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Abstract

This paper surveys various kinds of ordered sets, with numerous citations to se-
quences in the On-Line Encyclopedia of Integer Sequences. These ordered sets include
self-containing sequences, infinitive sequences, fractal sequences, and parasequences
(which are introduced here as a certain type of doubly infinite sequence). Relation-
ships among these are presented, and among more than thirty examples, the Cantor
fractal sequence and the Farey fractal sequence are presented. There are several con-
jectures involving parasequences.

1 Introduction

A sequence that contains itself as a proper subsequence obviously does so infinitely many
times. This sort of containment nest is analogous to nested geometric configurations widely
known as fractals. In this article, we examine first the class of self-containing sequences, and
then, as a subclass, fractal sequences (e.g., [2, 5, 6, 9]).

In Sections 2 and 3, proper self-containing sequences, in which the terms may be arbitrary
objects, are shown to be essentially in one-to-one correspondence with certain position arrays
consisting of the positive integers, each occurring exactly once. In Section 4, regular self-
containing sequences and their duals are defined. Section 5 discusses fractal sequences that
naturally arise in connection with the Cantor ternary set and the set of Farey fractions.
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In Section 6, normalized fractal sequences are introduced, and a description in terms of
permutations of sets of the form {1, 2, 3, . . . , n} is given. Selection functions and parase-
quences are defined in Section 7, and dense fractal sequences are discussed in Section 8.

2 Self-containing sequences

A self-containing sequence (SCS) is a sequence (an) that contains a proper subsequence (ani
)

that is identical to (an), i.e.,

ani
= ai for all i in the set N = {1, 2, 3, . . .} of natural numbers.

Clearly, an SCS properly contains itself infinitely many times:

ani
= ai, anij

= aij , · · · .

The terms may be rational numbers or pebbles or indentations along a coastline, but
unless otherwise implied, we shall assume that the terms of each SCS belong to N. In that
case, a sequence x = (xn) is an infinitive sequence [6] if for every i,

(F1) xn = i for infinitely many n.

For each i, let T (i, j) be the jth index n for which xn = i.
Clearly, a sequence containing every positive integer is an SCS if and only the sequence

is an infinitive sequence. Also clearly, if (ani
) is a proper subsequence of an SCS (an), then

the complement of (ani
), meaning the sequence that remains after the terms ani

are removed
from (ani

), is also an SCS.

Example 1. Suppose that (an) is periodic. Then (an) is an SCS. In particular, (1, 1, 1, . . .)
is an SCS.

Example 2. Let an be the number of digits occurring from right to left to reach the first 1
in the base-2 representation of n:

(an) = (1, 2, 1, 3, 1, 2, 1, 4, 1, 2, 1, 3, 1, 2, 1, 5, 1, 2, 1, 3, . . .).

This sequence, A001511 in the On-Line Encyclopedia of Integer Sequences [10], is an SCS
known as the ruler function.

3 Position arrays

We shall show that SCSs are in one-to-one correspondence with certain arrays whose terms
are in N.

Definition 3. For m ∈ N, let Nm = {1, 2, 3, . . . ,m} and N∞ = N. Suppose, for (i, j) ∈
Nm ×N, where 1 ≤ m ≤ ∞, that T = (T (i, j)) is an array that partitions N into a sequence
of increasing sequences; i.e.,
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• (P1) if n ∈ N, then n = T (i, j) for some (i, j);

• (P2) for each i, the sequence (T (i, j)) is increasing;

• (P3) if i1 < i2, then no term of (T (i1, j)) is a term of (T (i2, j)).

Then T is the position array of an SCS, (an), defined as follows: an = i, where i is the
index such that n = T (i, j) for some j. Conversely, an SCS (an) yields a position array,
as follows: let i = n and let j be the number of indices h ≤ n such that ah = an. Then
T (i, j) = n.

Example 4. The position array T for the sequence (an) in Example 2 is given by

T =















1 3 5 7 9 11 13 15 · · ·
2 6 10 14 18 22 26 30 · · ·
4 12 20 28 36 44 52 60 · · ·
8 24 40 56 72 88 104 120 · · ·
...

...
...

...
...

...
...

...
. . .















,

as in A054582.

4 Regular sequences and arrays

A position array is a regular position array if it has infinitely many rows and every column
is increasing. A proper self-containing sequence is a regular self-containing sequence (RSCS)
if its position array is regular. For example, the sequence (an) in Example 2 is an RSCS.

Clearly if T is regular, then its transpose, T ∗, is regular. If (an) is an RSCS with position
array T , then T ∗ is the position array of an RSCS, which we denote by (a∗n) and call the
dual of (an). As (T

∗)∗ = T , we have ((a∗n)
∗) = (an).

Example 5. Let (an) = A001511, as in Example 2 and Example 4. Then

(a∗n) = (1, 1, 2, 1, 3, 2, 4, 1, 5, 3, 6, 2, 7, 4, 8, 1, 9, 5, 10, 3, . . .) = A003602.

The position array of (a∗n), namely the transpose of the array T in Example 4, is given by
A135764.

Example 6. If (an) = A002260, then (a∗n) = A004736.

Example 7. We begin with the definition [6] of signature sequence: for any irrational
number r > 0, let

S(r) = {c+ dr : c, d ∈ N},
and let (cn(r) + dn(r)r) be the sequence obtained by arranging the elements of S(r) in
increasing order. A sequence a is a signature if there exists a positive irrational number r
such that a = (cn(r)). In this case, a is the signature of r.
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The dual of a signature is also a signature; specifically, if (an) is the signature of r, then
(a∗n) is the signature of r−1. For example, the signature of 21/2 is

(1, 2, 1, 3, 2, 1, 4, 3, 2, 5, 1, 4, 3, 6, 2, 5, 1, 4, 7, 3, 6, 2, 5, 8, 1, . . .) = A007336,

with placement array A283939, and the signature of 2−1/2 is

(1, 1, 2, 1, 2, 3, 1, 2, 3, 1, 4, 2, 3, 1, 4, 2, 5, 3, 1, 4, 2, 5, 3, 1, . . .) = A023115.

5 Fractal sequences

A search of [10] for “fractal sequence” reveals that in recent years, various different kinds of
sequences have been called “fractal” and that what many of them have in common is that
they are SCSs. In this article, a fractal sequence is a special kind of RSCS defined ([5, 6, 11])
as an infinitive sequence x as in (F1) such that the following two properties also hold:

• (F2) if i+ 1 = xn, then there exists m < n such that i = xm;

• (F3) if h < i, then for every j, there is exactly one k such that

T (i, j) < T (h, k) < T (i, j + 1),

where T is the placement array of (xn). According to (F2), the first occurrence of each i > 1
in x must be preceded at least once by each of the numbers 1, 2, · · · , i− 1, and according to
(F3), between consecutive occurrences of i in x, each h less than i occurs exactly once.

Examples of fractal sequences are (a∗n) in Example 5 but not (an), both (an) and (a∗n) in
Example 6, and all signatures, as in Example 7. Other examples [10] are A003603, A022446,
A022447, A023133, A108712, A120873, A120874, A122196, A125158.

Example 8. In the unit interval [0, 1], the classical Cantor set is the set of rational numbers
whose base-3 representation consists solely of 0’s and 2’s. This Cantor set is sometimes called
the prototype of a (geometric) fractal. We shall arrange the numbers of the Cantor set to
form an SCS. First, write the numbers, in base 3, as follows:

0;

0, .2;

0, .02, .2;

0, .02, .2, .22;

0, .002, .02, .2, .22;

0, .002, .02, .2, .202, .22; and so on,

and then concatenate those blocks:

c = (0, 0, .2, 0, .02, .2, 0, .02, .2, .22, 0, .002, .02, .2, .22, 0, .002, .02, .2, .202, . . .).
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Writing c as (cn), assign to each n the least h such that ch = cn, so that h is a function
of n, which we denote by an. This Cantor fractal sequence and its associated interspersion
are then given by

(an) = (1, 1, 2, 1, 3, 2, 1, 3, 2, 4, 1, 5, 3, 2, 4, 1, 5, 3, 2, 6, 4, . . .) = A088370.

and

T =



























1 2 4 7 11 16 22 · · ·
3 6 9 14 19 26 33 · · ·
5 8 13 18 24 31 40 · · ·
10 15 21 28 35 44 55 · · ·
12 17 23 30 39 48 58 · · ·
20 27 34 43 53 64 75 · · ·
25 32 41 50 61 72 85 · · ·
...

...
...

...
...

...
...

. . .



























= A131966.

Example 9. Here we introduce a Farey fractal sequence, much in the spirit of Example 8, as
this sequence consists of positions of entries among the Farey fractions, which are represented
by the following list:

order 1: 0

1

1

1

order 2: 0

1

1

2

1

1

order 3: 0

1

1

3

1

2

2

3

1

1

order 4: 0

1

1

4

1

3

1

2

2

3

3

4

1

1

order 5: 0

1

1

5

1

4

1

3

2

5

1

2

3

5

2

3

3

4

4

5

1

1
.

Concatenating those gives the SCS

(

0

1
,
1

1
,
0

1
,
1

2
,
1

1
,
0

1
,
1

3
,
1

2
,
2

3
,
1

1
, . . .

)

.

Next, replace each fraction in this sequence by the position in which it first appears, where
each distinct predecessor is counted only once, getting



















1 2
1 3 2
1 4 3 5 2
1 6 4 3 5 7 2
1 8 6 4 9 3 19 5 7 11 2
...

...
...

...
...

...
...

...
...

...
...



















. (1)
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Concatenating gives the Farey fractal sequence:

(1, 2, 1, 3, 2, 1, 4, 3, 5, 2, 1, 6, 4, 3, 5, 7, 2, 1, 8, 6, 4, 9, 3, 10, 5, 7, . . .) = A131967,

with position array (i.e., the associated interspersion)














1 3 6 11 18 · · ·
2 5 10 17 28 · · ·
4 8 14 23 35 · · ·
7 13 21 33 48 · · ·
...

...
...

...
...

. . .















= A131968.

6 Normalization and placement sequences

Every fractal sequence a = (an) can be separated into blocks each of which begins with 1
and includes 1 only at the beginning, as in Example 2. Given such blocks, three things can
happen. We shall make certain modifications in all three cases.

First, if a2 6= 1, place an initial 1 before a1 (which is necessarily 1), so that the new
sequence begins with 1, 1. Second, a block may be repeated, as in A023115 in Example 7,
where the block (1, 2, 3) occurs twice. In such a case, retain only the first of repeated blocks
in each case where repetition occurs. To keep things simple, we abuse notation by letting
(an) denote the sequence (still a fractal sequence) which remains after the first two steps
have been applied to the original sequence a.

Third, we arrange for the mth block to be of length m. To begin, the 1st block already
consists of 1 by itself. The second block is necessarily a permutation (a2, a3, . . . , am) of
(1, 2, . . . ,m−1) for some m ≥ 2, where a2 = 1. Replace this block with the following blocks,
consecutively if m ≥ 4:

(a2, a3), (a2, a3, a4), (a2, a3, a4, a5), . . . , (a2, a3, a4, a5, . . . , am).

Repeat the procedure on the next block, (am+1, am+2, . . . , am+q), where am+1 = 1, and con-
tinue in this manner inductively. The resulting sequence is the normalized fractal sequence
of a, denoted by N (a). Although possibly N (a) 6= a, clearly infinitely many of the blocks
of N (a) are also blocks of a, so that in this sense, a is equivalent to N (a).

For all m ∈ N, the mth block of N (a) is a permutation of (1, 2, . . . ,m), so that the
(m+1)st block arises from the mth according to the placement of m+1 among the available
m + 1 places. Let P(a), called the placement sequence of a (and of N (a) and any other
fractal sequence b such that N (b) = N (a)), denote the sequence whose mth term is the
position of m in the mth block of N (a).

Example 10. Let a be the signature of 21/2, as in Example 7:

a = (1, 2, 1, 3, 2, 1, 4, 3, 2, 5, 1, 4, 3, 6, 2, 5, 1, 4, 7, 3, 6, 2, 5, 8, 1, . . .);

N (a) = (1, 1, 2, 1, 3, 2, 1, 4, 3, 2, 1, 4, 3, 2, 5, 1, 4, 3, 6, 2, 5, 1, 4, 7, 3, 6, 2, . . .);

P(a) = (1, 2, 2, 2, 5, 4, 3, 8, . . .).
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Example 11. Let a be the Cantor fractal sequence, as in Example 8. In this case, N (a) = a,
and

P(a) = (1, 2, 2, 4, 2, 5, 4, 4, 8, 2, 7, 4, 11, 4, . . .).

Example 12. Let a be the Farey fractal sequence, as in Example 9. Then

N (a) = (1, 1, 2, 1, 3, 2, 1, 4, 3, 2, 1, 4, 3, 5, 2, 1, 6, 4, 3, 5, 2, 1, 6, 4, 3, 5, . . .);

P(a) = (1, 2, 2, 2, 4, 2, 6, 2, 5, 7, 10, 2, . . .).

Regarding Examples 11 and 12, in each case the transpose of the placement array is not
regular, so that (a∗n), although an SCS, is not a fractal sequence, and N (a∗) and P(a∗) are
undefined. Recalling that a placement array T belongs to a fractal sequence if and only if
T is a dispersion (or equivalently, an interspersion), it is natural to seek a characterization
of dispersions T for which T ∗ is also a dispersion, so that, for example, (a∗n) is a fractal
sequence. Such a characterization is given in [8].

Example 13. Using the sequence

P = (1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, . . .) = A004526

as a placement sequence yields the normalized fractal sequence

a = (1, 1, 2, 1, 3, 2, 1, 3, 4, 2, 1, 3, 5, 4, 2, 1, 3, 5, 6, 4, 2, 1, 3, 5, 7, 6, 4, 2, 1, . . .),

this being A194959, which is related to the Smarandache permutation sequence, A004741,
in a close and obvious manner.

Example 14. Using the sequence

P = (1, 2, 2, 4, 3, 6, 4, 8, 5, 10, 6, 12, 7, 14, 8, 16, 9, . . .)

(essentially A029578) as a placement sequence yields the normalized fractal sequence

a = (1, 1, 2, 1, 3, 2, 1, 3, 2, 4, 1, 3, 5, 2, 4, 1, 3, 5, 2, 4, 6, 1, 3, 5, 7, 2, 4, 6, 1, . . .),

which is closely related by A087467.

Examples 13 and 14 illustrate the fact that if P = (pn) is a sequence satisfying p1 = 1
and 2 ≤ pn ≤ m for all m ≥ 2, then P is the placement sequence of a normalized fractal
sequence. Further examples of this sort are shown at A194959.

Referring to (F1) in Section 2, the array T is called an interspersion [5, 6].
Clearly, if T is the interspersion of a normalized fractal sequence then each diagonal of

T is a permutation of consecutive integers. Specifically, the nth diagonal is a permutation of
these integers:

(

n

2

)

+ 1,

(

n

2

)

+ 2, . . . ,

(

n+ 1

2

)

.
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7 Selection functions and parasequences

Definition 15. Suppose that S ⊂ N. A function f : S × S → {0, 1} is a selection function
if the following conditions hold:

(1) for some i and j, f(i, 1) = 0 and f(1, j) = 0;

(2) for every (i, j), if f(i, j) = 0 then f(m, i) = 0 for infinitely many m;

(3) for every (i, j), if f(i, j) = 0 then f(j, n) = 0 for infinitely many n.

We shall make use of the minimal excludant function, denoted by mex and defined [3] for
any proper subset S of N by the formula

mex(S) = least positive integer not in S.

Definition 16. Let f be a selection function. Let s0 = (1), and let

m1 = mex{m : f(m, 1) = 0}; n1 = mex{n : f(1, n) = 0}; s1 = (m1, 1, n1);

m2 = mex{m : f(m,m1) = 0}; n2 = mex{n : f(n1, n) = 0}; s2 = (m2,m1, 1, n1, n2).

Define mk and nk inductively in this manner for all k ≥ 1. The f -parasequence is the doubly
infinite sequence

(. . . ,m3,m2,m1, 1, n1, n2, n3, . . .). (2)

We introduce two representations for a parasequence as a sequence. The first is the
concatenation sequence of f , obtained by concatenating the successive blocks in Definition
16; that is,

(1,m1, 1, n1,m2,m1, 1, n1, n2,m3,m2,m1, 1, n1, n2, n3, . . .). (3)

Note that (3) is an SCS, and if g(i, j) = 1 − f(i, j), then g may be a selection function.
Generally, the g-parasequence is not merely the reversal of the f -parasequence.

The second representation we call the riffle sequence for f (and for the f -parasequence):

(1,m1, n1,m2, n2,m3, n3,m4, n4,m5, n5, . . .). (4)

Example 17. Let

f(i, j) =































0, if i = j;

0, if i is even and j is odd;

0, if i, j are even and i > j;

0, if i, j are odd and i < j;

1, otherwise.

Then
s0 = (1), s1 = (2, 1, 3), s2 = (4, 2, 1, 3, 5), . . . ,
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so that f is the limit, (. . . , 8, 6, 4, 2, 1, 3, 5, 7, . . .). The concatenation sequence of f is the
Smarandache permutation sequence,

A004741 = (1, 2, 1, 3, 4, 2, 1, 3, 5, 6, 4, 2, 1, 3, 5, 7, 8, 6, 4, 2, . . .),

which is alternatively defined [10] as the concatenation of the sequences

(1, 3, . . . , 2n− 1, 2n, 2n− 2, . . . , 2).

The riffle sequence for f is A000027 = (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, . . .).

Example 18.

f(i, j) =

{

0, if i+ j is a prime;

1, otherwise.

The selection function f can be represented in a table, of which five rows are shown here:

i/j 1 2 3 4 5 6 7 8 9 · · ·
1 0 0 1 0 1 0 1 1 1 · · ·
2 0 1 0 1 0 1 1 1 0 · · ·
3 1 0 1 0 1 1 1 0 1 · · ·
4 0 1 0 1 1 1 0 1 0 · · ·
5 1 0 1 1 1 0 1 0 1 · · ·

From this table, extended, we read successive blocks

1; 2, 1, 4; 3, 2, 1, 4, 7; 8, 3, 2, 1, 4, 7, 6; 5, 8, 3, 2, 1, 4, 7, 6, 11;

leading to the following parasequence:

(. . . , 17, 12, 5, 8, 3, 2, 1, 4, 7, 6, 11, 18, 13, . . .).

The sum of each consecutive pair is a prime, as in A055265. It is left to the reader to decide
if every positive integer is present and if every odd prime occurs as one of the sums.

The following Mathematica program was used to generate the parasequence in Example
18, and it can be can easily be modified to yield other parasequences:

z = 100; s[1] = {0};

f[i_, j_] := If[PrimeQ[i + j], 0, 1];

m[k_] := m[k] = Select[Range[z], f[#, First[s[2 k - 1]]] == 0

&& ! MemberQ[s[2 k - 1], #] & , 1];

s[q_] := s[q] = If[EvenQ[q], Join[m[q/2], s[q - 1]],

Join[s[q - 1], n[(q - 1)/2]]];

n[k_] := n[k] = Select[Range[z], f[Last[s[2 k]], #] == 0

&& ! MemberQ[s[2 k], #] &, 1];

k = 1; While[k < 100, s[k]; k++]; s[k]
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Example 19.

f(i, j) =

{

0, if i+ j = n(n+ 1)/2 for some n ∈ N;

1, otherwise.

The f -parasequence is

(. . . , 8, 7, 3, 12, 9, 6, 4, 2, 1, 5, 10, 11, 17, 19, 26, 29, 16, . . .).

We conjecture that every positive integer is in this parasequence and that if n > 1, then the
nth triangular number is the sum of at least one pair of consecutive terms.

Example 20.

f(i, j) =

{

0, if i+ j = n2 for some n ∈ N;

1, otherwise.

The f -parasequence is

(. . . , 11, 5, 4, 21, 15, 10, 6, 3, 1, 8, 17, 19, 30, 34, 2, 7, . . .).

We conjecture that every positive integer is in this parasequence and that if n > 1, then n2

is the sum of at least one pair of consecutive terms.

Example 21.

f(i, j) =

{

0, if i and j are relatively prime;

1, otherwise.

The f -parasequence is

(. . . , 23, 14, 17, 10, 9, 11, 6, 5, 2, 1, 3, 4, 7, 8, 13, 12, 19, 15, 16, . . .).

We conjecture that every positive integer is in this parasequence.

Example 22. f(i, j) = ⌊{i
√
2}+ {j

√
2}⌋. where {} denotes fractional part. The f -

parasequence is

(. . . , 29, 7, 17, 11, 13, 6, 8, 4, 3, 1, 5, 2, 10, 9, 15, 16, 20, 18, 22, 14, . . .).

We conjecture that every positive integer is in this parasequence.

Example 23.

f(i, j) =

{

0, if |i− j| is a prime;

1, otherwise.

The f -parasequence is

(. . . , 18, 20, 17, 15, 13, 8, 10, 7, 5, 3, 1, 4, 2, 9, 6, 11, 14, 12, 19, 16, 21, 24, . . .).

We conjecture that every positive integer is in this parasequence.
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Theorem 24. Let α be an irrational number greater than 1, with convergents pi/qi and
intermediate convergents pi,j/qi,j, (given by

pi,j
qi,j

=
jpi+1 + pi
jqi+1 + qi

, j = 1, 2, . . . , ai+2 − 1),

as indicated here:

· · · < pi
qi

< · · · < pi,j
qi,j

<
pi,j+1

qi,j+1

< · · · < pi+2

qi+2

< · · · if i is even; (5)

· · · > pi
qi

> · · · > pi,j
qi,j

>
pi,j+1

qi,j+1

> · · · > pi+2

qi+2

> · · · if i is odd; (6)

(The convergents and intermediate convergents in (5) are called lower, as they converge from
below to α; those in (6) are upper, as they converge from above to α.) Let

f(i, j) =

{

0, if {iα} < {jα};
1, otherwise.

The f -parasequence is

. . .mk,mk−1, . . . ,m1, 1, n1, n2, . . . , nk . . . ,

where 1,m1,m2, . . . are the denominators of the lower convergents and intermediate conver-
gents to α, and 1, n1, n2, . . . are the denominators of the upper convergents and intermediate
convergents to α.

Proof. A short version follows: apply induction to the indices of the convergents and inter-
mediate convergents, using theorems [7] stated here: The best lower approximates to α are
the even-indexed convergents and intermediate convergents to α, and the best upper approx-
imates to α are the odd-indexed convergents and intermediate convergents to α. (Here, the
words even and odd pertain only to the index i, not j.

Example 25.

f(i, j) =

{

0, if {ie} < {je};
1, otherwise.

The f -parasequence is

(. . . , 1001, 465, 394, 323, 252, 181, 110, 39, 7, 3, 2, 1, 4, 11, 18, 25, 32, 71, . . .).

These numbers are the denominators of Farey fraction approximations to e, as in A119015.
They are also the denominators of the intermediate convergents to e (including the conver-
gents); see A006259 and A007677.
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Example 26. Let τ = (1 +
√
5)/2, the golden ratio, and

f(i, j) =

{

0, if {iτ} < {jτ};
1, otherwise.

The f -parasequence is

(. . . , 610, 233, 89, 34, 13, 5, 2, 1, 3, 8, 21, 55, 144, 377, 987, . . .),

consisting of the Fibonacci numbers, A000045, including bisections A001519 and A001906.
In this extreme example, as a result of the fact that the continued fraction for τ consists
solely of 1s, there are no intermediate convergents. The numbers to the left of 1 in the
parasequence are the denominators of the lower convergents to τ , and they are also the
numerators of the upper convergents. The numbers to the right of 1 are denominators of the
upper convergents, and also the numerators of the lower convergents. Specifically,

1

1
<

3

2
<

8

5
<

21

13
< · · · < τ < · · · < 13

8
<

5

3
<

2

1
.

As suggested by Examples 25 and 26, it is natural to regard a parasequence as a con-
catenation of a left sequence and a right sequence; referring to (2), the left sequence is
(1,m1,m2,m3, . . .) and the right sequence is (1, n1, n2, n3, . . .).; (We include 1 in both se-
quences.) In the next theorem and examples, the two sequences are interestingly related to
each other.

Theorem 27. Let

f(i, j) =

{

0, if i+ j = 2h−1 for some h ∈ N;

1, otherwise.

The parasequence of f is (. . . , 43, 21, 11, 5, 3, 1, 7, 9, 23, 41, . . .). Here, the left sequence, (1, 3, 5, 11, . . .),
is given by mk = J(k+2), where J = A001045, the Jacobsthal sequence. The right sequence
(with 1 included),

(1, 7, 9, 23, . . .) = A083582,

is given by nk =A083582(k + 1).

Proof. The sequence (A001045(k)), for k ≥ 2, is given by the recurrence relation

a(k) = a(k − 1) + 2a(k − 2), (7)

with initial values a(2) = 1 and a(3) = 3. The sequence (A083582(k)), for k ≥ 1, is given by
(7) with initial values a(1) = 1 and a(2) = 7.
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Following Definition 15, let s0 = (1). Then

m1 = least i /∈ s0 such that f(i, 1) = 0, so m1 = 3 and s1 = (3, 1);

n1 = least j /∈ s1 such that f(1, j) = 0, so n1 = 7 and s2 = (3, 1, 7);

m2 = least i /∈ s2 such that f(i, 3) = 0, so m2 = 5 and s3 = (5, 3, 1, 7).

So far, we have established that (mk) and (nk) have the required initial values. We turn now
to showing that both sequences satisfy (7). For arbitrary k ≥ 3, we have, inductively,

mk−1 = least i such that i+mk−2 is the least positive power of 2

that is not in {1, 2, . . . , 2k−1},
so that

mk−1 = 2k −mk−2. (8)

Likewise, mk = 2k+1 −mk−2, so that

2k+1 = mk +mk−1

= 2mk−1 + 2mk−2 by (8).

Consequently, mk = mk−1 + 2mk−2, as desired, so that mk = A001045(k + 2) for k ≥ 1.
Meanwhile,

nk−1 = least j such that nk−2 + j is the least positive power of 2

that is not in {1, 2, . . . , 2k},
so that nk−1 = 2k+1 − nk−2, and likewise, nk = 2k+2 − nk−1. It follows, as before, that
nk = nk−1 + 2nk−2, so that nk = A083582(k + 1) for k ≥ 1.

Example 28.

f(i, j) =

{

0, if i+ j = n3 for some n ∈ N;

1, otherwise.

The left sequence is A015518, and the right, A084222 (except for signs).

Example 29.

f(i, j) =

{

0, if i+ j is a Fibonacci number (A000045);

1, otherwise.

The left sequence is A000045, and the right, A008346.

Example 30.

f(i, j) =

{

0, if i+ j is a Lucas number other than 2 (A000045);

1, otherwise.

The left sequence is A000032, and the right, A098600.
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Example 31.

f(i, j) =

{

0, if i+ j = ⌊n(1 +
√
5)/2⌋ for some n ∈ N (A000201);

1, otherwise.

The left sequence is A279934, and the right, A279933.

Example 32.

f(i, j) =

{

0, if i+ j =
(

2n
n

)

for some n ∈ N (A000984);

1, otherwise.

The left sequence is A349554, and the right, A054108.

8 Dense fractal sequences

A fractal sequence (an) is dense if for every i ∈ N, there exists h ≥ 2 such that

ai < ai+h < ai+1 or ai+1 < ai+h < ai. (9)

A distinctive property of a dense fractal sequences is the opposite of a distinctive prop-
erty of a parasequence (and its representations as a concatenation or riffle as described in
Section 7); viz., if numbers m and n occur consecutively in a parasequence, then they occur
consecutively throughout, whereas in a dense fractal sequence, the number of terms between
m and n increases without bound.

Lemma 33. Suppose that n ∈ N and that r is a positive irrational number. Let cn be the
number of numbers i+ jr, where i ∈ N and j ∈ N, such that

n < i+ jr < n+ 1. (10)

Then cn = ⌊n
r
⌋ − ⌊ r−1

r
⌋.

Proof. For each i, one of the inequalities (9) holds if and only if

n− i

r
< j <

n− i+ 1

r
,

and there are exactly
⌊

n− i

r

⌋

−
⌊

n− i+ 1

r

⌋

such numbers j. Summing over all i for which
⌊

n− i+ 1

r

⌋

≥ 1
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gives

cn =

⌊n+1−r⌋
∑

i=1

⌊

n− i

r

⌋

−
⌊

n− i+ 1

r

⌋

=
⌊n

r

⌋

−
⌊

r − 1

r

⌋

.

Corollary 34. In Lemma 33, if r > 1, then cn = ⌊n
r
⌋.

Examples for this corollary are A019446 for r = (1 +
√
5)/2 and A049474 for r =

√
2.

Example 35. To construct a dense fractional in a simple combinatorial manner, start with
1, and then surround it using 2, 3 like this: 2, 1, 3. Then surround those three numbers using
4, 5, 6, 7 like this: 4, 2, 5, 1, 6, 3, 7, and so on. Concatenate to obtain the sequence

(1, 2, 1, 3, 4, 2, 5, 1, 6, 3, 7, 8, 4, 9, 2, 10, 5, 11, 1, 12, 6, 13, 3, . . .) = A131987.

Example 36. Suppose that (an(r)) is the signature of an irrational number r > 1, as in
Example 7. We shall show that the fractal sequence (an(r)) is dense. For each index i, either
ai < ai+1 or else ai > ai+1. The proof in the second case is essentially the same as that for
the first, so we shall assume that ai < ai+1. Taking n = ⌈2r(i + 2)⌉, there are, by Lemma
33, more that 2i+ 1 numbers u+ vr such that

i < u+ vr < i+ 1. (11)

Since r > 1, each interval of length 1 contains at most one number i+ vr, for fixed i, so that
by (11), there is at least one value of u greater than 1. The number h = u− i then satisfies
ai < ai+h < ai+1, with h ≥ 2.

Example 37. Here, initial terms 1,2 are isolated by 3,4 to form 1423, and then 1,4,2,3 are
isolated by 5,6,7,8 to form 18472635, and so on. Concatenating these blocks gives

(1, 1, 2, 1, 2, 3, 1, 3, 2, 4, 1, 4, 2, 3, 5, 1, 4, 2, 6, 3, 5, 1, 4, 7, 2, 6, 3, . . .) = A132223.

The corresponding dense normalized fractal sequence is

(1, 1, 2, 1, 2, 3, 1, 4, 2, 3, 1, 4, 2, 3, 5, 1, 4, 2, 6, 3, 5, 1, 4, 2, 6, 4, . . .) = A132224,

with placement sequence

(1, 2, 3, 2, 5, 4, 3, 2, 9, 8, 7, 6, 5, 4, 3, 2, 17, 16, 15, 14, 13, 12, . . .) = A132226,

formed by concatenating blocks 12, 32, 5432, 98765432, . . ., where each new block sh after the
block 32 is the concatenation sh−1sh−2.
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Example 38. Suppose that r is a positive irrational number. For n ∈ N, arrange in
increasing order the fractional parts {hr} for h = 1, 2, . . . , n:

{h1r} < {h2r} < · · · < {hnr}. (12)

From (12), form the block (h1, h2, . . . , hn), a permutation of (1, 2, . . . , n), and proceed as in
Section 6 to form a fractal sequence. For r =

√
2, the sequence is A054073, with placement

sequence A054072. For r = (1 +
√
5)/2, the sequence is A054065, for which the placement

sequence is John Conway’s “left budding sequence”:

(1, 1, 3, 2, 1, 5, 3, 8, 5, 2, 9, 5, 1, . . .) = A019587.

The dense normalized fractal sequence obtained from A054065 is

(1, 1, 2, 1, 3, 2, 1, 3, 2, 4, 1, 3, 5, 2, 4, 1, 6, 3, 5, 2, 4, 1, 6, 3, 5, 2, 7, 4, . . .) = A132283,

with associated interspersion















1 2 4 7 11 · · ·
3 6 9 14 20 · · ·
5 8 12 18 24 · · ·
10 15 21 28 36 · · ·
...

...
...

...
...

. . .















= A132284.
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