
23 11

Article 22.4.3
Journal of Integer Sequences, Vol. 25 (2022),2

3

6

1

47

A Simple Proof of Skula’s Theorem on Prime

Power Divisors of Mersenne Numbers
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Abstract

Recently, Skula proved an interesting result concerning the equivalence between

higher order Wieferich primes and prime power divisors of Mersenne numbers. In the

present paper, we provide a simple proof of Skula’s result.

1 Introduction

The Mersenne numbers Mn = 2n − 1, n ∈ N have been studied by many authors over
past centuries, with a number of remarkable statements discovered and proved since the
time of Marin Mersenne (1588–1648). See sequences A000225 and A001348 in the On-Line

Encyclopedia of Integer Sequences [6].
The present paper is concerned with the connection between higher-order Wieferich

primes and prime power divisors of Mersenne numbers. First, however, we recall certain
definitions and facts relating to this topic. In 1997, Agoh, Dilcher, and Skula published the
well-known paper [1] in which the concepts of Fermat quotient and Wieferich prime were
extended substantially.

Let a,m ∈ Z, m ≥ 2 and let gcd(a,m) = 1. By [1, Definition 1.2],

q(a,m) =
aϕ(m) − 1

m
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is called the Euler quotient of m with base a. From Euler’s theorem it is clear (see for
example [2, p. 33] or [4, p. 42]) that q(a,m) ∈ Z. By [1, Definition 1.2], m is called a
Wieferich number with base a if q(a,m) ≡ 0 (mod m). See also [6, A077816]. Specifically, if
p is a prime satisfying q(2, p) ≡ 0 (mod p), we obtain the well-known definition of a Wieferich
prime: p is a Wieferich prime if 2p−1 ≡ 1 (mod p2). See [6, A001220]. By [5, Definition 1.4]
a Wieferich prime p is called a Wieferich prime of order n ∈ N if

q(2, pn) ≡ 0 (mod pn) or, equivalently, 2p
n−1(p−1) ≡ 1 (mod p2n).

Hence, a prime p is a Wieferich one if and only if p is Wieferich prime of order 1 and, p is a
Wieferich prime of order n if and only if pn is a Wieferich number with base 2.

Finally, let us recall that the smallest positive integer h for which ah ≡ 1 (mod m) is
called the multiplicative order of a modulo m, which we write as h = ordm(a). Now we can
formulate the main result presented in [5].

Theorem 1 (Skula, 2019). Let n ∈ N and let p, q be odd primes. If pn|Mq, then the following

statements are equivalent:

(A) pn+1|Mq.

(B) p is a Wieferich prime of order n.

(C) ordpn+1(2) = q.

The proof of Theorem 1 given in [5] is mainly based on some special properties of Euler
quotient, such as the logarithm property presented in [5, Proposition 1.1] or the proposition
on the Euler quotient for two bases [5, Proposition 2.1]. Furthermore, the proof in [5] uses
the results [1, Lemma 5.1] and [1, Corollary 5.2] on the order of the number q(2, p) modulo p

within the meaning of definition [2, p. 3]. Hence, the proof of Theorem 1 in [5] is the result
of resourcefully applying a series of findings.

The main purpose of this paper is to show that Theorem 1 can be proved in a way simpler
than the one in [5], that is, without using special propositions on the Euler quotient.

2 Proof of Theorem 1

We begin by recalling some of the known properties of ordm(a), which are needed in our
proof of Theorem 1.

Lemma 2. Let a,m ∈ Z, m ≥ 2 and let gcd(a,m) = 1. Then (i)–(vii) holds.

(i) Let k ∈ N. Then ak ≡ 1 (mod m) if and only if ordm(a)|k.

(ii) ordm(a)|ϕ(m). Consequently, if p is an odd prime, then ordp(2)|p− 1.

2

https://oeis.org/A077816
https://oeis.org/A001220


(iii) Let a, k, n ∈ N and let p be an odd prime satisfying p ∤ a. Further, let ordp(a) = h and

let pk‖ah − 1. Then

ordpn(a) =

{

h, for n ≤ k;

pn−kh, for n > k.

Here, pk‖ah − 1 means that pk|ah − 1 but pk+1 ∤ ah − 1.

(iv) Let a, n ∈ N and let p be an odd prime satisfying p ∤ a. If ordpn(a) = h, then

ordpn+1(a) ∈ {h, ph}. Consequently, ordpn(a)| ordpn+1(a).

(v) Let k, n ∈ N and let p be an odd prime. If ordp(2) = · · · = ordpn(2) 6= ordpn+1(2), then
ordpn+k(2) = pk ordp(2).

(vi) Let n ∈ N and let p be an odd prime. If ordpn(2)|p − 1, then ordpk(2) = ordpn(2) for

any k ∈ {1, . . . , n}.

(vii) Let n ∈ N and let p, q be odd primes. If ordpn(2)|q, then ordpk(2) = q for any k ∈
{1, . . . , n}.

The proofs of (i) and (ii) can be found in [4, p. 43]. Part (iii) is Theorem 4.4 proved by
LeVeque in [3, pp. 80–81]. See also Theorem 4–6 in [4, pp. 52–53]. Part (iv) immediately
follows from (iii). Part (v) is a direct consequence of (iii) for p = 2. Finally, (vi) and (vii)
follow from (iv).

Proposition 3. Let n ∈ N and let p be a prime. Then,

2p
n−1(p−1) ≡ 1 (mod p2n) if and only if 2p−1 ≡ 1 (mod pn+1). (1)

Proof. Let us first assume that p is an odd prime.
Let 2p

n−1(p−1) ≡ 1 (mod p2n). Applying (i), we obtain

ordp2n(2)|p
n−1(p− 1). (2)

Suppose that 2p−1 6≡ 1 (mod pn+1). From (i), it now follows that ordpn+1(2) ∤ p− 1 and, by
(ii), ordp(2)|p − 1. This means that ordpn+1(2) 6= ordp(2). From (v), it follows that there
exists an s ∈ {1, . . . , n} such that ordpn+1(2) = ps ordp(2). Hence,

ordp2n(2) = pn ordpn+1(2) = pn+s ordp(2). (3)

Combining (3) and (2), we obtain pn+s ordp(2)|p
n−1(p − 1). Since s ∈ {1, . . . , n} and

ordp(2)|p− 1, we have a contradiction.
Conversely, let 2p−1 ≡ 1 (mod pn+1). Then, by (i), we have ordpn+1(2)|p − 1 and, using

(vi), we obtain ordpn+1(2) = ordp(2). Further, by (v), there exist a t ∈ {0, . . . , n − 1} such
that

ordp2n(2) = pt ordpn+1(2) = pt ordp(2). (4)
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Since t ≤ n− 1, (4) implies ordp2n(2)|p
n−1 ordp(2), which, together with ordp(2)|p− 1, yields

ordp2n(2)|p
n−1(p− 1). Hence, 2p

n−1(p−1) ≡ 1 (mod p2n).

Finally, let p = 2. Then, for any n ∈ N, 22
n−1

6≡ 1 (mod 22n) and 2 6≡ 1 (mod 2n+1). This
means that, (1) holds for p = 2 as well. The proof is now complete.

Proposition 4. Let n ∈ N ∪ {0} and let p be an odd prime. Then,

2p−1 ≡ 1 (mod pn+1) if and only if ordpn+1(2) = ordp(2).

Proof. Let 2p−1 ≡ 1 (mod pn+1). Then, by (i), ordpn+1(2)|p−1. Next, applying (iii), we obtain
ordpn+1(2) = ps ordp(2) for some s ∈ {0, . . . , n}. Suppose that s 6= 0. Then, ps ordp(2)|p− 1,
which is a contradiction. Hence, ordpn+1(2) = ordp(2).

Conversely, let ordpn+1(2) = ordp(2) = h. Then, by (ii), h|p − 1. This means that there
exists a k ∈ N such that p−1 = hk. Since 2h ≡ 1 (mod pn+1), we have 2p−1 = 2hk = (2h)k ≡ 1
(mod pn+1), as required.

Now we are ready to prove Theorem 1.

Proof. First, we show that (A) implies (B). Let pn+1|Mq. Then, 2q ≡ 1 (mod pn+1) which
yields ordpn+1(2)|q. Applying (vii), we obtain ordpn+1(2) = ordp(2) = q. This means, by
Proposition 4, that 2p−1 ≡ 1 (mod pn+1) and, using Proposition 3, we conclude that p is a
Wieferich prime of order n.

Next, we show that (B) implies (C). Assume that p is a Wieferich prime of order n. Then,
by Proposition 3, 2p−1 ≡ 1 (mod pn+1) and, using (i), we get ordpn+1(2)|p − 1. Next, from
the basic assumption pn|Mq, we obtain 2q ≡ 1 (mod pn) and, by (i), we get ordpn(2)|q. Since
q is an odd prime and ordpn(2) 6= 1, we have ordpn(2) = q. Hence, by (iv), ordpn+1(2) = pq

or ordpn+1(2) = q. Suppose that ordpn+1(2) = pq. Since ordpn+1(2)|p − 1, we get pq|p − 1, a
contradiction.

Finally, we show that (C) implies (A). Let ordpn+1(2) = q. Then, 2q ≡ 1 (mod pn+1),
which yields pn+1|Mq. The proof is complete.
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