), Q2 is the number of consecutive
primes just above q#+ 1 for which p− q# is prime, Q3 is the number of primes satisfying
(7), Q4 is the number of consecutive primes just below q# − 1 for which q# − p is prime,
where q > 2, Q1 ≤ Q2, and Q3 ≤ Q4.

Figure 1 can be easily modified to primes near q#. Also Table 3 corresponding to these
primes is similar to Table 1.

Taking into account that

4! < 5# < 5! < 7# < 6! < 11# < 7! < 13# < 8! < 17# < 9! < 10! < 19#,

we find that numbers Qi in particular columns are generally greater than Ni from Table 1.
when (n− 1)! < q# < n!.

Remark 20. If the upper bound q#+r2 appearing in (5) is a prime p̃, then Q1 = Q2 in Table
3, since the difference p̃ − q# = (q# + r2) − q# = r2 is composite. Hence, the sequence
of consecutive primes p just above q# + 1, for which p − q# is also prime, finishes before
q# + r2. For instance, 2# + 32 = 11, 3# + 52 = 31, 5# + 72 = 79, 7# + 112 = 331, and
13# + 172 = 30319 are primes, cf. Table 3 for q ∈ {2, 3, 5, 7, 13}.

On the other hand, the lower bound q#− s2 appearing in (7) is never prime except for
the trivial case q = 3 when Q3 = Q4 = 1. The reason is that s | q#, and thus s | (q#− s2).

Remark 21. We note that a Fortunate number, named after Reo Franklin Fortune, is the
smallest integer m > 1 such that for a given prime q, q# + m is a prime number (see
[2, 3, 4, 5, 7] for a discussion of Fortunate numbers). The sequence of Fortunate numbers
begins: 3, 5, 7, 13, 23, 17, 19, 23, 37, . . . Conjecture 13 which was introduced by Fortune,
states that all Fortunate numbers are primes. The verification of Conjecture 13 for the first
3000 primes q follows from A005235 (also see A046066, A035346, A098168). The verification
of Conjecture 14 for the first 2000 primes q follows from A055211 (also see A098166).

Remark 22. The distribution of primes is quite irregular. However, Theorems 3–18 imply
that there are some regular patterns. Moreover, Theorems 17 and 18 can be easily extended
to the case when q# is everywhere substituted by the product i(q#) for any fixed integer
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i ∈ N. For example, for i = 31 and q = 3 we have 31 · 6 = 186 = 191 − 5 = 193 − 7 =
197− 11 = 199− 13 = 211− 52.

This extension covers the case investigated in Section 1, since we may set i = n!/q# for
some n ≥ q. See, for example, identities (2) for n = q = 5 yielding i = 120/30 = 4.
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