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Abstract

We extend Yamagami and Matsui’s theory of the Kaprekar transformation in base
3 to higher odd bases. The structure of primitive proper, primitive non-proper and
general cycles appears in all odd bases, but many other features differ according to
whether the base is congruent to 1 or 3 modulo 4. In the latter case, cycles are
derived from subgroups and cosets in multiplicative groups modulo odd numbers. We
examine cycles and fixed points in bases 5 and 7 in some detail, and make some
broad observations relating to higher bases. There also exist many cycles outside the
primitive/general structure.

1 Introduction

The Kaprekar transformation Tb,n takes an integer x which has n ≥ 2 digits when represented
in base b ≥ 2, rearranges the digits in descending and ascending orders to produce new
integers x↓ and x↑, and subtracts the latter from the former. Thus, given a0, a1, . . . , an−1 ∈ Z
with

0 ≤ a0 ≤ a1 ≤ · · · ≤ an−1 < b,
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we take an integer

x =
n−1∑
j=0

ajb
αj

where the set {α0, α1, . . . , αn−1} is some permutation of the set {0, 1, . . . , n − 1}, and the
transformation is then defined by

Tb,n : x 7→ x↓ − x↑ :=
n−1∑
j=0

ajb
j −

n−1∑
j=0

an−1−jb
j. (1)

Clearly the result of the transformation depends only on how many occurrences there are of
each of the digits 0, 1, . . . , b − 1 in the set {a0, a1, . . . , an−1}. So if there are ki occurrences
of the digit i in the base-b expression of an integer x, i.e., in the set {a0, a1, . . . , an−1}, we
define the Kaprekar index of x in base b to be the b-tuple (k0, k1, . . . , kb−1), generalizing
the definition introduced by Yamagami and Matsui [11] for base 3. We shall also use the
shorthand notation k for this b-tuple, and refer to ki as the i-component of k for each
i ∈ {0, 1, . . . , b−1}; components of Kaprekar indices have previously been referred to as digit
counters by Lapenta, Ludington, and Prichett [5, 8]. For example, the integer represented
as 30133103 in base 4 has the Kaprekar index (2, 2, 0, 4), with 0-component k0 = 2, etc.;
applying the Kaprekar transformation to this integer involves doing the subtraction in base
4,

T4,8 : 30133103 7→ 33331100− 00113333 = 33211101, (2)

in which the result has the Kaprekar index (1, 4, 1, 2); and we would have obtained the same
result if we had started with any other integer with a base-4 representation consisting of two
0’s, two 1’s, no 2’s and four 3’s.

The Kaprekar transformation can be iterated: if Tb,n : x 7→ Tb,n(x), we define Tmb,n
recursively by

Tm+1
b,n : x 7→ Tb,n

(
Tmb,n(x)

)
.

Since there are finitely many integers with n-digit representations in base b (for any given
b, n ∈ N), then for any x there must be integers d(x) ≥ 0 and l(x) ≥ 1 such that

T
d(x)+l(x)
b,n (x) = T

d(x)
b,n (x). (3)

Taking d(x) and l(x) to be minimal for (3) to be satisfied, we see that iterations of the
Kaprekar transformation must lead ultimately to a cycle of length l(x), with

T
m+l(x)
b,n (x) = Tmb,n(x)

for all m ≥ d(x). If l(x) = 1, we have a fixed point, with Tmb,n(x) = T
d(x)
b,n (x) for all m ≥ d(x).

The notation and terminology is applied to Kaprekar indices as well as to integers: for
example, we may observe that in base 2 the integer 1001 is a fixed point because

T2,4(1001) = 1100− 0011 = 1001,

2



a result which can be written in terms of Kaprekar indices as

T2,4(2, 2) = (2, 2)

so that the Kaprekar index (2, 2) is a fixed point in base 2. The ordered set of integers,
or of their Kaprekar indices, produced by iterating the Kaprekar transformation from an
integer x with Kaprekar index k, is called a Kaprekar sequence. The integer Tb,n(x) and its
Kaprekar index Tb,n(k) is called the successor of x and k, respectively. As shorthand, we shall
use primes to denote successors: k′ = Tb,n(k), with components k′ = (k′0, k

′
1, . . . , k

′
b−1), and

multiple primes can be used to denote further terms in the Kaprekar sequence. A formula for
k′, or any of its components, in terms of the components of k is called a succession formula.
We shall also avoid the cumbersome Tmb,n notation by simply using the symbol 7→ between
successive members of a Kaprekar sequence. For example, readers may wish to check that
further iterations from the calculation in (2) yield the sequence of integers,

30133103 7→ 33211101 7→ 32033211 7→ 32133111 7→
22202112 7→ 21033222 7→ 31333311 7→ · · ·

with its corresponding sequence of Kaprekar indices,

(2, 2, 0, 4) 7→(1, 4, 1, 2) 7→ (1, 2, 2, 3) 7→ (0, 4, 1, 3) 7→
(1, 2, 5, 0) 7→ (1, 1, 4, 2) 7→ (0, 3, 0, 5) 7→ · · · .

In the companion paper [4], we show that in base 4 the integer 31333311, obtained after 6
iterations, is in fact the first member of the above sequence to be in a cycle, which is a cycle
of length 3. Thus for the starting integer x = 30133103 we have d(x) = 6 and l(x) = 3. We
also find that the Kaprekar index (1, 1, 4, 2), obtained after only 5 iterations, is in a cycle of
Kaprekar indices, but at that stage this index corresponds to an integer not yet in the cycle;
it commonly occurs that the sequence of Kaprekar indices enters a cycle one term before the
sequence of integers, since each index corresponds to many integers.

It is important to retain leading zeroes in all calculations, so that the digit-count n
remains fixed while iterating with the Kaprekar transformation. For example, in base ten
with n = 3, T3,10(877) = 877− 778 = 99 which we write with three digits as 099, so that the
next iteration gives T 2

3,10(877) = 990− 099 = 891. If the leading zero had been dropped, the
second iteration would have given the spurious result 99 − 99 = 00 (although in fact some
authors have operated in this way). Of course, any integer which is a repdigit in base b, i.e.,
with all its digits the same, is transformed to 00 · · · 0 (with n zeroes), which is a fixed point
of the Kaprekar transformation. It has been shown by Yamagami [10] that only with 2-digit
integers in an odd base can a non-repdigit be transformed to a repdigit; in all other cases,
in particular whenever n ≥ 3, we regard repdigits as a trivial case, and exclude them from
any further consideration. If every non-repdigit with some given digit-count n in some base
b iterates to the same fixed point or cycle by the Kaprekar transformation, that fixed point
or cycle is termed unanimous.
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The history of the transformation started with the observation by D. R. Kaprekar that
when applied to non-trivial 4-digit integers in base ten, it always leads to the fixed point 6174
after no more than seven iterations [2, 3]; so 6174 is a unanimous fixed point for b = 10, n = 4.
Kaprekar regarded this merely as a curiosity; but other authors have subsequently studied
the transformation in various bases b and with various digit-counts n, and with rather more
attention on fixed points than on cycles of length l > 1. A selection of these studies is
listed by Yamagami [10], in a paper which also includes a complete theory of the Kaprekar
transformation in base 2: the principal result for base 2 is that every Kaprekar index (k0, k1)
with k0 ≤ k1 is a fixed point, and that there do not exist cycles of length l > 1.

Yamagami and Matsui [11] then considered the much more complicated case of base 3,
and produced a complete and rigorous theory which determines every possible fixed point
and cycle, for any number of digits. At the same time, Downes-Ward [1] was using a more
empirical approach to study cycles in bases 3 to 8, searching for patterns in lists of integers
which are fixed points or members of cycles; those lists have been provided by Joseph Myers
[6] in the On-line Encyclopedia of Integer Sequences (OEIS) [9], and are complete for digit-
counts n up to at least 70 for bases 2 to 10. General formulae for members of cycles in base
3 were found by Downes-Ward [1], and we have checked that these formulae are consistent
with the theory of Yamagami and Matsui [11].

The patterns found by Downes-Ward [1] in the data for number and lengths of cycles
as a function of digit-count n are much more regular in even bases than in odd bases; in
a companion paper [4] we formulate a complete theory of the Kaprekar transformation in
base 4 and develop some theory that applies more generally to even bases, while in the
present paper we show how Yamagami and Matsui’s theory for base 3 may be generalized
to cover all odd bases. We find different behaviour according to whether b ≡ 1 (mod 4) or
b ≡ 3 (mod 4), and we illustrate these behaviours by examining bases 5 and 7 in detail.

Thus the remaining sections of this paper are as follows. Section 2 contains a summary of
Yamagami and Matsui’s results for base 3, with some further theoretical observations which
are useful for consideration of higher odd bases. Section 3 contains theory that applies to
all odd bases; some of the theorems here can be deduced from the formulae for difference
counters and digit counters in the papers by Lapenta, Ludington, and Prichett [5, 8], but
we prove them from first principles to maintain a consistent approach. The following two
sections contain more specific results for bases b ≡ 1 (mod 4) and b ≡ 3 (mod 4) respectively,
and we draw some general conclusions regarding odd bases in Section 6. There has been
a wide variety of notation and terminology used by different researchers on the Kaprekar
transformation; much of our usage is that introduced by Yamagami. One notational con-
vention that we introduce is that the letter j always refers to place in a n-digit string, as in
(1), while i always refers to a base-b digit, 0 ≤ i ≤ b− 1.
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2 Review of Yamagami and Matsui’s results for base 3

A complete characterisation of the fixed points and cycles of the Kaprekar transformation in
base 3 has been given by Yamagami and Matsui [11]. The elegance of their theory may not be
apparent to readers of their paper, due to the rather lengthy proofs required to demonstrate
rigorously that no possible fixed points or cycles have been omitted; so the present authors
consider it worthwhile to provide a summary of the results and their theoretical background.
We do not address the questions of which cycle or fixed point is reached from a given starting
integer x, or the number of iterations of the Kaprekar transformation required to enter a
cycle or reach a fixed point from x; Yamagami and Matsui found relatively simple answers to
these questions for odd digit-counts n, but the case of even n was found to be too complicated
to develop a theory.

Yamagami and Matsui found that all fixed points and cycles in base 3 fit into a classifi-
cation for which they introduced the terms singular, primitive proper, primitive non-proper,
and general, with just two exceptions: with n = 2, the Kaprekar transformation takes all
2-digit integers to the repdigit 11 in no more than 2 iterations, and hence to the fixed point
00, with Kaprekar index (2, 0, 0); while with n = 3, there is a unanimous cycle of length 2,

022 7→ 121 7→ 022,

with Kaprekar indices
(1, 0, 2) 7→ (0, 2, 1) 7→ (1, 0, 2).

The latter case was classified by Yamagami and Matsui as a singular cycle, but does not
exactly fit into the pattern of singular cycles described below. For n ≥ 4, fixed points in base
3 can simply be treated as cycles of length 1, with no separate theory required (in contrast
to the situation in even bases, considered in our companion paper [4]).

The singular cycles are of length l = m+ 1 and digit-count n = 2m + 2 for each m ∈ N;
the Kaprekar index of one member of a cycle is (0, 2, 2m), and the remaining members are
(1, 2j, 2m − 2j + 1) for j = 1, . . . ,m. So with m = 1 we have a cycle of length 2 in 4-digit
integers,

1221 7→ 1012 7→ 1221,

or in terms of Kaprekar indices,

(0, 2, 2) 7→ (1, 2, 1) 7→ (0, 2, 2).

The cycle of indices in the m’th case is

(0, 2, 2m) 7→ (1, 2, 2m − 2 + 1) 7→ (1, 22, 2m − 22 + 1) 7→ · · ·
7→ (1, 2m−1, 2m − 2m−1 + 1) 7→ (1, 2m, 1) 7→ (0, 2, 2m).

Fundamental to Yamagami and Matsui’s theory for the remaining classes of cycle in base
3 are the following definition and theorem.

5



Definition 1. For any odd integer r ≥ 3, let σ(r) be the least positive integer such that
2σ(r) ≡ ±1 (mod r). See A003558 in the OEIS.

Theorem 2. For every odd integer r ≥ 3, σ(r) is a divisor of φ(r)/2, where φ is the Euler
totient function (A000010 in OEIS).

Euler’s totient theorem states that r divides aφ(r) − 1 when r ∈ N and a is coprime with
r; setting a = 2 confirms the existence of σ(r) satisfying Definition 1. Next, let q0 be any
even positive integer that is less than and coprime with a given odd r, and define qi for i > 0
recursively by the rules:

qi+1 =

{
2qi, if qi <

r
2
;

2(r − qi), if qi >
r
2
.

(4)

Clearly qi ≡ ±2iq0 (mod r), so from Definition 1 we have that qσ(r) = q0 but qi 6= q0 for
1 ≤ i < σ(r); note that although Definition 1 appears to allow qσ(r) = r − q0, this cannot
happen since r − q0 is odd. Thus we have a cycle of q-values of length σ(r),

q0 7→ q1 7→ · · · 7→ qσ(r)−1 7→ qσ(r) = q0.

These q-cycles may be understood by reference to Z×r , the multiplicative group of integers
modulo r, consisting of the φ(r) positive integers less than and coprime with r. The q-cycle
starting from q0 = r − 1 is obtained as follows: take the cyclic subgroup generated by 2 in
Z×r , i.e., the ordered set (1, 2, 22 mod r, . . . , 2j−1 mod r) for some j which divides φ(r), and
replace any odd members q∗i with even integers qi = r − q∗i (in particular, replace q∗0 = 1
with q0 = r − 1). The subgroup may or may not include r − 1. If it does, the integer r − 1
is reached at the halfway point of generating the subgroup (since (r− 1)2 ≡ 1 (mod r)); but
the q-cycle is complete at this point. If r − 1 is not in the subgroup, the q-cycle is derived
from the entire subgroup. Either way, corresponding to the members of the q-cycle, there
are equally many odd integers q∗i = r − qi in Z×r , and including the q∗i together with the qi
accounts for 2σ(r) members of the group. This may be the entirety of the group; if not,
further q-cycles are derived from cosets of our subgroup in Z×r , and Lagrange’s Theorem
then yields the result in Theorem 2. The number of q-cycles for any given odd r is then

Nq(r) =
φ(r)

2σ(r)
. (5)

Yamagami and Matsui found succession formulae for the 1-component of a Kaprekar
index, which in the case where k0 = 1 take the form

k′1 =

{
2k1, if 1 + k1 < k2;

2(k2 − 1), if 1 < k2 < 1 + k1.
(6)

But with k0 = 1, we have k2 = n − 1 − k1, and by setting r = n − 2 we can see that these
succession formulae are precisely the rules (4) that govern q-cycles. Hence, corresponding to
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each q-cycle there exists a base-3 Kaprekar cycle for integers of digit-count n = r + 2, with
members of the cycle having Kaprekar indices of the form

(1, qi, r − qi + 1). (7)

Yamagami and Matsui termed these Kaprekar cycles the primitive proper cycles. Corre-
sponding to each of these cycles, there exist primitive non-proper cycles of integers with
digit-count n = cr + 2, with members having Kaprekar indices

(1, cqi, cr − cqi + 1), (8)

for every integer c > 1. Finally, corresponding to each primitive (proper or non-proper)
cycle, there exist general cycles of integers with digit-count n = cr + 2s, with members
having Kaprekar indices

(s, cqi, cr − cqi + s), (9)

for every integer s > 1. Being derived from a q-cycle, all these primitive and general cycles
have the same length, σ(r).

The fixed points of the Kaprekar transformation in base 3 correspond to any q-cycle of
length σ(r) = 1. Only r = 3 satisfies this requirement, with the single member of the q-cycle
being q0 = 2. So there is the single primitive proper fixed point with Kaprekar index (1, 2, 2)
for n = 5, primitive non-proper fixed points (1, 2c, c + 1) for n = 3c + 2, and general fixed
points (s, 2c, c+ s) for n = 3c+ 2s.

While the formulae to generate all cycles and fixed points are simple, if it is required to
determine the cycles and fixed points with a given digit-count n, the following procedure
needs to be followed. If n is odd with n ≥ 5, there is at least one primitive proper cycle.
The number of such cycles is Nq(r), found from (5) where r = n − 2. We have seen that a
q-cycle can always be generated using the rules (4) from q0 = r− 1; this q-cycle corresponds
to a subgroup of Z×r . If Nq(r) > 1, further q-cycles corresponding to cosets in Z×r may be
found by taking q0 as the greatest even positive integer less than and coprime with r and not
appearing in a cycle already found. The primitive proper cycles of Kaprekar indices are then
obtained from the q-cycles by the formula (7). If n − 2 is prime, there are no non-proper
cycles. If n−2 is composite (odd or even), there are non-proper cycles corresponding to each
of its odd factors r ≥ 3 such that cr = n− 2 for some c ∈ N; having obtained the q-cycle(s)
for each such r, the non-proper cycles of Kaprekar indices of form (8) can be calculated using
the multiplier c. Clearly the only primitive cycles for even n are non-proper cycles with even
c; but if n = 2m + 2 for any m ∈ N, which is the case where a singular cycle exists, there are
no primitive cycles at all. Finally, there are general cycles for the given n corresponding to
the primitive cycles for digit-counts n− 2t, for each t ∈ N such that n− 2t ≥ 5 or n− 2t ≥ 8
in the respective cases of odd or even n (since 5 and 8 are the smallest digit-counts for which
primitive cycles exist in the respective odd and even cases).

Hence the enumeration of general cycles for a given n requires the enumeration of prim-
itive cycles for all smaller positive integers n′ of the same parity, while the enumeration of
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primitive cycles involves the summation of Nq(r) for all odd r that are factors of n′ − 2.
This leads to Yamagami and Matsui’s [11] formulae involving double summations for the
total number of cycles (including fixed points) with any given n. However, simpler formulae
may be found for the enumeration of integers which are members of a cycle with given n.
For odd n with n − 2 prime, each positive even number less than n − 2 is in a q-cycle for
r = n − 2, and hence appears as the 1-component of the Kaprekar index of a member of a
primitive proper cycle; so there are (n− 3)/2 members of such cycles. If n is odd but with
n− 2 composite, each even number less than n− 2 still appears as the 1-component of the
Kaprekar index of a member of a primitive cycle which may be proper or non-proper, so
the formula (n − 3)/2 remains valid as the number of members of all primitive cycles with
the given digit-count n. The summation to yield NK(n), the number of integers which are
members of any cycle, primitive or general, with odd digit-count n is then

NK(n) =
∑

oddn′, 5≤n′≤n

n′ − 3

2
=

(n−3)/2∑
m′=1

m′ =
(n− 3)(n− 1)

8
. (10)

For even n, we note first that any positive integer m may be written in terms of a 2-adic
valuation v(m) and an odd part ρ(m) as

m = 2v(m)ρ(m). (11)

Since there are primitive cycles corresponding to each of the odd factors of n−2, the number
of integers which are members of primitive cycles with digit-count n is (ρ(n−2)−1)/2. The
summation to enumerate members of all cycles, primitive or general, must be made over
even n′ from 8 to n, but does not yield a simple formula for NK(n) since there is no simple
formula for ρ(n − 2). If n = 2m + 2 for any m ∈ N, there are m + 1 members of a singular
cycle, but no members of primitive cycles since ρ(n− 2) = 1.

A table of q-cycles for all odd r up to 67 is given in Appendix A, and Figure 1 shows
correspondingly all the cycle lengths l that exist for each digit-count n up to 70: cycle lengths
are in sequence A165003 in OEIS, with digit-counts obtained by converting least members of
cycles, A165002 in OEIS, to base 3. For primitive proper cycles, for which the cycle length
is σ(r) = φ(r)/2Nq(r) with r = n− 2, the greatest possible value of σ(r) is when Nq(r) = 1
and r is prime so that φ(r) = r−1. Any non-proper or general cycle of the same length must
have a greater digit-count. Thus the leftmost dot on almost every row in Figure 1 represents
a primitive proper cycle, and is on the line l = (n−3)/2 if n−2 is prime with Nq(n−2) = 1.
To the right of the leftmost dot on any row, there are further dots representing general cycles
at every greater odd digit-count, but the first dot for an even digit-count is for a primitive
non-proper cycle with c = 2; this has n = 2n0− 2, where n0 is the digit-count for the proper
cycle. The exceptions to the above are dots representing singular cycles at n = 4, 6, 10, 18, 34
and 66 for cycle lengths up to 7, and a dot for the special case of n = 3; no dot is shown for
n = 2 because we have excluded fixed points with Kaprekar indices (n, 0, 0) as being trivial,
but all 2-digit integers are taken to such a fixed point under the Kaprekar transformation.
Apart from these exceptions, there are no dots to the left of the line l = (n− 3)/2.
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Figure 1: Cycle lengths that exist for digit-counts n up to 70.

We conclude this section with an example of finding all the primitive Kaprekar cycles
with a given digit-count: n = 254. Since n is even, we are only looking for non-proper
cycles. The odd factors of n− 2 = 252 are r = 3, 7, 9, 21 and 63, with respective multipliers
c = 84, 36, 28, 12 and 4 such that cr = n− 2. So, from the table in Appendix A and formula
(8), we have:

• Corresponding to r = 3, a fixed point with Kaprekar index (1, 168, 85);

• Corresponding to r = 7, a cycle of length 3, members having Kaprekar indices

(1, 72, 181) 7→ (1, 144, 109) 7→ (1, 216, 37) 7→ (1, 72, 181);

• Corresponding to r = 9, a cycle of length 3, members having Kaprekar indices

(1, 56, 197) 7→ (1, 112, 141) 7→ (1, 224, 29) 7→ (1, 56, 197);

• Corresponding to r = 21, a cycle of length 6, members having Kaprekar indices

(1, 24, 229) 7→ (1, 48, 205) 7→ (1, 96, 157) 7→ (1, 192, 61) 7→ (1, 120, 133) 7→
(1, 240, 13) 7→ (1, 24, 229);

• Corresponding to r = 63, three cycles of length 6, members having Kaprekar indices

(1, 8, 245) 7→ (1, 16, 237) 7→ (1, 32, 221) 7→ (1, 64, 189) 7→ (1, 128, 125) 7→
(1, 248, 5) 7→ (1, 8, 245),
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(1, 40, 213) 7→ (1, 80, 173) 7→ (1, 160, 93) 7→ (1, 184, 69) 7→ (1, 136, 117) 7→
(1, 232, 21) 7→ (1, 40, 213),

(1, 88, 165) 7→ (1, 176, 77) 7→ (1, 152, 101) 7→ (1, 200, 53) 7→ (1, 104, 149) 7→
(1, 208, 45) 7→ (1, 88, 165).

Finding the actual 254-digit integer in a cycle from its Kaprekar index simply requires a
base-3 subtraction of integers having the previous Kaprekar index in the cycle. For example,
the integer with Kaprekar index (1, 72, 181) in the cycle corresponding to r = 7 is found
from the Kaprekar index (1, 216, 37) by

2 · · · · · · 2︸ ︷︷ ︸
37

1 · · · · · · · · · 1︸ ︷︷ ︸
216

0

− 0 1 · · · · · · · · · · · · 1︸ ︷︷ ︸
216

2 · · · 2︸ ︷︷ ︸
37

= 2 1 · · · 1︸ ︷︷ ︸
35

0 2 · · · 2︸ ︷︷ ︸
180

1 · · · 1︸ ︷︷ ︸
36

1,

where the result has Kaprekar index (1, 72, 181) as required.
Observe that every multiple of 8 that is less than 252 appears once as the 1-component

of a Kaprekar index in the above primitive cycles. With n = 254 we have ρ(n − 2) = 63
and v(n − 2) = 2 according to the definition (11), so there is a member of a primitive
cycle corresponding to each even positive integer less than 63; and the 1-components of the
Kaprekar indices of these cycle members are even multiples of 2v(n−2) = 4.

3 Theory on primitive and general cycles in any base

It is useful to reframe some relevant parts of the theory for base 3 before considering general
bases. We introduce the notation

k−2 := k2 − 1. (12)

Then for odd digit-counts n in base 3, every Kaprekar index of the form (1, k1, 1 + k−2 )
with even positive k1, so that k−2 is odd and k1 + k−2 = n − 2, is in a primitive cycle. Let
c := gcd(n− 2, k1) = gcd(k1, k

−
2 ) and r := (n− 2)/c; then the length l of the primitive cycle

is equal to σ(r), defined in Definition 1. If c = 1, the primitive cycle is proper. Letting
q = k1/c, the Kaprekar index (1, k1, 1+k−2 ) can be rewritten as (1, cq, cr−cq+1), and is in a
cycle in which the succession of indices is given by a q-cycle derived from a subgroup or coset
of the multiplicative group modulo r. With odd n, c is also odd; but non-proper primitive
cycles with even n may also be obtained from proper cycles by applying even multipliers
c in cycles of Kaprekar indices of form (1, cq, cr − cq + 1). Furthermore, indices of form
(s, cq, cr − cq + s), for any s > 1, are in associated general cycles. This theory leads to the
pattern of cycle lengths vs. digit-counts seen in Figure 1.
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We now introduce some terminology for cycles and individual Kaprekar indices, some
of which is a generalization to any base b ≥ 3 of the terminology used by Yamagami and
Matsui [11] for base 3. To make the notation tidier, we introduce the symbol

B := b− 1

for the greatest digit that appears in base b.

Definition 3.

• A Kaprekar index k = (k0, k1, . . . , kB) is regular if ki ≥ 1 for i = 0, 1, 2, . . . , B and
kB > k0.

• A cycle is regular if every member has a regular Kaprekar index.

• A cycle is special if any member has a Kaprekar index that is not regular.

Thus in base 3, Yamagami and Matsui’s singular cycles are classified here as special, as
are the unanimous fixed point with n = 2 and the unanimous cycle of length 2 with n = 3.
However, our concern in this section is to develop theory applying to regular cycles. These
cycles and their members may be classified using an extension of Yamagami and Matsui’s
terminology.

Definition 4.

• A regular Kaprekar index is primitive if k0 = 1.

• A cycle is primitive if each member has a Kaprekar index that is primitive.

• A regular Kaprekar index is general if k0 > 1.

• A cycle is general if each member has a general Kaprekar index.

Clearly, the existence of regular cycles depends on whether regular Kaprekar indices k
can be guaranteed to have regular successors k′. It is therefore useful to have a general
formula for the digits of a successor. Such a formula was given by Prichett, Ludington and
Lapenta [8, 5]; in a variant of their difference notation, we define

dj := an−1−j − aj for j = 0, 1, . . . , ν, (13)

where ν = bn/2c − 1, and we observe that d0 ≥ d1 ≥ · · · ≥ dν . We set µ = max{j : dj > 0},
so either dµ+1 = 0 or µ = ν. Performing the subtraction (1), the digits of Tb,n(x) are then
found to be [8]

d0, d1, . . . , dµ−1, dµ − 1, B, . . . , B,B − dµ, B − dµ−1, . . . , B − d1, b− d0, (14)

where commas have been inserted between digits for clarity since some digits are in the form
of expressions involving a subtraction. The digit string (14) may be subdivided into three
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sections. On the right, there are µ+ 1 instances of digits an−1−j of x↑ being subtracted from
smaller digits aj of x↓: the rightmost digit is b−(a0−an−1), and then 1 is carried to the left so
that each subsequent digit subtraction (going leftward) yields b− (aj−an−j−1)−1 = B−dj.
In the centre, there are n− 2µ− 2 instances where an−1−j = aj, and the subtraction with 1
carried yields B; but if µ = ν, then this central string of digits B is absent if n is even, or is
reduced to a single such digit if n is odd. On the left, there are µ+ 1 subtractions of an−1−j
from larger digits aj, yielding dj except that 1 is still carried into the rightmost subtraction
of this section.

Suppose that x has a regular Kaprekar index k, so the base-b representations of x↓ and
x↑ consist of blocks of ki digits i, with ki ≥ 1 for every value of i between 0 and B, arranged
in descending and ascending order, respectively, . Given any i↑ and i↓ with 0 ≤ i↑ < i↓ ≤ B,
let Ki↑ and Ki↓ be the number of digits (counting from the left) appearing in the base-b
representations of x↑ and x↓ up to the last occurrence of the digit i↑ and i↓, respectively:

Ki↑ :=

i↑∑
i=0

ki and Ki↓ :=
B∑
i=i↓

ki.

So, going along the digit string (14) from the left, the value of the difference dj decreases by
1 at positions j + 1 = Ki↑ and j + 1 = Ki↓ for each i↑ = 0, 1, . . . and each i↓ = B,B − 1, . . .,
but decreases by 2 at a position where Ki↑ = Ki↓ for some i↑ and i↓. Thus the differences
dj(j = 0, 1, . . . , µ) take every possible value from B down to 1 if the condition Ki↑ = Ki↓

never occurs. This motivates the following definition and theorem.

Definition 5. A Kaprekar index k = (k0, k1, . . . , kB) is deemed to satisfy the inequality
condition if

i↑∑
i=0

ki 6=
B∑
i=i↓

ki (15)

for every choice of i↑, i↓ with 0 ≤ i↑ < i↓ ≤ B.

Theorem 6. If a Kaprekar index k is primitive or general and satisfies the inequality condi-
tion, then its successor k′ is primitive or general, respectively. Furthermore, the components
of the successor satisfy k′i ≥ 2 for i = 1, 2, . . . , B.

Proof. First observe that the central section of digits B in (14) is absent only if the inequality
condition is violated, with Ki↑ = Ki↓ = n/2 for some i↑ and i↓ = i↑ + 1. The discussion
above verifies that every digit from 1 to B is present among the differences d0, . . . , dµ if k is
regular and satisfies the inequality condition, and so every digit from 0 to B − 1 is present
among values of B − dj(j = 0, 1, . . . , µ). Also, each instance of 0 among values of B − dj
corresponds to an instance of B among the dj, and B− dj = 0 if and only if aj = 0 (because
kB > k0 in a regular Kaprekar index, so an−1−j = B whenever aj = 0).

We would now have proved the theorem if it were not for having “pattern-breaking”
digits, dµ − 1 instead of dµ in the left section of (14), and b − d0 instead of B − d0 as the
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rightmost digit. Indeed, we would have each digit from 1 to B − 1 appearing in both the
left and right sections of (14), so k′i ≥ 2 for i = 1, 2, . . . , B − 1; at least one digit B in the
central section and in the left section, with each of the latter corresponding to a digit 0 in
the right section, so that kB > k0 ≥ 1; and k′0 = k0, so that primitive and general Kaprekar
indices have respective primitive and general successors. So it remains to resolve the issue of
the two pattern-breaking digits; but the inequality condition ensures that dµ = 1, so having
dµ − 1 in (14) provides a digit 0 instead of 1; and d0 = B, so having b− d0 in (14) provides
a digit 1 instead of 0. Hence the pattern-breaking does not affect the Kaprekar index of the
successor, under the given conditions.

Note that the inequality condition is sufficient but not necessary in this theorem: the
successor of a regular Kaprekar index may be regular and may have k′i ≥ 2 for i = 1, 2, . . . , B
even when k does not satisfy the inequality condition. On the other hand, finding a regular
Kaprekar index with a regular successor does not imply that they are members of a regular
cycle: our next theorem enables us to write down infinitely many more regular cycles once a
primitive cycle has been found, but it is of little help in finding a primitive cycle in the first
place. It will be useful for this theorem to generalize the notation (12) as

k−B := kB − 1,

so that a primitive Kaprekar index takes the form,

(1, k1, . . . , kB−1, k
−
B + 1).

Theorem 7. If the primitive Kaprekar index k = (1, k1, . . . , kB−1, k
−
B + 1) has a primitive

successor k′ = (1, k′1, . . . , k
′
B−1, k

′−
B + 1), then:

(i) the primitive Kaprekar index (1, ck1, . . . , ckB−1, ck
−
B + 1) has the primitive successor

(1, ck′1, . . . , ck
′
B−1, ck

′−
B + 1), for any integer c > 1;

(ii) the general Kaprekar index (s, ck1, . . . , ckB−1, ck
−
B + s) has the general successor

(s, ck′1, . . . , ckB−1, ck
′−
B + s), for any integers s > 1 and c ≥ 1.

Proof. (i) Multiplying components k1, . . . , kB−1 and k−B of the primitive Kaprekar index k
by c means that each digit in the original integers x↓ and x↑ is replaced with c copies of the
same digit, except for the first and last digits. So in (14) the first digit d0 and last digit b−d0
are unchanged, but every other subtraction an−1−j − aj is replaced with c copies of the same
subtraction. This yields c copies of the same digit in (14), except that there is still only one
instance of the pattern-breaking digit dµ− 1 arising from the last subtraction from the right
to have 1 carried. As in the proof of Theorem 6, this compensates for the pattern-breaking
rightmost digit b− d0.

(ii) Increasing each of k0 and kB by s−1 means that we leave the leftmost and rightmost
digits of x↓ and x↑ unchanged, but insert s− 1 digits B adjacent to the leftmost B of x↓ and
the rightmost B of x↑, together with s− 1 digits 0 adjacent to the rightmost 0 of x↓ and the
leftmost 0 of x↑. The subtractions then yield s− 1 further digits B (from B − 0) on the left
of (14), and s− 1 further digits 0 (from 0−B with 1 carried) on the right of (14).
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Corollary 8. If the primitive Kaprekar index (1, k1, . . . , kB−1, k
−
B + 1) is a member of a

primitive cycle, then:
(i) the Kaprekar index (1, ck1, . . . , ckB−1, ck

−
B+1), for any integer c > 1, is also a member

of a primitive cycle of the same length;
(ii) the Kaprekar index (s, ck1, . . . , ckB−1, ck

−
B + s), for any integers s > 1 and c ≥ 1, is

a member of a general cycle of the same length.

This follows from Theorem 7 because the c-multiplication and the s-addition can be
applied to each succession in the original primitive cycle.

Part (i) of Theorem 7 motivates the following definitions, which are again an extension
to general bases b ≥ 3 of a definition given for base 3 by Yamagami and Matsui.

Definition 9.

• A Kaprekar index is primitive proper if it is primitive with

gcd(k1, . . . , kB−1, k
−
B) = 1.

• A Kaprekar index is primitive non-proper if it is primitive with gcd(k1, . . . , kB−1, k
−
B) =

c for some integer c > 1.

It follows from part (i) of Theorem 7 that if the successor of a primitive proper index is
primitive, then it is proper, and if the successor of a primitive non-proper index is primitive,
then it is non-proper with the same multiplier c. Hence we can apply similar definitions to
cycles.

Definition 10.

• A cycle is primitive proper if its members are primitive proper.

• A cycle is primitive non-proper if its members are primitive non-proper.

Once we have found a primitive proper cycle, Corollary 8 shows that there are then
infinitely many primitive non-proper cycles corresponding to it, and then infinitely many
general cycles corresponding to each primitive (proper or non-proper) cycle. In base 3, each
primitive proper cycle corresponds in a simple way to a q-cycle derived from a subgroup
(generated by 2) or coset in Z×r . The next theorem suggests a link between q-cycles and
primitive proper cycles in any odd base, whereas no similar theorem applies in even bases.

Theorem 11. In base b = B + 1, where B is even, the formula for k′B/2 in terms of the
components of k includes a factor of 2 if k is regular and satisfies the inequality condition.

Proof. If dj = B/2, then B−dj = B/2 also. Hence each instance of the digit B/2 in the right
section of (14) corresponds to an instance of B/2 in the left section. So the total number of
instances, k′B/2, must include a factor of 2.
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In base 3, for which B/2 = 1, Yamagami and Matsui’s [11] Theorem 1.3 shows the factor
of 2 appearing in the formula for k′1 in every case, not merely those in which k is regular
and satisfies the inequality condition. In particular, when those conditions are satisfied, we
have the succession formulae (6) for k′1, which relate in a simple way to q-cycles since the
latter are generated by the factor 2 in the multiplicative group modulo n − 2. However, in
higher odd bases, we shall find that the succession formulae retain the connection between
q-cycles and cycles in the Kaprekar transformation in bases b ≡ 3 (mod 4) but not in bases
b ≡ 1 (mod 4).

A further theorem that applies to all odd bases and may be of some use, at least to reduce
the burden of calculation, is that the Kaprekar index of a successor k′ displays a symmetry
(except between k0 and kB) when k and k′ are both regular:

Theorem 12. In base b = B + 1 where B is even, if k is regular and satisfies the inequality
condition, then its successor has k′B−i = k′i for 1 ≤ i ≤ B − 1.

Proof. Since each digit dj in the left section of (14) corresponds to a digit B−dj in the right
section (with the pattern-breaking digits compensating each other as explained above), the
count of any digit i equals that of the digit B − i. The exception is for digits 0 and B, since
the central section of digits B has no corresponding digits 0.

We conclude this section by observing that according to Theorem 6 the successor to a
regular Kaprekar index satisfying the inequality condition must have a digit-count n ≥ 2b−1,
since k′0 ≥ 1 and k′i ≥ 2 for i = 1, . . . , B. In fact, a Kaprekar index with ki = 2 for i = 1, . . . , B
corresponds to a fixed point in any odd base. This is seen most easily from the example of
base 5, where we have the subtraction,

443322110

− 011223344

= 432043211, (16)

from which it is clear that in any greater odd base b the fixed-point integer is

B · · · 20B · · · 211, (17)

where each ellipsis indicates that there is a complete sequence of decreasing digits from
B(= b−1) to 2. We shall see that the fixed point of this form does have the least digit-count
of any regular fixed point in bases b ≡ 1 (mod 4), but that regular fixed points with smaller
digit-counts (and not satisfying the inequality condition) exist in bases b ≡ 3 (mod 4).

4 Base 5 and higher bases b ≡ 1 (mod 4)

Much of this section is focussed on base 5; we have also examined cycles in base 9, enabling
us to draw some general conclusions about bases b ≡ 1 (mod 4), although the only rigorous
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theory beyond that in Section 3 is for base 5. Least members of base 5 cycles are given
in base ten in A165041 in OEIS, with corresponding cycle lengths in A165042; we convert
the least members to base 5 and then compute further cycle members to obtain the cycles
displayed below and in the appendices. For base 9 the corresponding OEIS sequences are
A165119 (least members of cycles) and A165120 (cycle lengths).

We first display in Figure 2 the base-5 equivalent to Figure 1 for base 3, showing the
cycle lengths that exist for each digit-count, although only up to n = 50 in the present case.
The pattern is similar in the two figures, with points representing primitive proper cycles
on or to the right of the line l = (n− 3)/2, general cycles represented at intervals of 2 in n
to the right of the primitive proper cycles, and points with even n representing non-proper
cycles with multiplier c = 2 appearing further to the right. However, there are many more
exceptions to this pattern, representing special cycles, in base 5 than in base 3; in particular,
there are many points to the left of the line l = (n− 3)/2 for small values of n in Figure 2.

Figure 2: Cycle lengths that exist for digit-counts n up to 50 in base 5.

A list of special cycles for digit-counts up to n = 50 in base 5 is given in Appendix B;
there certainly exist special cycles for greater digit-counts. Regular cycles do not exist for
n < 9, so all cycles (including fixed points) with digit-counts n ≤ 8 are special; they are
unanimous for 3 ≤ n ≤ 8, as are the special cycles with n = 10 and n = 12, but with
n = 2 both the fixed point 13 and the repdigit fixed point 00 can be reached from different
non-trivial starting integers. Among the special cycles there is a class of singular cycles,
with digit-counts n = 2m + 2 and lengths l = m+ 1 for integers m as in base 3, but only for
m ≥ 3 in base 5. The structure of these singular cycles is more complicated in base 5 than
in base 3: the sequence of Kaprekar indices in these cycles is

(1, 0, 1, 2, 2m − 2) 7→ (1, 2, 2, 2, 2m − 6 + 1) 7→ (1, 22, 22, 22, 2m − 12 + 1) 7→ · · ·
7→ (1, 2m−2, 2m−2, 2m−2, 2m − 3× 2m−2 + 1) 7→ (1, 2m−1, 0, 2m−1, 1)

7→ (0, 2, 2m − 1, 0, 1) 7→ (1, 0, 1, 2, 2m − 2).
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The cycles with n = 10, n = 18 and n = 34 in Appendix B are examples of this type. While
the remaining special cycles in Appendix B display many common features, we have not
been able to find any further clear patterns analogous to that of the singular cycles.

In base 9 we have also found numerous special cycles. There does not appear to be any
equivalent of the singular cycles in bases 3 and 5, but there are interesting classes of fixed
points and cycles of length l = 2. Specifically, for any integers t ≥ 1 and u ≥ 0, there are
fixed points with Kaprekar indices

(0, 0, t, t+ u, 0, t+ u, t, 0, t+ u) and (0, t, t+ u, 2t+ u, 0, 2t+ u, t+ u, t, t+ u),

with respective digit-counts n = 5t + 3u and n = 9t + 5u. Apart from the repdigit fixed
point 00 at n = 2, we have not found any other special fixed points. For any integer t ≥ 0
there is a cycle of length 2,

(0, 1, t, t+ 2, 0, t+ 1, t+ 2, 0, t+ 1) 7→(0, 0, t+ 2, t+ 1, 0, t+ 2, t, 1, t+ 1) 7→
(0, 1, t, t+ 2, 0, t+ 1, t+ 2, 0, t+ 1),

with digit-count n = 5t + 7. There are also many other special cycles of lengths l ≥ 2 in
base 9, which do not appear to fit into this or any other class. We have not formulated any
further theory of special cycles or fixed points in bases b ≡ 1 (mod 4).

To develop theory for regular cycles, we require succession formulae, of which a partial
list for base 5 is given in Appendix C. Formula (14) gives the individual digits of a successor,
but the practical means of finding a succession formula is to set out the calculation as in the
following example, which is for case (v) of Appendix C:

4 · · · 4︸ ︷︷ ︸
k4

3 · · · · · · · · · · · · · · · 3︸ ︷︷ ︸
k3

2 · · · · · · · · · · · · · · · · · · · · · 2︸ ︷︷ ︸
k2

1 · · · · · · · · · · · · · · · 1︸ ︷︷ ︸
k1

0

− 0 1 · · · · · · · · · 1︸ ︷︷ ︸
k1

2 · · · · · · · · · · · · · · · · · · · · · · · · 2︸ ︷︷ ︸
k2

3 · · · · · · · · · · · · · · · 3︸ ︷︷ ︸
k3

4 · · · · · · 4︸ ︷︷ ︸
k4

= 4 3 · · · 3︸ ︷︷ ︸
k4−1

2 · · · 2︸ ︷︷ ︸
1+k1−k4

1 · · · · · · 1︸ ︷︷ ︸
k4+k3−k1−2

0 4 · · · · · · · · · · · · 4︸ ︷︷ ︸
1+k1+k2−k3−k4

3 · · · · · · 3︸ ︷︷ ︸
k3+k4−k1−1

2 · · · · · · 2︸ ︷︷ ︸
1+k1−k4

1 · · · · · · 1︸ ︷︷ ︸
k4

. (18)

The list in Appendix C covers all cases where k is primitive (and also some other cases,
in particular where k4 = 1 = k0); from Theorem 7, succession formulae when k is general
follow from primitive cases, so all regular Kaprekar indices are covered. Referring to these
formulae, we can prove the next two theorems.

Theorem 13. Every member of a regular cycle in base 5 has a Kaprekar index satisfying
the inequality condition.

Proof. In each case in Appendix C where the inequality condition is not satisfied, i.e. where
the conditions on k1, k2, k3 and k4 include an equality, the successor k′ is not regular: either
k′0 = 0 or k′2 = 0 or k′4 = 1 = k′0.
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Note that this theorem is not trivial: in base 7 we shall see that the inequality condition
is not necessary for membership of a regular cycle. The inequality condition is not sufficient
for a regular Kaprekar index to be a cycle member in any base b ≥ 5; but stricter conditions
that do appear to be sufficient in base 5 only are displayed below.

An immediate consequence of this theorem, according to Theorem 6, is that every member
of a regular cycle in base 5 has ki ≥ 2 for i = 1, 2, 3, 4. The case where ki = 2 for 1 ≤ i ≤ 4
is the fixed point (16), and we have a further theorem regarding this fixed point.

Theorem 14. The only primitive proper fixed point in base 5 is that displayed in (16) above,
with Kaprekar index k = (1, 2, 2, 2, 2).

Proof. Setting k′i = ki for i = 0, 1, 2, 3, 4 in each of the succession formulae in Appendix C,
we obtain an inconsistency in every case except (v). In that case, setting k′i = ki yields that
k1 = k2 = k3 = 2(k4− 1), which allows just the Kaprekar index (1, 2, 2, 2, 2) or any primitive
non-proper index derived from it according to Theorem 7(i).

Based on a survey of regular cycles and fixed points with digit-counts up to n = 35 in
base 9, we conjecture that the last two theorems apply in all bases b ≡ 1 (mod 4): that all
members of regular cycles in these bases satisfy the inequality condition, and so have ki ≥ 2
for 1 ≤ i ≤ b− 1, implying that regular cycles cannot exist with digit-count n ≤ 2b− 1; and
that the only primitive proper fixed point in any such base is (17). The theorems for base 5
were proved by exhaustive consideration of succession formulae for that particular base, so a
more elegant method would need to be devised in order to prove the conjectures for higher
bases. And in any case there is evidence from base 9 of complications that may cast doubt
on the truth of such conjectures: there is a set of “pseudo-regular” cycles of length l = 2
in which one member has k4 = 0 (so is not regular), the other member does not satisfy the
inequality condition, but the structure of primitive and general cycles specified in Corollary
8 is retained: see the note at the end of Appendix E.

Given that the inequality condition is definitely satisfied by cycle members in base 5, the
components of their Kaprekar indices are constrained by Theorems 11 and 12 to satisfy the
requirements,

k2 is even; k3 = k1 ≥ 2. (19)

If we restrict attention to primitive Kaprekar indices, for which k0 = 1, then once the digit-
count n is fixed, only two free parameters remain in an index. These can be taken as k1 and
k2, and we then have k4 = n − 2k1 − k2 − 1. If we restrict attention further to odd values
of n, the Kaprekar indices under consideration are either proper, or non-proper with an odd
multiplier c. Then, given the conditions (19), a further condition that suffices to ensure that
a Kaprekar index satisfies the inequality condition is as follows:

either k1 is even, or k1 is odd and k1 > k4. (20)

To see why conditions (20) apply, note first that k4 is even when n is odd. Then if k1 is
even, the left side of (15) is odd (since k0 = 1) while the right side is even, guaranteeing
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the inequality; while if k1 is odd the further condition k1 > k4 precludes equalities such
as k0 + k1 = k4. In higher bases, the free parameters are ki for i = 1, 2, . . . , B/2, and it
remains true that the inequality condition is satisfied if these are all even; but we have not
determined more general principles governing when the inequality condition is satisfied.

In base 3, all primitive cycles could be derived from q-cycles, as tabulated in Appendix
A for r ≤ 67, because of the simple succession formulae (6) for a single free parameter. In
base 5, having established that (19) applies throughout any regular cycle, we only require
succession formulae for the two free parameters k′1 and k′2, which are as follows (where we
have taken all cases from Appendix C in which k is regular and satisfies the inequality
condition, with k3 = k1):

k′1 =



2k4 − 2, if k4 < 1 + k1 and k4 < 1 + k2;

k2 + k4 − 1, if 1 + k2 < k4 < 1 + k1;

2k1, if 1 + k1 < k4 < 1 + k2;

2k1 + k2 − k4 + 1, if 1 + k1 < k4 and 1 + k2 < k4 < 1 + k1 + k2;

k4 − k2 − 1, if 1 + k1 + k2 < k4 < 1 + 2k1 + k2;

2k1, if 1 + 2k1 + k2 < k4.

(21)

k′2 =


2(k1 − k4 + 1), if k4 < 1 + k1;

2(k4 − k1 − 1), if 1 + k1 < k4 < 1 + k1 + k2;

2k2, if 1 + k1 + k2 < k4.

(22)

We may observe the factors of 2 appearing in all the formulae for k′2, in accord with Theorem
11. However, unlike in base 3, there is no simple equivalence between succession formulae
and the q-cycle formulae (4): whereas in base 3 we have k′1 ≡ ±2k1 (mod (n − 2)) in all
cases, in base 5 the first two cases in (22) yield k′2 ≡ ±2(k2 + 3k1) mod (n − 2)). Hence
the link between q-cycles and cycles of the Kaprekar transformation is broken in base 5
(and higher bases b ≡ 1 (mod 4)), because the succession formulae do not correspond to
simple multiplication by ±2(mod(n − 2)) of a component of k. So whereas in base 3 the
length l of a primitive proper cycle is strictly equal to σ(n− 2), this does not apply in bases
b ≡ 1 (mod 4); although in base 5 there is empirical evidence (from checking all primitive
proper cycles with n ≤ 41) that l is either equal to or is a divisor of σ(n− 2) (with equality
applying whenever σ(n− 2) is prime and n > 9, due to Theorem 14).

Since the primitive proper cycles cannot be simply derived from q-cycles in bases b ≡ 1
(mod 4), we have listed them for n ≤ 33 in Appendix D for base 5 and Appendix E for base
9. Comparing with values of σ(r) in Appendix A, we may observe that in the majority of
cases, the lengths l of the primitive cycles in base 5 are equal to σ(n− 2), even where that
number is not prime; but there are also several cases where l is a smaller factor of σ(n− 2),
for example with n = 23 for which σ(n − 2) = 6 and both the possibilities l = 2 and l = 3
appear among the primitive cycles listed in Appendix D. On the other hand, the lengths of
primitive cycles in base 9 bear no relation to σ(n− 2) in most cases.
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In base 3, enumerating cycles for any given n leads to complicated expressions involving
double summations, whereas enumerating the integers which are members of cycles leads to
closed-form expressions in many cases. The same applies in base 5, although the calculations
to enumerate members of cycles are more complicated. We conjecture, on the basis of
evidence from all base-5 primitive cycles with n ≤ 41, that every primitive Kaprekar index
k with odd n in base 5 which satisfies conditions (19) and (20) (which are sufficient but
not necessary to satisfy the inequality condition) represents a member of a primitive cycle.
[In base 9 we have not been able to find conditions similar to (19) and (20) that guarantee
membership of a cycle, which is why we have not attempted any enumeration of cycle
members for bases higher than 5.] Then k0 = 1, k3 = k1 and k4 ≥ 2, so to enumerate
primitive cycle members we need to count the pairs of positive integers (k1, k2) satisfying
2k1 + k2 + 3 ≤ n, with k2 even and k1 satisfying (20). The result is given in the following
theorem.

Theorem 15. In base 5, the number of members of primitive cycles with odd digit-count
n ≥ 9 is:

((n− 5)2 − 4)/12 members if n ≡ 1 (mod 6) or n ≡ 3 (mod 6);
(n− 5)2/12 members if n ≡ 5 (mod 6).

Proof. Given n and k2, there are (n− 5− k2)/2 integers k1 satisfying 2k1 ≤ n− 3− k2 with
k1 ≥ 2. Given n, the allowed values of k2 are the positive even integers up to n − 7 (since
k0 = 1 and ki ≥ 2 for i = 1, 3, 4). So the number of pairs (k1, k2) satisfying the requirement
2k1 + k2 ≤ n− 3 and condition (19) is (setting k2 = 2i and m = (n− 5)/2)

(n−7)/2∑
i=1

n− 5− 2i

2
=

m−1∑
i=1

(m− i) =
m(m− 1)

2
=

(n− 5)(n− 7)

8
. (23)

To satisfy condition (20) we need to subtract the number of non-compliant pairs, those in
which k1 is odd and does not satisfy k1 > k4, so does satisfy 3k1 ≤ n − 1 − k2; but not
counting pairs with k1 = 1, which have already been excluded. Now, for any integer K ≥ 3
there are b(K − 3)/6c odd integers k1 such that k1 ≥ 3 and 3k1 ≤ K (where b·c is the floor
function); so, given n and k2, there are b(n − 4 − k2)/6c non-compliant pairs. Thus the
number of non-compliant pairs for a given n is∑

even k2, 2≤k2≤n−7

⌊
n− 4− k2

6

⌋
.

Case (i): if n ≡ 1 (mod 6), let n = 6t+ 1. As k2 decreases through even integers from n− 7
to 2, values of (n− 4− k2) increase through odd integers from 3 to 6(t− 1) + 1, yielding a
set of values of b(n− 4− k2)/6c including two zeroes, three of each integer from 1 to t− 2,
and one instance of the integer t− 1. The sum of all these is

3
t−2∑
i=1

i+ (t− 1) = 3
(t− 2)(t− 1)

2
+ (t− 1) =

(n− 9)(n− 7)

24
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non-compliant pairs, where we have substituted t = (n− 1)/6 at the last step.

Case (ii): if n ≡ 3 (mod 6), let n = 6t+ 3. As k2 decreases through even integers from n− 7
to 2, values of (n− 4− k2) increase through odd integers from 3 to 6(t− 1) + 3, yielding a
set of values of b(n− 4− k2)/6c including two zeroes, three of each integer from 1 to t− 2,
and two instances of the integer t− 1. The sum of all these is

3
t−2∑
i=1

i+ 2(t− 1) = 3
(t− 2)(t− 1)

2
+ 2(t− 1) =

(n− 9)(n− 7)

24

non-compliant pairs.

Case (iii): if n ≡ 5 (mod 6), let n = 6t+ 5. As k2 decreases through even integers from n−7
to 2, values of (n − 4 − k2) increase through odd integers from 3 to 6(t − 1) + 5, yielding
a set of values of b(n − 4 − k2)/6c including two zeroes and three of each integer from 1 to
t− 1. The sum of all these is

3
t−1∑
i=1

i = 3
t(t− 1)

2
=

(n− 11)(n− 5)

24

non-compliant pairs.
The numbers of non-compliant pairs in each case above are to be subtracted from the

result (23) which does not account for condition (20), and the results for the three cases are
as stated in the theorem.

Counting the members of primitive proper cycles for each n in Appendix C, the enumer-
ations agree with the formulae in Theorem 15 for members of all primitive cycles except in
two cases, n = 23 and n = 29. Theorem 15 includes non-proper cycles with odd multipliers
c; applying the multiplier c = 3 to the proper fixed point with n = 9 and the proper cycle
of length l = 3 with n = 11, we obtain a non-proper fixed point with n = 23 and a non-
proper cycle with n = 29, respectively. Obviously, non-proper cycles feature more frequently
at higher digit-counts n. To count members of primitive cycles with even n, an argument
similar to that used in base 3 indicates that we should replace (n− 5) with ρ(n− 2)− 3 in
the formulae in Theorem 15, where ρ denotes the odd part.

To count members of all regular cycles (i.e. both primitive and general cycles) for some
n, we require a summation of numbers of members of primitive cycles with any n′ ≤ n of the
same parity, similar to that in (10). As in base 3, results in closed form are only available
for odd n. From Theorem 15, adding the numbers of members of primitive cycles with digit-
counts n, n − 2 and n − 4, for any odd n ≥ 13, yields a total of (n − 7)2/4 members with
these three digit-counts. This result can then be used with standard summation formulae to
yield the formulae for NK(n), the number of integers with digit-count n which are members
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of a regular cycle, for any odd n ≥ 9:

NK(n) =
1

72
(n− 1)(n− 4)(n− 7) if n ≡ 1 (mod 6);

NK(n) =
1

72
(n− 3)(n2 − 9n+ 12) if n ≡ 3 (mod 6);

NK(n) =
1

72
(n− 5)(n2 − 7n+ 4) if n ≡ 5 (mod 6).

Since the distribution of special cycles is somewhat irregular, including several for odd values
of n (see Appendix B), we cannot provide completely reliable formulae for the total number
of cycle members for any n; although since special cycles with odd n are comparatively
scarce, the above formulae for NK(n) are accurate for this purpose in most cases where n is
odd.

5 Base 7 and higher bases b ≡ 3 (mod 4)

As in previous sections, we start by noting special cycles, but only in base 7, since we have
not made a detailed study of the cycles that exist for any base b > 10; we have used data for
base-7 cycles from sequences A165080 (least members of cycles) and A165081 (cycle lengths)
in the OEIS. As in base 3, the fixed point 00 is unanimous for n = 2. For each digit-count
3 ≤ n ≤ 9 there is a unanimous special cycle: for n = 3 this has length l = 2,

264 7→ 336 7→ 264;

for n = 4 it has length l = 3,

3054 7→ 5052 7→ 5232 7→ 3054;

and for 5 ≤ n ≤ 9 the cycles are longer. For n ≥ 10 there exist three classes of special cycle
of length l = 2:
(a) For each t ≥ 1, there is a special cycle with digit-count n = 2t + 8, with sequence of
Kaprekar indices

(1, 1, t+ 1, 2, t, 3, 0) 7→ (0, 1, t+ 1, 2, t+ 1, 1, 2) 7→ (1, 1, t+ 1, 2, t, 3, 0); (24)

(b) For each t ≥ 0, there is a special cycle with digit-count n = 5t + 10, with sequence of
Kaprekar indices

(1, t, t+ 3, 0, t+ 2, t+ 2, t+ 2) 7→(0, t+ 1, 2, 2t+ 3, 1, t, t+ 3) 7→
(1, t, t+ 3, 0, t+ 2, t+ 2, t+ 2); (25)

(c) For each t ≥ 2, there is a special cycle with digit-count n = 5t + 10, with sequence of
Kaprekar indices

(1, t+ 1, t+ 1, 2, t, t+ 3, t+ 2) 7→(0, t+ 3, 1, 2t+ 2, 2, t+ 1, t+ 1) 7→
(1, t+ 1, t+ 1, 2, t, t+ 3, t+ 2). (26)

22

https://oeis.org/A165080
https://oeis.org/A165081


A survey up to n = 53 has revealed numerous special cycles not falling into these three
classes, and these are listed in Appendix F; except for those with digit-counts n = 3, 4, 10, 19
and 51, they all have lengths l ≥ 5.

Turning now to regular cycles, we find that, in contrast to bases b ≡ 1 (mod 4), the
regular cycles in bases b ≡ 3 (mod 4) are determined by the q-cycles arising from subgroups
and cosets of Z×r ; but the Kaprekar indices of cycle members do not always satisfy the
inequality condition, and a wider variety of further cycles can be derived from a primitive
cycle than those specified by the c-multiples and s-additions of Corollary 8. In more detail:

• Corresponding to each q-cycle, there exists a primitive proper base-7 cycle of digit-
count n = 3r + 2 with members having Kaprekar indices

(1, qi, r − qi, qi, r − qi, qi, r − qi + 1) (27)

(compare (7) in base 3).

• There is a further degree of generalization beyond that in formulae (8) and (9) in base
3: corresponding to each primitive proper cycle of type (27) with r = (n− 2)/3, there
exist cycles of digit-count n = 3cr + 2t+ 2s with members having Kaprekar indices

(s, cqi, c(r − qi) + t, cqi, c(r − qi) + t, cqi, c(r − qi) + s) (28)

for each integer c ≥ 1, s ≥ 1 and t ≥ 0.

• This pattern applies for all bases b = 4m + 3,m ≥ 1; there is a cycle of digit-count
n = (2m+ 1)r + 2 with members having Kaprekar indices

(1, qi, r − qi, . . . , qi, r − qi, qi, r − qi + 1), (29)

from which are derived cycles of digit-count n = (2m + 1)cr + 2t + 2s with members
having Kaprekar indices

(s, cqi, c(r − qi) + t, . . . , cqi, c(r − qi) + t, cqi, c(r − qi) + s) (30)

for each integer c ≥ 1, s ≥ 1 and t ≥ 0, where qi is in a q-cycle as listed in Appendix
A.

• There can exist further cycles derived from a cycle of type (29), with the same patterns
of c-multiples and s-additions but different patterns of t-additions to components of
its members. Several such generalizations in base 7 are noted below.

Note that if t is coprime with c, a Kaprekar index of form (30) may satisfy the definition
of a primitive proper index, even with c ≥ 1. Thus it is useful to introduce the following
terminology in bases b = 4m+ 3,m ≥ 1.
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Definition 16.

• A Kaprekar index with odd digit-count n in a base b = 4m+ 3 is fundamental if it has
the form

(1, q, r − q, . . . , q, r − q, q, r − q + 1)

with r = (n− 2)/(2m+ 1), for some even q < r.

• A cycle is fundamental if its members have fundamental Kaprekar indices.

This definition is formulated so that a Kaprekar index of the general form (30), or with
any other pattern of t-additions to different components, is fundamental only if c = 1, s = 1
and t = 0.

As in base 3, the features described above are explained by considering succession for-
mulae. Suppose that in base b = 4m+ 3, a Kaprekar index k satisfies the conditions

k0 = 1, kj = k1 for all odd j, kj = k2 for even j with 2 ≤ j < B, kB = k2 + 1, (31)

where B = b−1. In particular, a fundamental Kaprekar index of form (29) satisfies conditions
(31) with k1 = qi and k2 = r− qi. Since r is odd and qi is even, k1 6= k2 so we have two cases
to consider, k1 < k2 or k1 > k2. By subtraction calculations similar to (18), we find that the
successor Kaprekar index k′ satisfies conditions of the form (31), and that if k1 < k2, then
k′1 = 2k1 and k′2 = k2 − k1, while if k1 > k2, then k′1 = 2k2 and k′2 = k1 − k2. With the
identification k1 = qi and k2 = r− qi, these succession formulae yield k′1 = qi+1 according to
the q-cycle rules (4), with k′2 = r − qi+1. This explains the existence of fundamental cycles
with values of k1 following q-cycles. Cycles of form (30) with any positive c and s but with
t = 0 are then explained by Theorem 7 and Corollary 8, and it remains to explain why
cycles of this form with positive t exist. So we suppose that k0 = s, kj = k1 for all odd j,
kj = k2 + t for even j with 2 ≤ j < B, and kB = k2 + s, and do the subtraction first in the
case where k1 < k2:

6 · · · · · · · · · · · · · · · 6︸ ︷︷ ︸
k2+s

5 · · · 5︸ ︷︷ ︸
k1

4 · · · · · · · · · · · · · · · · · · 4︸ ︷︷ ︸
k2+t

3 · · · 3︸ ︷︷ ︸
k1

2 · · · · · · · · · · · · · · · 2︸ ︷︷ ︸
k2+t

1 · · · 1︸ ︷︷ ︸
k1

0 · · · 0︸ ︷︷ ︸
s

− 0 · · · 0︸ ︷︷ ︸
s

1 · · · 1︸ ︷︷ ︸
k1

2 · · · · · · · · · · · · · · · 2︸ ︷︷ ︸
k2+t

3 · · · · · · 3︸ ︷︷ ︸
k1

4 · · · · · · · · · · · · · · · 4︸ ︷︷ ︸
k2+t

5 · · · 5︸ ︷︷ ︸
k1

6 · · · · · · · · · · · · · · · 6︸ ︷︷ ︸
k2+s

= 6 · · · 6︸ ︷︷ ︸
s

5 · · · 5︸ ︷︷ ︸
k1

4 · · · 4︸ ︷︷ ︸
k2−k1

3 · · · 3︸ ︷︷ ︸
k1

2 · · · 2︸ ︷︷ ︸
t

1 · · · 1︸ ︷︷ ︸
k1−1

0 6 · · · 6︸ ︷︷ ︸
k2−k1

5 · · · 5︸ ︷︷ ︸
k1

4 · · · 4︸ ︷︷ ︸
t

3 · · · 3︸ ︷︷ ︸
k1

2 · · · 2︸ ︷︷ ︸
k2−k1

1 · · · 1︸ ︷︷ ︸
k1

0 · · · 0︸ ︷︷ ︸
s−1

1.

(32)

The Kaprekar index of the result is k′ = (s, 2k1, k2− k1 + t, 2k1, k2− k1 + t, 2k1, k2− k1 + s),
which is simply the succession formula described above but with t-additions in the required
places. A similar calculation in the case where k1 > k2 confirms that in all cases, addition
of t to the even components of a Kaprekar index satisfying conditions (31) carries through
to its successor, and so can apply throughout a regular cycle.
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Unlike in bases b ≡ 1 (mod 4), it is not necessarily true that kj ≥ 2 for all j ≥ 1 in
Kaprekar indices of members of regular cycles in bases b ≡ 3 (mod 4). Indeed, since a
q-cycle derived from a subgroup, as opposed to a coset, of Z×r includes the number r − 1,
any fundamental cycle corresponding to such a q-cycle must include a member in which
k2 = k4 = · · · = kB−2 = 1. In particular, the fundamental fixed point has Kaprekar index
(1, 2, 1, . . . , 2, 1, 2, 2) and digit-count n = 6m + 5 in base b = 4m + 3, and all fixed points
and cycles with lesser digit-count must be special.

In base 7 we have found some classes of general cycle with t-additions not of the form
(30). Derived from the fundamental cycle corresponding to the q-cycle with r = 5, there is
a class of general cycles of length l = 2 with digit-count n = 15c+ 5t+ 2s:

(s, 2c+ t, 3c+ t, 2c, 3c+ t, 2c+ t, 3c+ t+ s) 7→ (s, 4c+ t, c, 4c+ 2t, c, 4c+ t, c+ t+ s) 7→
(s, 2c+ t, 3c+ t, 2c, 3c+ t, 2c+ t, 3c+ t+ s),

in which the pattern of t-additions to components is the same as in the special cycles (25) and
(26); similarly the t-additions in the special cycles of form (24) correspond to the standard
pattern of t-additions in regular cycles (28). Derived from the fundamental cycle correspond-
ing to the q-cycle with r = 7, there is a class of general cycles of length l = 3 with digit-count
n = 21c+ 7t+ 2s:

(s, 2c+ t, 5c+ 2t, 2c, 5c+ 2t, 2c+ t, 5c+ t+ s) 7→
(s, 4c+ t, 3c+ t, 4c+ 2t, 3c+ t, 4c+ t, 3c+ t+ s) 7→
(s, 6c+ 2t, c, 6c+ 2t, c, 6c+ 2t, c+ t+ s) 7→
(s, 2c+ t, 5c+ 2t, 2c, 5c+ 2t, 2c+ t, 5c+ t+ s),

for which we have not found a corresponding class of special cycles. Rather more anoma-
lously, we have found a class of cycles of length l = 3 with digit-count n = 19c+ 8t+ 2s:

(s, 2c, 4c+ 3t, 2c, 4c+ 3t, 2c, 5c+ 2t+ s) 7→
(s, 3c+ t, 4c+ t, 2c+ 2t, 4c+ t, 3c+ t, 3c+ 2t+ s) 7→
(s, 5c+ 3t, c, 6c+ 2t, c, 5c+ 3t, c+ s) 7→
(s, 2c, 4c+ 3t, 2c, 4c+ 3t, 2c, 5c+ 2t+ s), (33)

which exists only for 0 ≤ t ≤ c. The fundamental cycle of this class has n = 21, so should
be associated with the q-cycle for r = 19, for which σ(r) = 9; so the length of these cycles is
a divisor of σ(r), in a way reminiscent of cycles in base 5, with the progression of Kaprekar
index components not tied to a q-cycle in any obvious way. Curiously, the cycle of this class
with c = 1, t = 1, s = 1 is the fundamental cycle corresponding to the q-cycle with r = 9,
with further cycles of the type (33) with t = c being identified as higher c-multiples of the
r = 9 fundamental cycle; but no similar identification of those cycles with t < c has been
found.
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6 Conclusions

The paper by Yamagami and Matsui [11] was a major advance in the theory of the Kaprekar
transformation. Not only did they provide a complete theory for the cycles and fixed points
in base 3, but also their introduction of the Kaprekar index provided an excellent formalism
for the further study of the transformation.

The principal development in the present paper is that we have shown how the structure
of primitive proper, primitive non-proper and general cycles, elucidated by Yamagami and
Matsui for base 3, can be generalized to all odd bases. We have classified these types of
cycle together as regular cycles, and have shown that as well as satisfying the regularity
condition of Definition 3, the Kaprekar indices of members of these cycles are governed by
Theorems 11 and 12: the (b−1)/2 component must be even, and there is symmetry between
the i component and the b − 1 − i component for 1 ≤ i ≤ b − 2. Once these conditions
are satisfied, the inequality condition of Definition 5 may come into play: it appears to be
necessary for membership of a cycle in bases b ≡ 1 (mod 4), although we have not proved
this. The inequality condition is satisfied trivially in base 3, but appears to be unimportant
in higher bases b ≡ 3 (mod 4), where we find that there are fundamental cycles determined
by subgroups generated by 2, and their cosets, in Z×n−2, the multiplicative group modulo
n − 2. In base 3 the fundamental cycles are the primitive proper cycles, from which the
primitive non-proper and general cycles are derived, but in higher bases there is a greater
variety of cycles that may be derived from a fundamental cycle. All cycles derived from a
fundamental cycle have the same length; if 2 is a generator of the group Z×n−2 and n − 2
is prime, then the length of these cycles is l = (n − 3)/2. Thus if Artin’s Conjecture on
primitive roots is true, in particular if 2 is a primitive root modulo infinitely many primes,
then there exist arbitrarily long cycles in bases b ≡ 3 (mod 4). Myers [7] has conjectured
that there exist arbitrarily long cycles in any odd base, which remains unproved.

We describe all cycles that do not fit within our classification of regular cycles as special.
Special cycles become more prevalent in higher bases. Whereas many of them do not fit
within any clear pattern, there are also some infinite classes of special cycle: these include
the singular cycles noted by Yamagami and Matsui in base 3, which also appear in a more
complicated form in base 5, and which yield a cycle of every possible length l ∈ N in these
two bases. We have also found several classes of special fixed points and cycles of specific
length in bases 7 and 9, but we have not been able to develop any general theory for classes
of special cycles.

Overall, there is a picture of increasing complexity as the base b increases. We have es-
tablished principles that govern the regular cycles in bases b ≡ 1 (mod 4) and b ≡ 3 (mod 4),
but there are ever more variations on these basic principles in higher bases. There is also a
plethora of special cycles, taking forms which are individual to each base.
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Appendix A: Table of q-cycles

r φ(r) σ(r) N(r) q-cycle(s)
3 2 1 1 2 7→ 2
5 4 2 1 2 7→ 4 7→ 2
7 6 3 1 2 7→ 4 7→ 6 7→ 2
9 6 3 1 2 7→ 4 7→ 8 7→ 2
11 10 5 1 2 7→ 4 7→ 8 7→ 6 7→ 10 7→ 2
13 12 6 1 2 7→ 4 7→ 8 7→ 10 7→ 6 7→ 12 7→ 2
15 8 4 1 2 7→ 4 7→ 8 7→ 14 7→ 2
17 16 4 2 2 7→ 4 7→ 8 7→ 16 7→ 2,

6 7→ 12 7→ 10 7→ 14 7→ 6
19 18 9 1 2 7→ 4 7→ 8 7→ 16 7→ 6 7→ 12 7→ 14 7→ 10 7→ 18 7→ 2
21 12 6 1 2 7→ 4 7→ 8 7→ 16 7→ 10 7→ 20 7→ 2
23 22 11 1 2 7→ 4 7→ 8 7→ 16 7→ 14 7→ 18 7→ 10 7→ 20 7→ 6 7→ 12 7→ 22 7→ 2
25 20 10 1 2 7→ 4 7→ 8 7→ 16 7→ 18 7→ 14 7→ 22 7→ 6 7→ 12 7→ 24 7→ 2
27 18 9 1 2 7→ 4 7→ 8 7→ 16 7→ 22 7→ 10 7→ 20 7→ 14 7→ 26 7→ 2
29 28 14 1 2 7→ 4 7→ 8 7→ 16 7→ 26 7→ 6 7→ 12 7→ 24 7→ 10 7→ 20 7→ 18 7→ 22 7→

14 7→ 28 7→ 2
31 30 5 3 2 7→ 4 7→ 8 7→ 16 7→ 30 7→ 2,

6 7→ 12 7→ 24 7→ 14 7→ 28 7→ 6,
10 7→ 20 7→ 22 7→ 18 7→ 26 7→ 10

33 20 5 2 2 7→ 4 7→ 8 7→ 16 7→ 32 7→ 2,
10 7→ 20 7→ 26 7→ 14 7→ 28 7→ 10

35 24 12 1 2 7→ 4 7→ 8 7→ 16 7→ 32 7→ 6 7→ 12 7→ 24 7→ 22 7→ 26 7→ 18 7→ 34 7→ 2
37 36 18 1 2 7→ 4 7→ 8 7→ 16 7→ 32 7→ 10 7→ 20 7→ 34 7→ 6 7→ 12 7→ 24 7→ 26 7→

22 7→ 30 7→ 14 7→ 28 7→ 18 7→ 36 7→ 2
39 24 12 1 2 7→ 4 7→ 8 7→ 16 7→ 32 7→ 14 7→ 28 7→ 22 7→ 34 7→ 10 7→ 20 7→ 38 7→ 2
41 40 10 2 2 7→ 4 7→ 8 7→ 16 7→ 32 7→ 18 7→ 36 7→ 10 7→ 20 7→ 40 7→ 2,

6 7→ 12 7→ 24 7→ 34 7→ 14 7→ 28 7→ 26 7→ 30 7→ 22 7→ 38 7→ 6
43 42 7 3 2 7→ 4 7→ 8 7→ 16 7→ 32 7→ 22 7→ 42 7→ 2,

6 7→ 12 7→ 24 7→ 38 7→ 10 7→ 20 7→ 40 7→ 6,
14 7→ 28 7→ 30 7→ 26 7→ 34 7→ 18 7→ 36 7→ 14

45 24 12 1 2 7→ 4 7→ 8 7→ 16 7→ 32 7→ 26 7→ 38 7→ 14 7→ 28 7→ 34 7→ 22 7→ 44 7→ 2
47 46 23 1 2 7→ 4 7→ 8 7→ 16 7→ 32 7→ 30 7→ 34 7→ 26 7→ 42 7→ 10 7→ 20 7→ 40 7→

14 7→ 28 7→ 38 7→ 18 7→ 36 7→ 22 7→ 44 7→ 6 7→ 12 7→ 24 7→ 46 7→ 2
49 42 21 1 2 7→ 4 7→ 8 7→ 16 7→ 32 7→ 34 7→ 30 7→ 38 7→ 22 7→ 44 7→ 10 7→ 20 7→

40 7→ 18 7→ 36 7→ 26 7→ 46 7→ 6 7→ 12 7→ 24 7→ 48 7→ 2
51 32 8 2 2 7→ 4 7→ 8 7→ 16 7→ 32 7→ 38 7→ 26 7→ 50 7→ 2,

10 7→ 20 7→ 40 7→ 22 7→ 44 7→ 14 7→ 28 7→ 46 7→ 10
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r φ(r) σ(r) N(r) q-cycle(s)
53 52 26 1 2 7→ 4 7→ 8 7→ 16 7→ 32 7→ 42 7→ 22 7→ 44 7→ 18 7→ 36 7→ 34 7→ 38 7→

30 7→ 46 7→ 14 7→ 28 7→ 50 7→ 6 7→ 12 7→ 24 7→ 48 7→ 10 7→ 20 7→
40 7→ 26 7→ 52 7→ 2

55 40 20 1 2 7→ 4 7→ 8 7→ 16 7→ 32 7→ 46 7→ 18 7→ 36 7→ 38 7→ 34 7→ 42 7→ 26 7→
52 7→ 6 7→ 12 7→ 24 7→ 48 7→ 14 7→ 28 7→ 54 7→ 2

57 36 9 2 2 7→ 4 7→ 8 7→ 16 7→ 32 7→ 50 7→ 14 7→ 28 7→ 56 7→ 2,
10 7→ 20 7→ 40 7→ 34 7→ 46 7→ 22 7→ 44 7→ 26 7→ 52 7→ 10

59 58 29 1 2 7→ 4 7→ 8 7→ 16 7→ 32 7→ 54 7→ 10 7→ 20 7→ 40 7→ 38 7→ 42 7→ 34 7→
50 7→ 18 7→ 36 7→ 46 7→ 26 7→ 52 7→ 14 7→ 28 7→ 56 7→ 6 7→ 12 7→
24 7→ 48 7→ 22 7→ 44 7→ 30 7→ 58 7→ 2

61 60 30 1 2 7→ 4 7→ 8 7→ 16 7→ 32 7→ 58 7→ 6 7→ 12 7→ 24 7→ 48 7→ 26 7→ 52 7→
18 7→ 36 7→ 50 7→ 22 7→ 44 7→ 34 7→ 54 7→ 14 7→ 28 7→ 56 7→ 10 7→
20 7→ 40 7→ 42 7→ 38 7→ 46 7→ 30 7→ 60 7→ 2

63 36 6 3 2 7→ 4 7→ 8 7→ 16 7→ 32 7→ 62 7→ 2,
10 7→ 20 7→ 40 7→ 46 7→ 34 7→ 58 7→ 10,
22 7→ 44 7→ 38 7→ 50 7→ 26 7→ 52 7→ 22

65 48 6 4 2 7→ 4 7→ 8 7→ 16 7→ 32 7→ 64 7→ 2,
6 7→ 12 7→ 24 7→ 48 7→ 34 7→ 62 7→ 6,
14 7→ 28 7→ 56 7→ 18 7→ 36 7→ 58 7→ 14,
22 7→ 44 7→ 42 7→ 46 7→ 38 7→ 54 7→ 22

67 66 33 1 2 7→ 4 7→ 8 7→ 16 7→ 32 7→ 64 7→ 6 7→ 12 7→ 24 7→ 48 7→ 38 7→ 58 7→
18 7→ 36 7→ 62 7→ 10 7→ 20 7→ 40 7→ 54 7→ 26 7→ 52 7→ 30 7→ 60 7→
14 7→ 28 7→ 56 7→ 22 7→ 44 7→ 46 7→ 42 7→ 50 7→ 34 7→ 66 7→ 2

Table 1: For odd r up to 67, the Euler totient φ(r), the length σ(r) and number N(r) of
q-cycles is given, together with the q-cycles required to calculate base-3 Kaprekar cycles.
Whereas in the main text we have taken q0 as the largest member of a q-cycle, here we start
the cycles with the smallest member.

Appendix B: Special cycles in base 5

n = 2, l = 1 : (0, 1, 0, 1, 0) 7→ (0, 1, 0, 1, 0)
n = 2, l = 1 : (2, 0, 0, 0, 0) 7→ (2, 0, 0, 0, 0)

[repdigit from non-trivial initial integer]
n = 3, l = 2 : (0, 1, 0, 1, 1) 7→ (0, 0, 2, 0, 1) 7→ (0, 1, 0, 1, 1)
n = 4, l = 1 : (1, 0, 1, 2, 0) 7→ (1, 0, 1, 2, 0)
n = 5, l = 4 : (1, 0, 1, 2, 1) 7→ (1, 1, 0, 1, 2) 7→ (0, 2, 1, 0, 2) 7→ (0, 1, 2, 1, 1) 7→

(1, 0, 1, 2, 1)
n = 6, l = 5 : (1, 0, 1, 2, 2) 7→ (0, 2, 1, 0, 3) 7→ (0, 2, 2, 2, 0) 7→ (0, 1, 2, 1, 2) 7→

(1, 0, 3, 2, 0) 7→ (1, 0, 1, 2, 2)
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n = 7, l = 4 : (1, 0, 3, 2, 1) 7→ (1, 2, 0, 2, 2) 7→ (0, 3, 1, 1, 2) 7→ (0, 2, 2, 2, 1) 7→
(1, 0, 3, 2, 1)

n = 8, l = 6 : (1, 0, 1, 2, 4) 7→ (1, 2, 2, 2, 1) 7→ (0, 2, 3, 0, 3) 7→ (0, 2, 2, 2, 2) 7→
(1, 2, 1, 4, 0) 7→ (1, 0, 5, 2, 0) 7→ (1, 0, 1, 2, 4)

n = 10, l = 4 : (1, 0, 1, 2, 6) 7→ (1, 2, 2, 2, 3) 7→ (1, 4, 0, 4, 1) 7→ (0, 2, 7, 0, 1) 7→
(1, 0, 1, 2, 6)

n = 12, l = 8 : (1, 0, 5, 2, 4) 7→ (1, 2, 6, 2, 1) 7→ (0, 2, 3, 0, 7) 7→ (0, 2, 6, 2, 2) 7→
(1, 2, 1, 4, 4) 7→ (0, 4, 1, 2, 5) 7→ (0, 4, 2, 4, 2) 7→ (1, 2, 5, 4, 0) 7→
(1, 0, 5, 2, 4)

n = 14, l = 4 : (1, 4, 1, 6, 2) 7→ (1, 2, 6, 2, 3) 7→ (1, 4, 0, 4, 5) 7→ (0, 5, 1, 3, 5) 7→
(1, 4, 1, 6, 2)

n = 14, l = 5 : (1, 2, 5, 4, 2) 7→ (1, 4, 2, 4, 3) 7→ (1, 4, 4, 4, 1) 7→ (0, 2, 7, 0, 5) 7→
(0, 2, 6, 2, 4) 7→ (1, 2, 5, 4, 2)

n = 15, l = 4 : (0, 2, 2, 2, 9) 7→ (1, 2, 5, 4, 3) 7→ (1, 6, 0, 6, 2) 7→ (0, 3, 9, 1, 2) 7→
(0, 2, 2, 2, 9)

n = 16, l = 4 : (0, 2, 2, 2, 10) 7→ (1, 2, 5, 4, 4) 7→ (1, 6, 2, 6, 1) 7→ (0, 2, 11, 0, 3) 7→
(0, 2, 2, 2, 10)

n = 16, l = 5, : (1, 2, 9, 4, 0) 7→ (1, 0, 5, 2, 8) 7→ (1, 2, 10, 2, 1) 7→ (0, 2, 3, 0, 11) 7→
(0, 2, 6, 2, 6) 7→ (1, 2, 9, 4, 0)

n = 18, l = 5 : (1, 0, 1, 2, 14) 7→ (1, 2, 2, 2, 11) 7→ (1, 4, 4, 4, 5) 7→ (1, 8, 0, 8, 1) 7→
(0, 2, 15, 0, 1) 7→ (1, 0, 1, 2, 14)

n = 19, l = 3 : (0, 5, 7, 3, 4) 7→ (1, 4, 3, 6, 5) 7→ (1, 7, 0, 7, 4) 7→ (0, 5, 7, 3, 4)
n = 22, l = 5 : (1, 6, 3, 8, 4) 7→ (1, 6, 6, 6, 3) 7→ (1, 4, 8, 4, 5) 7→ (1, 8, 0, 8, 5) 7→

(0, 6, 7, 4, 5) 7→ (1, 6, 3, 8, 4)
n = 22, l = 5 : (0, 2, 6, 2, 12) 7→ (1, 2, 13, 4, 2) 7→ (1, 4, 2, 4, 11) 7→ (1, 8, 4, 8, 1) 7→

(0, 2, 15, 0, 5) 7→ (0, 2, 6, 2, 12)
n = 24, l = 11 : (1, 2, 1, 4, 16) 7→ (1, 6, 2, 6, 9) 7→ (0, 8, 3, 6, 7) 7→ (1, 8, 3, 10, 2) 7→

(1, 4, 14, 4, 1) 7→ (0, 2, 7, 0, 15) 7→ (0, 2, 14, 2, 6) 7→ (1, 2, 9, 4, 8) 7→
(1, 6, 10, 6, 1) 7→ (0, 2, 11, 0, 11) 7→ (0, 2, 18, 2, 2) 7→ (1, 2, 1, 4, 16)

n = 26, l = 10 : (1, 0, 1, 2, 22) 7→ (1, 2, 2, 2, 19) 7→ (1, 4, 4, 4, 13) 7→ (1, 8, 8, 8, 1) 7→
(0, 2, 15, 0, 9) 7→ (0, 2, 14, 2, 8) 7→ (1, 2, 13, 4, 6) 7→ (1, 6, 6, 6, 7) 7→
(1, 12, 0, 12, 1) 7→ (0, 2, 23, 0, 1) 7→ (1, 0, 1, 2, 22)

n = 30, l = 9 : (0, 2, 6, 2, 20) 7→ (1, 2, 13, 4, 10) 7→ (1, 6, 14, 6, 3) 7→ (1, 4, 8, 4, 13) 7→
(0, 6, 15, 4, 5) 7→ (1, 6, 3, 8, 12) 7→ (1, 8, 6, 8, 7) 7→ (1, 12, 4, 12, 1) 7→
(0, 2, 23, 0, 5) 7→ (0, 2, 6, 2, 20)

n = 32, l = 4 : (0, 2, 22, 2, 6) 7→ (1, 2, 9, 4, 16) 7→ (1, 6, 18, 6, 1) 7→ (0, 2, 11, 0, 19) 7→
(0, 2, 22, 2, 6)

n = 33, l = 4 : (1, 13, 0, 13, 6) 7→ (0, 7, 15, 5, 6) 7→ (1, 8, 3, 10, 11) 7→ (1, 9, 4, 9, 10) 7→
(1, 13, 0, 13, 6)

n = 34, l = 6 : (1, 0, 1, 2, 30) 7→ (1, 2, 2, 2, 27) 7→ (1, 4, 4, 4, 21) 7→ (1, 8, 8, 8, 9) 7→
(1, 16, 0, 16, 1) 7→ (0, 2, 31, 0, 1) 7→ (1, 0, 1, 2, 30)

n = 38, l = 6 : (1, 6, 3, 8, 20) 7→ (1, 14, 6, 14, 3) 7→ (1, 4, 24, 4, 5) 7→ (1, 8, 0, 8, 21) 7→
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(1, 16, 0, 16, 5) 7→ (0, 6, 23, 4, 5) 7→ (1, 6, 3, 8, 20)
n = 42, l = 12 : (0, 2, 14, 2, 24) 7→ (1, 2, 29, 4, 6) 7→ (1, 6, 6, 6, 23) 7→

(1, 12, 12, 12, 5) 7→ (1, 8, 16, 8, 9) 7→ (1, 16, 0, 16, 9) 7→
(0, 10, 15, 8, 9) 7→ (1, 14, 3, 16, 8) 7→ (1, 10, 14, 10, 7) 7→
(1, 12, 8, 12, 9) 7→ (1, 16, 8, 16, 1) 7→ (0, 2, 31, 0, 9) 7→ (0, 2, 14, 2, 24)

n = 46, l = 5 : (1, 2, 5, 4, 34) 7→ (1, 6, 10, 6, 23) 7→ (1, 12, 20, 12, 1) 7→
(0, 2, 23, 0, 21) 7→ (0, 2, 38, 2, 4) 7→ (1, 2, 5, 4, 34)

n = 47, l = 4 : (1, 19, 0, 19, 8) 7→ (0, 9, 23, 7, 8) 7→ (1, 12, 3, 14, 17) 7→
(1, 13, 6, 13, 14) 7→ (1, 19, 0, 19, 8)

n = 50, l = 7 : (1, 2, 29, 4, 14) 7→ (1, 6, 22, 6, 15) 7→ (1, 12, 16, 12, 9) 7→
(1, 16, 8, 16, 9) 7→ (1, 16, 16, 16, 1) 7→ (0, 2, 31, 0, 17) 7→
(0, 2, 30, 2, 16) 7→ (1, 2, 29, 4, 14)

Appendix C: Succession formulae in base 5

We list Kaprekar indices of successors k′ to indices k, where k0 = 1 and the remaining
components satisfy the given conditions in each case. The cases cover all possibilities where
k0 = 1 and ki ≥ 1 for i = 1, 2, 3, 4.
(i) If k4 + k3 + k2 < 1 + k1, then

k′ = (1, k2 + k4 − 1, 2k3, k2 + k4 − 1, k1 − k2 − k3 − k4 + 2)
(ii) If k4 + k3 + k2 = 1 + k1, then

k′ = (1, k2 + k4 − 1, 2k3, k2 + k4 − 1, 1)
(iii) If k4 + k3 < 1 + k1 < k4 + k3 + k2, then

k′ = (1, k1 − k3, 2k3, k1 − k3, k2 + k3 + k4 − k1)
(iv) If k4 + k3 = 1 + k1, then

k′ = (0, k4 + 1, 2k3 − 1, k4 − 1, k2 + 1)
(v) If k4 < 1 + k1 < k4 + k3 < 1 + k1 + k2, then

k′ = (1, 2k4 + k3 − k1 − 2, 2k1 − 2k4 + 2, 2k4 + k3 − k1 − 2,
k1 + k2 − k3 − k4 + 2)

(vi) If k4 < 1 + k1 and k4 + k3 = 1 + k1 + k2, then
k′ = (1, k4 + k2 − 1, 2k1 − 2k4 + 2, k4 + k2 − 1, 1)

(vii) If k4 < 1 + k1 and k4 + k3 > 1 + k1 + k2, then
k′ = (1, k4 + k2 − 1, 2k1 − 2k4 + 2, k4 + k2 − 1, k4 + k3 − k2 − k1)

(viii) If k4 = 1 + k1 and k3 < k2, then
k′ = (1, k1 + k3, 0, k1 + k3, k2 − k3 + 1)

(ix) If k4 = 1 + k1 and k2 < k3, then
k′ = (1, k1 + k2, 0, k1 + k2, k3 − k2 + 1)

(x) If 1 + k1 < k4 and k4 + k3 < 1 + k1 + k2, then
k′ = (1, k1 + k3, 2k4 − 2k1 − 2, k1 + k3, k1 + k2 − k3 − k4 + 2)

(xi) If 1 + k1 < k4 and k4 + k3 = 1 + k1 + k2, then
k′ = (1, k1 + k3, 2k4 − 2k1 − 2, k1 + k3, 1)
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(xii) If 1 + k1 < k4 < 1 + k1 + k2 < k4 + k3, then
k′ = (1, 2k1 + k2 − k4 + 1, 2k4 − 2k1 − 2, 2k1 + k2 − k4 + 1,

k4 + k3 − k2 − k1)
(xiii) If 1 + k1 + k2 = k4, then

k′ = (0, k1 + 2, 2k2 − 1, k1, k3 + 1)
(xiv) If 1 + k1 + k2 < k4 < 1 + k1 + k2 + k3, then

k′ = (1, k4 − k2 − 1, 2k2, k4 − k2 − 1, k3 + k2 + k1 − k4 + 2)
(xv) If 1 + k1 + k2 + k3 = k4, then

k′ = (1, k1 + k3, 2k2, k1 + k3, 1)
(xvi) If 1 + k1 + k2 + k3 < k4, then

k′ = (1, k1 + k3, 2k2, k1 + k3, k4 − k3 − k2 − k1)

Appendix D: Primitive proper cycles in base 5

The Kaprekar indices of members of primitive cycles take the form

(k0, k1, k2, k3, k4) = (1, k1, k2, k1, n− 2k1 − k2 − 1),

with only two free parameters; so we display cycles of pairs of values (k1, k2) as shorthand
for the full Kaprekar indices.
n = 9, l = 1 : (2, 2) 7→ (2, 2)
n = 11, l = 3 : (2, 2) 7→ (3, 2) 7→ (2, 4) 7→ (2, 2)
n = 13, l = 5 : (2, 2) 7→ (3, 4) 7→ (2, 4) 7→ (4, 2) 7→ (2, 6) 7→ (2, 2)
n = 15, l = 2 : (2, 4) 7→ (3, 6) 7→ (2, 4)
n = 15, l = 6 : (2, 2) 7→ (4, 4) 7→ (2, 6) 7→ (4, 2) 7→ (5, 2) 7→ (2, 8) 7→ (2, 2)
n = 17, l = 2 : (2, 6) 7→ (4, 6) 7→ (2, 6)
n = 17, l = 2 : (2, 4) 7→ (3, 8) 7→ (2, 4)
n = 17, l = 4 : (2, 2) 7→ (4, 4) 7→ (6, 2) 7→ (2, 10) 7→ (2, 2)
n = 17, l = 4 : (2, 8) 7→ (4, 2) 7→ (5, 2) 7→ (5, 4) 7→ (2, 8)
n = 19, l = 4 : (2, 2) 7→ (4, 4) 7→ (7, 2) 7→ (2, 12) 7→ (2, 2)
n = 19, l = 4 : (2, 4) 7→ (4, 8) 7→ (2, 6) 7→ (3, 10) 7→ (2, 4)
n = 19, l = 4 : (2, 8) 7→ (4, 6) 7→ (6, 2) 7→ (5, 6) 7→ (2, 8)
n = 19, l = 4 : (2, 10) 7→ (4, 2) 7→ (5, 4) 7→ (6, 4) 7→ (2, 10)
n = 21, l = 3 : (2, 12) 7→ (4, 2) 7→ (7, 4) 7→ (2, 12)
n = 21, l = 9 : (2, 2) 7→ (4, 4) 7→ (5, 6) 7→ (6, 4) 7→ (6, 6) 7→ (2, 10) 7→ (4, 6) 7→

(8, 2) 7→ (2, 14) 7→ (2, 2)
n = 21, l = 9 : (2, 4) 7→ (4, 8) 7→ (6, 2) 7→ (7, 2) 7→ (5, 8) 7→ (2, 8) 7→ (4, 10) 7→

(2, 6) 7→ (3, 12) 7→ (2, 4)
n = 23, l = 2 : (2, 6) 7→ (4, 12) 7→ (2, 6)
n = 23, l = 3 : (2, 14) 7→ (4, 2) 7→ (8, 4) 7→ (2, 14)
n = 23, l = 3 : (2, 12) 7→ (4, 6) 7→ (7, 6) 7→ (2, 12)
n = 23, l = 6 : (2, 2) 7→ (4, 4) 7→ (5, 8) 7→ (6, 4) 7→ (9, 2) 7→ (2, 16) 7→ (2, 2)
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n = 23, l = 6 : (2, 4) 7→ (4, 8) 7→ (8, 2) 7→ (5, 10) 7→ (2, 8) 7→ (3, 14) 7→ (2, 4)
n = 23, l = 6 : (2, 10) 7→ (4, 10) 7→ (6, 2) 7→ (7, 2) 7→ (7, 4) 7→ (6, 8) 7→ (2, 10)
n = 25, l = 11 : (2, 2) 7→ (4, 4) 7→ (7, 8) 7→ (2, 12) 7→ (4, 10) 7→ (8, 2) 7→ (7, 6) 7→

(6, 8) 7→ (6, 6) 7→ (10, 2) 7→ (2, 18) 7→ (2, 2)
n = 25, l = 11 : (2, 4) 7→ (4, 8) 7→ (8, 6) 7→ (2, 14) 7→ (4, 6) 7→ (5, 10) 7→ (6, 4) 7→

(9, 2) 7→ (5, 12) 7→ (2, 8) 7→ (3, 16) 7→ (2, 4)
n = 25, l = 11 : (2, 6) 7→ (4, 12) 7→ (6, 2) 7→ (7, 4) 7→ (9, 4) 7→ (2, 16) 7→ (4, 2) 7→

(8, 4) 7→ (6, 10) 7→ (2, 10) 7→ (4, 14) 7→ (2, 6)
n = 27, l = 10 : (2, 2) 7→ (4, 4) 7→ (8, 8) 7→ (2, 14) 7→ (4, 10) 7→ (8, 6) 7→ (6, 10) 7→

(6, 6) 7→ (11, 2) 7→ (2, 20) 7→ (2, 2)
n = 27, l = 10 : (2, 4) 7→ (4, 8) 7→ (7, 10) 7→ (2, 12) 7→ (4, 14) 7→ (6, 2) 7→ (9, 4) 7→

(6, 12) 7→ (2, 10) 7→ (3, 18) 7→ (2, 4)
n = 27, l = 10 : (2, 6) 7→ (4, 12) 7→ (8, 2) 7→ (9, 2) 7→ (7, 8) 7→ (6, 8) 7→ (10, 2) 7→

(5, 14) 7→ (2, 8) 7→ (4, 16) 7→ (2, 6)
n = 27, l = 10 : (2, 16) 7→ (4, 6) 7→ (5, 12) 7→ (6, 4) 7→ (7, 6) 7→ (10, 4) 7→ (2, 18) 7→

(4, 2) 7→ (8, 4) 7→ (9, 6) 7→ (2, 16)
n = 29, l = 9 : (2, 2) 7→ (4, 4) 7→ (8, 8) 7→ (6, 10) 7→ (10, 2) 7→ (7, 10) 7→ (6, 8) 7→

(12, 2) 7→ (2, 22) 7→ (2, 2)
n = 29, l = 9 : (2, 4) 7→ (4, 8) 7→ (5, 14) 7→ (6, 4) 7→ (7, 8) 7→ (10, 4) 7→ (6, 14) 7→

(2, 10) 7→ (3, 20) 7→ (2, 4)
n = 29, l = 9 : (2, 6) 7→ (4, 12) 7→ (8, 6) 7→ (10, 6) 7→ (2, 18) 7→ (4, 6) 7→ (7, 12) 7→

(2, 12) 7→ (4, 18) 7→ (2, 6)
n = 29, l = 9 : (2, 8) 7→ (4, 16) 7→ (6, 2) 7→ (11, 4) 7→ (2, 20) 7→ (4, 2) 7→ (8, 4) 7→

(11, 2) 7→ (5, 16) 7→ (2, 8)
n = 29, l = 9 : (2, 14) 7→ (4, 14) 7→ (8, 2) 7→ (9, 2) 7→ (9, 4) 7→ (9, 8) 7→ (2, 16) 7→

(4, 10) 7→ (8, 10) 7→ (2, 14)
n = 31, l = 14 : (2, 2) 7→ (4, 4) 7→ (8, 8) 7→ (10, 6) 7→ (6, 14) 7→ (6, 6) 7→ (7, 10) 7→

(10, 4) 7→ (9, 10) 7→ (2, 16) 7→ (4, 14) 7→ (8, 6) 7→ (13, 2) 7→
(2, 24) 7→ (2, 2)

n = 31, l = 14 : (2, 4) 7→ (4, 8) 7→ (5, 16) 7→ (6, 4) 7→ (9, 8) 7→ (6, 12) 7→ (10, 2) 7→
(9, 6) 7→ (10, 8) 7→ (2, 18) 7→ (4, 10) 7→ (7, 14) 7→ (2, 12) 7→
(3, 22) 7→ (2, 4)

n = 31, l = 14 : (2, 6) 7→ (4, 12) 7→ (8, 10) 7→ (6, 10) 7→ (12, 2) 7→ (5, 18) 7→ (2, 8) 7→
(4, 16) 7→ (8, 2) 7→ (9, 4) 7→ (11, 4) 7→ (6, 16) 7→ (2, 10) 7→
(4, 20) 7→ (2, 6)

n = 31, l = 14 : (2, 14) 7→ (4, 18) 7→ (6, 2) 7→ (12, 4) 7→ (2, 22) 7→ (4, 2) 7→ (8, 4) 7→
(11, 2) 7→ (7, 12) 7→ (6, 8) 7→ (11, 6) 7→ (2, 20) 7→ (4, 6) 7→
(8, 12) 7→ (2, 14)

n = 33, l = 5 : (2, 2) 7→ (4, 4) 7→ (8, 8) 7→ (14, 2) 7→ (2, 26) 7→ (2, 2)
n = 33, l = 5 : (2, 4) 7→ (4, 8) 7→ (7, 16) 7→ (2, 12) 7→ (3, 24) 7→ (2, 4)
n = 33, l = 5 : (2, 6) 7→ (4, 12) 7→ (8, 14) 7→ (2, 14) 7→ (4, 22) 7→ (2, 6)
n = 33, l = 5 : (2, 8) 7→ (4, 16) 7→ (8, 6) 7→ (13, 2) 7→ (5, 20) 7→ (2, 8)
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n = 33, l = 5 : (2, 10) 7→ (4, 20) 7→ (6, 2) 7→ (12, 4) 7→ (6, 18) 7→ (2, 10)
n = 33, l = 5 : (2, 16) 7→ (4, 18) 7→ (8, 2) 7→ (11, 4) 7→ (9, 12) 7→ (2, 16)
n = 33, l = 5 : (2, 18) 7→ (4, 14) 7→ (8, 10) 7→ (10, 6) 7→ (10, 10) 7→ (2, 18)
n = 33, l = 5 : (2, 20) 7→ (4, 10) 7→ (5, 18) 7→ (6, 4) 7→ (11, 8) 7→ (2, 20)
n = 33, l = 5 : (2, 22) 7→ (4, 6) 7→ (8, 12) 7→ (6, 10) 7→ (12, 6) 7→ (2, 22)
n = 33, l = 5 : (2, 24) 7→ (4, 2) 7→ (8, 4) 7→ (9, 6) 7→ (13, 4) 7→ (2, 24)
n = 33, l = 5 : (6, 6) 7→ (7, 12) 7→ (10, 4) 7→ (11, 6) 7→ (6, 16) 7→ (6, 6)
n = 33, l = 5 : (6, 8) 7→ (9, 10) 7→ (6, 12) 7→ (12, 2) 7→ (7, 14) 7→ (6, 8)
n = 33, l = 5 : (6, 14) 7→ (10, 2) 7→ (11, 2) 7→ (9, 8) 7→ (10, 8) 7→ (6, 14)

Appendix E: Primitive proper cycles in base 9

The Kaprekar indices of members of primitive cycles have k0 = 1, k5 = k3, k6 = k2, k7 = k1
and k8 = n− 2(k1 + k2 + k3)− k4− 1, so there are only four free parameters; thus we display
cycles of quadruplets of values (k1, k2, k3, k4) as shorthand for the full Kaprekar indices.
n = 17, l = 1 : (2, 2, 2, 2) 7→ (2, 2, 2, 2)
n = 19, l = 4 : (2, 2, 2, 2) 7→ (3, 2, 2, 2) 7→ (2, 3, 2, 2) 7→ (2, 2, 2, 4) 7→ (2, 2, 2, 2)
n = 21, l = 7 : (2, 2, 2, 2) 7→ (3, 3, 2, 2) 7→ (2, 3, 2, 4) 7→ (2, 2, 2, 4) 7→ (4, 2, 2, 2) 7→

(2, 4, 2, 2) 7→ (2, 2, 2, 6) 7→ (2, 2, 2, 2)
n = 23, l = 3 : (2, 2, 2, 4) 7→ (3, 4, 2, 2) 7→ (2, 3, 2, 6) 7→ (2, 2, 2, 4)
n = 23, l = 8 : (2, 2, 2, 2) 7→ (3, 3, 3, 2) 7→ (2, 4, 2, 4) 7→ (2, 2, 2, 6) 7→ (4, 2, 2, 2) 7→

(4, 2, 3, 2) 7→ (2, 5, 2, 2) 7→ (2, 2, 2, 8) 7→ (2, 2, 2, 2)
n = 25, l = 2 : (2, 5, 2, 2) 7→ (3, 2, 4, 4) 7→ (2, 5, 2, 2)
n = 25, l = 3 : (2, 2, 2, 6) 7→ (4, 4, 2, 2) 7→ (2, 4, 2, 6) 7→ (2, 2, 2, 6)
n = 25, l = 6 : (2, 2, 2, 2) 7→ (3, 3, 3, 4) 7→ (2, 4, 2, 4) 7→ (4, 2, 4, 2) 7→ (2, 6, 2, 2) 7→

(2, 2, 2, 10) 7→ (2, 2, 2, 2)
n = 27, l = 5 : (2, 2, 2, 4) 7→ (3, 3, 3, 6) 7→ (2, 4, 2, 4) 7→ (3, 6, 2, 2) 7→ (2, 3, 2, 10) 7→

(2, 2, 2, 4)
n = 29, l = 5 : (2, 2, 2, 4) 7→ (3, 3, 3, 8) 7→ (2, 4, 2, 4) 7→ (3, 7, 2, 2) 7→ (2, 3, 2, 12) 7→

(2, 2, 2, 4)
n = 29, l = 7 : (2, 2, 2, 2) 7→ (3, 4, 4, 4) 7→ (2, 5, 2, 6) 7→ (4, 2, 4, 4) 7→ (6, 2, 4, 2) 7→

(2, 8, 2, 2) 7→ (2, 2, 2, 14) 7→ (2, 2, 2, 2)
n = 29, l = 8 : (2, 2, 2, 10) 7→ (4, 4, 2, 2) 7→ (5, 3, 4, 2) 7→ (2, 7, 2, 4) 7→

(2, 2, 2, 12) 7→ (4, 2, 2, 2) 7→ (5, 4, 3, 2) 7→ (2, 6, 2, 6) 7→
(2, 2, 2, 10)

n = 31, l = 5 : (2, 5, 2, 8) 7→ (4, 2, 4, 4) 7→ (7, 2, 2, 6) 7→ (2, 7, 2, 2) 7→ (3, 5, 4, 4) 7→
(2, 5, 2, 8)

n = 31, l = 8 : (2, 2, 2, 12) 7→ (4, 4, 2, 2) 7→ (6, 4, 2, 4) 7→ (2, 6, 2, 6) 7→ (4, 2, 4, 6) 7→
(6, 2, 4, 2) 7→ (5, 4, 4, 2) 7→ (2, 7, 2, 6) 7→ (2, 2, 2, 12)

n = 33, l = 5 : (2, 2, 2, 2) 7→ (4, 4, 4, 4) 7→ (6, 2, 6, 2) 7→ (2, 10, 2, 2) 7→
(2, 2, 2, 18) 7→ (2, 2, 2, 2)
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n = 33, l = 5 : (2, 2, 2, 10) 7→ (4, 4, 4, 6) 7→ (2, 6, 2, 6) 7→ (4, 6, 4, 2) 7→
(2, 6, 2, 10) 7→ (2, 2, 2, 10)

n = 33, l = 5 : (2, 2, 2, 12) 7→ (4, 4, 4, 2) 7→ (5, 2, 6, 2) 7→ (5, 5, 4, 2) 7→
(2, 7, 2, 8) 7→ (2, 2, 2, 12)

There is also a cycle with n = 23, l = 2 : (2, 5, 2, 0) 7→ (3, 1, 4, 4) 7→ (2, 5, 2, 0), which
does not qualify as a regular cycle since k4 = 0 in one member, but in all other respects
behaves as a primitive proper cycle, having primitive non-proper and general cycles derived
from it according to Corollary 8.

Appendix F: Special cycles in base 7

There are three classes of special cycles described in Section 5, which exist for digit-counts
n = 2m + 8,m ≥ 1; n = 5m + 10,m ≥ 0; and n = 5m + 10,m ≥ 2, respectively. We list
here all special cycles in base 7 with n ≤ 53 that are not in one of these three classes. Some
of these special cycles are very long, even for fairly low digit-counts; if the length is greater
than 6, we only list the Kaprekar index of a single member, which in each case is the smallest
integer among the members of the cycle.

n = 2, l = 1 : (2, 0, 0, 0, 0, 0, 0) 7→ (2, 0, 0, 0, 0, 0, 0)
[repdigit from non-trivial initial integer]

n = 3, l = 2 : (0, 0, 1, 0, 1, 0, 1) 7→ (0, 0, 0, 2, 0, 0, 1) 7→ (0, 0, 1, 0, 1, 0, 1)
n = 4, l = 3 : (1, 0, 0, 1, 1, 1, 0) 7→ (1, 0, 1, 0, 0, 2, 0) 7→ (0, 0, 2, 1, 0, 1, 0) 7→

(1, 0, 0, 1, 1, 1, 0)
n = 5, l = 5 : (1, 0, 0, 1, 1, 1, 1) 7→ (0, 2, 0, 0, 1, 0, 2) 7→ (0, 1, 1, 0, 1, 1, 1) 7→

(0, 0, 2, 1, 0, 1, 1) 7→ (0, 0, 1, 2, 1, 0, 1) 7→ (1, 0, 0, 1, 1, 1, 1)
n = 6, l = 6 : (1, 0, 1, 1, 2, 1, 0) 7→ (1, 0, 2, 0, 1, 2, 0) 7→ (0, 1, 1, 2, 1, 1, 0) 7→

(0, 1, 0, 1, 2, 0, 2) 7→ (0, 0, 2, 1, 0, 1, 2) 7→ (0, 1, 1, 1, 3, 0, 0) 7→
(1, 0, 1, 1, 2, 1, 0)

n = 7, l = 6 : (1, 0, 1, 2, 0, 2, 1) 7→ (0, 2, 0, 2, 1, 0, 2) 7→ (1, 1, 1, 0, 0, 3, 1) 7→
(0, 1, 2, 1, 1, 0, 2) 7→ (0, 1, 2, 0, 2, 1, 1) 7→ (0, 1, 1, 2, 1, 1, 1) 7→
(1, 0, 1, 2, 0, 2, 1)

n = 8, l = 6 : (0, 1, 1, 1, 3, 0, 2) 7→ (1, 0, 2, 0, 1, 2, 2) 7→ (1, 1, 1, 2, 1, 1, 1) 7→
(0, 2, 1, 0, 2, 0, 3) 7→ (0, 1, 2, 1, 0, 2, 2) 7→ (0, 1, 2, 2, 2, 1, 0) 7→
(0, 1, 1, 1, 3, 0, 2)

n = 9, l = 11 : (1, 0, 1, 2, 0, 2, 3) 7→ · · ·
n = 10, l = 2 : (0, 1, 1, 2, 1, 1, 4) 7→ (1, 0, 2, 4, 1, 2, 0) 7→ (0, 1, 1, 2, 1, 1, 4)
n = 12, l = 5 : (1, 1, 2, 2, 1, 3, 2) 7→ (1, 2, 1, 4, 1, 2, 1) 7→ (0, 2, 2, 0, 3, 0, 5) 7→

(0, 2, 3, 0, 3, 2, 2) 7→ (0, 2, 1, 4, 1, 2, 2) 7→ (1, 1, 2, 2, 1, 3, 2)
n = 13, l = 6 : (1, 0, 4, 2, 3, 2, 1) 7→ (1, 1, 2, 4, 2, 1, 2) 7→ (1, 2, 1, 2, 1, 2, 4) 7→

(0, 4, 2, 0, 3, 2, 2) 7→ (0, 2, 4, 0, 4, 2, 1) 7→ (0, 1, 4, 2, 4, 1, 1) 7→
(1, 0, 4, 2, 3, 2, 1)

n = 14, l = 9 : (0, 1, 4, 1, 6, 0, 2) 7→ · · ·
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n = 16, l = 12 : (0, 1, 4, 2, 4, 1, 4) 7→ · · ·
n = 19, l = 4 : (1, 1, 6, 0, 5, 3, 3) 7→ (0, 3, 2, 6, 3, 1, 4) 7→ (1, 4, 2, 2, 1, 6, 3) 7→

(0, 4, 3, 4, 4, 2, 2) 7→ (1, 1, 6, 0, 5, 3, 3)
n = 20, l = 5 : (1, 1, 6, 2, 5, 3, 2) 7→ (1, 3, 3, 6, 3, 3, 1) 7→ (0, 2, 5, 0, 6, 0, 7) 7→

(0, 1, 6, 1, 4, 2, 6) 7→ (0, 1, 6, 2, 6, 1, 4) 7→ (1, 1, 6, 2, 5, 3, 2)
n = 20, l = 7 : (1, 2, 4, 4, 3, 4, 2) 7→ · · ·
n = 22, l = 5 : (1, 1, 7, 2, 6, 3, 2) 7→ (1, 3, 4, 6, 4, 3, 1) 7→ (0, 2, 6, 0, 7, 0, 7) 7→

(0, 2, 6, 0, 6, 2, 6) 7→ (0, 1, 6, 3, 4, 2, 6) 7→ (1, 1, 7, 2, 6, 3, 2)
n = 24, l = 5 : (1, 3, 6, 2, 5, 5, 2) 7→ (1, 3, 5, 6, 5, 3, 1) 7→ (0, 2, 7, 0, 8, 0, 7) 7→

(0, 2, 7, 0, 7, 2, 6) 7→ (0, 2, 5, 4, 5, 2, 6) 7→ (1, 3, 6, 2, 5, 5, 2)
n = 24, l = 5 : (1, 3, 5, 2, 4, 5, 4) 7→ (1, 5, 0, 10, 0, 5, 3) 7→ (0, 4, 4, 0, 5, 2, 9) 7→

(1, 4, 6, 0, 5, 6, 2) 7→ (0, 3, 5, 6, 6, 1, 3) 7→ (1, 3, 5, 2, 4, 5, 4)
n = 26, l = 24 : (1, 1, 9, 2, 8, 3, 2) 7→ · · ·
n = 28, l = 7 : (1, 1, 9, 2, 8, 3, 4) 7→ · · ·
n = 30, l = 25 : (1, 1, 11, 2, 10, 3, 2) 7→ · · ·
n = 32, l = 13 : (1, 1, 10, 2, 9, 3, 6) 7→ · · ·
n = 34, l = 13 : (1, 1, 11, 2, 10, 3, 6) 7→ · · ·
n = 37, l = 5 : (1, 5, 7, 6, 6, 7, 5) 7→ (1, 9, 2, 12, 2, 9, 2) 7→ (1, 2, 9, 2, 9, 2, 12) 7→

(0, 4, 10, 0, 11, 2, 10) 7→ (0, 4, 8, 4, 8, 4, 9) 7→ (1, 5, 7, 6, 6, 7, 5)
n = 42, l = 11 : (1, 3, 12, 2, 11, 5, 8) 7→ · · ·
n = 43, l = 5 : (1, 5, 9, 6, 8, 7, 7) 7→ (1, 11, 2, 14, 2, 11, 2) 7→ (1, 2, 11, 2, 11, 2, 14) 7→

(0, 4, 12, 0, 13, 2, 12) 7→ (0, 4, 10, 4, 10, 4, 11) 7→ (1, 5, 9, 6, 8, 7, 7)
n = 46, l = 7 : (1, 4, 12, 4, 11, 6, 8) 7→ · · ·
n = 51, l = 3 : (1, 8, 10, 4, 9, 10, 9) 7→ (1, 12, 0, 20, 0, 12, 6) 7→ (0, 7, 11, 0, 12, 5, 16) 7→

(1, 8, 10, 4, 9, 10, 9)
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