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Abstract

We study families of interpolating rational polynomials that produce scaled Fi-

bonacci or Lucas numbers on certain integer values. We use the expansions of these

families in binomial polynomials and other formats to establish several identities involv-

ing harmonic numbers, binomial coefficients, and various recursively defined sequences.

1 Introduction

In a previous paper [3], we considered certain interpolating polynomials defined from points
involving Fibonacci numbers which led to several identities involving Fibonacci numbers,
harmonic numbers, and binomial coefficients. A key part of the analysis used the polynomial

Fk(x) = F1x
k−1 + F2x

k−2 + · · ·+ Fk−1x+ Fk (1)
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and its derivatives evaluated at x = 1. Here we consider interpolating polynomials defined
from points involving scaled Fibonacci and Lucas numbers whose study makes use of (1)
at x = −1, 2,−2, 3. Our investigation of other integer values of x suggests that the cor-
responding polynomials use defining points whose expressions are more complicated than
those here. Section 2 gives the statements of our main results along with a summary of the
corresponding results of the previous work [3], followed by proofs in Section 3 where (1) is
prominent. In Section 4, we express the various polynomial families in terms of binomial
polynomials, which informs several of the many identities given in Section 5.

The Fibonacci numbers are given by F0 = 0, F1 = 1, and Fn = Fn−1 + Fn−2 for n ≥ 2.
In addition, we use their extension to negative indices, F−n = (−1)n+1Fn for n > 0. We
will make frequent use of the related Lucas numbers L0 = 2, L1 = 1, Ln = Ln−1 + Ln−2 for
n ≥ 2, and L−n = (−1)nLn for n > 0. Also, we will need the following alternating sequences
of Fibonacci and Lucas numbers. For n ≥ 0, let

bn =

{

Ln, if n is even;

Fn, if n is odd.
(2)

Similarly, for n ≥ 0, let

cn =

{

Fn, if n is even;

Ln, if n is odd.
(3)

These appear in the OEIS [4] as A005247 and A005013, respectively.
The harmonic numbers

Hn = 1 +
1

2
+ · · ·+ 1

n

for n ≥ 1 with H0 = 0 arise in several of the identities. The polynomial results use the
binomial polynomials defined by

(

x
0

)

= 1,
(

x
n

)

= 0 for integers n < 0, and
(

x
n

)

= (x)n/n! for
integers n > 0, where (x)n denotes the falling factorial x(x− 1) · · · (x− n + 1). Finally, ⌊·⌋
denotes the integer floor.

2 Main results

We begin by citing the primary result of our previous work [3]. Four related results follow,
each with a table of examples of the polynomial families.

Theorem 1. Given a nonnegative integer n, let Pn(x) be the interpolating polynomial de-
termined by the points (i, Fn+2+i) for 0 ≤ i ≤ n. Then Pn(x) has degree n with leading
coefficient 1/n!. For each integer k > n,

Pn(k) = Fk+n+2 −
k−n
∑

i=1

Fi

(

k − i

n

)
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n Pn(x)

0 1

1 x+ 2

2 (x2 + 3x+ 6)/2

3 (x3 + 3x2 + 14x+ 30)/6

4 (x4 + 2x3 + 23x2 + 94x+ 192)/24

5 (x5 + 35x3 + 180x2 + 744x+ 1560)/120

6 (x6 − 3x5 + 55x4 + 255x3 + 1744x2 + 7308x+ 15120)/720

Table 1: Pn(x) for small values of n.

and, for each integer k < 0,

Pn(k) = Fk+n+2 +
−k−1
∑

i=1

F−i

(

k + i

n

)

.

Also, the polynomials Pn(x) satisfy and, with initial values P0(x) = 1 and P1(x) = x+2, are
uniquely determined by each of the following recurrence relations. For all n ≥ 1, we have

Pn+1(x)− Pn(x)− Pn−1(x) =

(

x+ 1

n+ 1

)

, (4)

Pn+1(x)− 3Pn(x− 1) + Pn−1(x− 2) =

(

x− 1

n+ 1

)

. (5)

This combines parts of Theorem 2.1, its proof, and Propositions 2.3 and 2.4 of the earlier
paper [3]. Examples of Pn(x) are given in Table 1. Notice that the constant terms of these
polynomials (before division by n!) are given by A078700 in the OEIS [4], which follows from
the definition of Pn(x).

While the Pn(x) of Theorem 1 use a particular increasing sequence of Fibonacci numbers,
the polynomials of the next theorem are determined by a particular decreasing sequence of
Fibonacci numbers.

Theorem 2. Given a nonnegative integer n, let Qn(x) be the interpolating polynomial de-
termined by the points (i, F2n+1−i) for 0 ≤ i ≤ n. Then Qn(x) has degree n and leading
coefficient (−1)n/n!. For each integer k > n,

Qn(k) = F2n−k+1 + (−1)n
k−n
∑

i=1

F−i

(

k − i

n

)

and, for each integer k < 0,

Qn(k) = F2n−k+1 + (−1)n+1

−k−1
∑

i=1

Fi

(

k + i

n

)

.
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n Qn(x)

0 1

1 −x+ 2

2 (x2 − 5x+ 10)/2

3 (−x3 + 9x2 − 38x+ 78)/6

4 (x4 − 14x3 + 95x2 − 394x+ 816)/24

5 (−x5 + 20x4 − 195x3 + 1240x2 − 5144x+ 10680)/120

6 (x6 − 27x5 + 355x4 − 3105x3 + 19444x2 − 80748x+ 167760)/720

Table 2: Qn(x) for small values of n.

Also, the polynomials Qn(x) satisfy and, with initial values Q0(x) = 1 and Q1(x) = −x+ 2,
are uniquely determined by each of the following recurrence relations. For all n ≥ 1,

Qn+1(x)− 3Qn(x) +Qn−1(x) = (−1)n+1

(

x+ 1

n+ 1

)

,

Qn+1(x)−Qn(x− 1)−Qn−1(x− 2) = (−1)n+1

(

x− 1

n+ 1

)

. (6)

See the next section for notes on the proof. Examples of Qn(x) are given in Table 2.
Notice that the constant terms of these polynomials (before division by n!) are given by
A052568 in the OEIS [4], which follows from the definition of Qn(x).

The polynomials of the next theorem are determined by a particular increasing sequence
of Fibonacci numbers scaled by certain decreasing powers of two.

Theorem 3. Given a nonnegative integer n, let Rn(x) be the interpolating polynomial deter-
mined by the points (i, 2n−1−iF2n+3+i) for 0 ≤ i ≤ n. Then Rn(x) has degree n and leading
coefficient (−1)n/n!. For each integer k > n,

Rn(k) = 2n−k−1Fk+2n+3 + (−1)n
k−n
∑

i=1

Fi

2i+1

(

k − i

n

)

and, for each integer k < 0,

Rn(k) = 2n−k−1Fk+2n+3 + (−1)n+1

−k−1
∑

i=1

2i−1F−i

(

k + i

n

)

. (7)

Also, the polynomials Rn(x) satisfy and, with initial values R0(x) = 1 and R1(x) = −x+ 5,
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n Rn(x)

0 1

1 −x+ 5

2 (x2 − 11x+ 52)/2

3 (−x3 + 18x2 − 173x+ 816)/6

4 (x4 − 26x3 + 383x2 − 3622x+ 17088)/24

5 (−x5 + 35x4 − 705x3 + 10045x2 − 94814x+ 447360)/120

6 (x6 − 45x5 + 1165x4 − 22275x3 + 315634x2 − 2978640x+ 14054400)/720

Table 3: Rn(x) for small values of n.

are uniquely determined by each of the following recurrence relations. For all n ≥ 1,

Rn+1(x)− 6Rn(x) + 4Rn−1(x) = (−1)n+1

(

x+ 1

n+ 1

)

, (8)

Rn+1(x)− 4Rn(x− 1)−Rn−1(x− 2) = (−1)n+1

(

x− 1

n+ 1

)

. (9)

See the next section for the proof. Examples of Rn(x) are given in Table 3.
The even and odd degree polynomials of the next theorem are determined separately, by

Lucas and Fibonacci numbers scaled by powers of negative two, respectively. Nonetheless,
they enjoy some recurrence relations independent of parity.

Theorem 4. Let n be a nonnegative integer. If n is even, let Sn(x) be the interpolating
polynomial determined by the points (i, (−2)n−1−iLn−i) for 0 ≤ i ≤ n. Then Sn(x) has
degree n and leading coefficient −5n/2/n!. For each integer k > n,

Sn(k) = (−2)n−k−1Lk−n − 5
n+2
2

k−n
∑

i=1

Fi

(−2)i+1

(

k − i

n

)

(10)

and, for each integer k < 0,

Sn(k) = (−2)n−k−1Lk−n + 5
n+2
2

−k−1
∑

i=1

(−2)i−1F−i

(

k + i

n

)

.

If n is odd, let the points (i, (−2)n−1−iFi−n) for 0 ≤ i ≤ n determine the interpolating
polynomial Sn(x). Then Sn(x) has degree n and leading coefficient −5(n−1)/2/n!. For each
integer k > n,

Sn(k) = (−2)n−k−1Fk−n − 5
n+1
2

k−n
∑

i=1

Fi

(−2)i+1

(

k − i

n

)
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n Sn(x)

0 −1

1 −x+ 1

2 (−5x2 + 15x− 12)/2

3 (−5x3 + 30x2 − 61x+ 48)/6

4 (−25x4 + 250x3 − 935x2 + 1670x− 1344)/24

5 (−25x5 + 375x4 − 2225x3 + 6825x2 − 11670x+ 9600)/120

6 (−125x6 + 2625x5 − 22625x4 + 105375x3 − 294050x2 + 496800x− 414720)/720

Table 4: Sn(x) for small values of n.

and, for each integer k < 0,

Sn(k) = (−2)n−k−1Fk−n + 5
n+1
2

−k−1
∑

i=1

(−2)i−1F−i

(

k + i

n

)

.

Also, the polynomials Sn(x) satisfy and, with initial values S0(x) = −1 and S1(x) =
−x+1, are uniquely determined by each of the following recurrence relations. For all n ≥ 1,

Sn+1(x) + 2 · 5 1−(−1)n

2 Sn(x) + 4Sn−1(x) = −5⌊
n+1
2

⌋

(

x+ 1

n+ 1

)

, (11)

Sn+1(x)− Sn−1(x− 2) = −5⌊
n+1
2

⌋

(

x− 1

n+ 1

)

. (12)

See the next section for the proof. Examples of Sn(x) are given in Table 4.
The polynomials of the last theorem have a structure similar to those of Theorem 4 with

the scaling here by powers of three.

Theorem 5. Let n be a nonnegative integer. If n is even, let Tn(x) be the interpolating
polynomial determined by the points (i, 3n−1−iLn+2+i) for 0 ≤ i ≤ n. Then Tn(x) has degree
n and leading coefficient 5n/2/n!. For each integer k > n,

Tn(k) = 3n−k−1Lk+n+2 + 5
n+2
2

k−n
∑

i=1

Fi

3i+1

(

k − i

n

)

and, for each integer k < 0,

Tn(k) = 3n−k−1Lk+n+2 − 5
n+2
2

−k−1
∑

i=1

3i−1F−i

(

k + i

n

)

.
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n Tn(x)

0 1

1 −x+ 2

2 (5x2 − 25x+ 42)/2

3 (−5x3 + 45x2 − 166x+ 270)/6

4 (25x4 − 350x3 + 2135x2 − 7210x+ 11664)/24

5 (−25x5 + 500x4 − 4475x3 + 23800x2 − 78120x+ 126360)/120

6 (125x6 − 3375x5 + 41375x4 − 310125x3 + 1562300x2 − 5081100x+ 8223120)/720

Table 5: Tn(x) for small values of n.

If n is odd, let the points (i, 3n−1−iFn+2+i) for 0 ≤ i ≤ n determine the interpolating
polynomial Tn(x). Then Tn(x) has degree n and leading coefficient −5(n−1)/2/n!. For each
integer k > n,

Tn(k) = 3n−k−1Fk+n+2 − 5
n+1
2

k−n
∑

i=1

Fi

3i+1

(

k − i

n

)

and, for each integer k < 0,

Tn(k) = 3n−k−1Fk+n+2 + 5
n+1
2

−k−1
∑

i=1

3i−1F−i

(

k + i

n

)

.

Also, the polynomials Tn(x) satisfy and, with initial values T0(x) = 1 and T1(x) = −x+2,
are uniquely determined by each of the following recurrence relations.

For all n ≥ 1,

Tn+1(x)− 3 · 5 1−(−1)n

2 Tn(x) + 9Tn−1(x) = (−1)n+15⌊
n+1
2

⌋

(

x+ 1

n+ 1

)

, (13)

Tn+1(x)− 5
1−(−1)n

2 Tn(x− 1)− Tn−1(x− 2) = (−1)n+15⌊
n+1
2

⌋

(

x− 1

n+ 1

)

. (14)

See the next section for notes on the proof. Examples of Tn(x) are given in Table 5.

3 Proofs of main results

Of the four new theorems above, we present two full proofs. The other two theorems have
analogous proofs.

First, we collect various Fibonacci and Lucas number results that we will use. Proofs are
available in many standard sources such as Vajda [5].
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Lemma 6. Let α = (1 +
√
5)/2 and β = (1−

√
5)/2. For all integers m and n,

FmFn+1 − FnFm+1 = (−1)nFm−n, (15)

Fn = 3Fn−2 + Fn−4, (16)

Fn = 4Fn−3 + Fn−6, (17)

Fn =
αn − βn

√
5

, (18)

5Fn = Ln+1 + Ln−1, (19)

Ln = αn + βn. (20)

Also, we will need Lemma 2.2 from the previous work [3] concerning (1).

Lemma 7. Let Fk(x) = F1x
k−1+F2x

k−2+ · · ·+Fk−1x+Fk. The nth derivative of Fk(x) is

F (n)
k (x) =











k−n
∑

i=1

xk−n−iFi(k − i)n, if n ≤ k − 1;

0, if n ≥ k.

(21)

The product of Fk(x) and x2−x−1, the characteristic polynomial of the Fibonacci sequence,
is

(x2 − x− 1)Fk(x) = xk+1 − Fk+1x− Fk. (22)

The derivatives of the product of Fk(x) and x2 − x− 1 are

(x2 − x− 1)F ′
k(x) + (2x− 1)Fk(x) = (k + 1)xk − Fk+1 (23)

and

(x2 − x− 1)F (n)
k (x) + n(2x− 1)F (n−1)

k (x) + n(n− 1)F (n−2)
k (x)

=

{

xk−n+1(k + 1)n, if 2 ≤ n ≤ k + 1;

0, if n ≥ k + 2.
(24)

The proofs of Theorems 1, 2, and 3 follow the same format. We present the proof of
Theorem 3 which includes scalar factors (powers of 2).

Proof of Theorem 2. The proof is very similar to those of Theorem 2.1, Proposition 2.3, and
Proposition 2.4 of our previous article [3].

Proof of Theorem 3. Lagrange’s interpolation formula yields

Rn(x) =
n
∑

i=0

2n−1−iF2n+i+3

n
∏

j=0
j 6=i

x− j

i− j

= (−1)n2n−1(n+ 1)

(

x

n+ 1

) n
∑

i=0

(−1)i

2i

(

n

i

)

F2n+i+3

x− i
, (25)
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where we set the empty product to 1.
We proceed by induction on n. As we will see, two base cases are necessary. First, R0(x)

is a constant polynomial satisfying R0(0) = F3/2 = 1, so R0(x) = 1 with leading coefficient
1 = (−1)0/0! as claimed. We want to show that, for integers k > 0,

R0(k) = 1 =
Fk+3

2k+1
+

k
∑

i=1

Fi

2i+1

and, for integers k < 0,

R0(k) = 1 =
Fk+3

2k+1
−

−k−1
∑

i=1

F−i

2−i+1
.

These follow from substituting x = 2 and x = −1/2, respectively, into (22).
For n = 1, the polynomial R1(x) satisfies R1(0) = F5 = 5 and R1(1) = F6/2 = 4, so

R1(x) = −x+ 5, a linear polynomial with leading coefficient −1 = (−1)1/1! as claimed. We
want to show that, for integers k > 1,

R1(k) = −k + 5 =
Fk+5

2k
−

k−1
∑

i=1

Fi

2i+1
(k − i) (26)

and, for integers k < 0,

R1(k) = −k + 5 =
Fk+5

2k
+

−k−1
∑

i=1

F−i

2−i+1
(k + i). (27)

Given k > 1, use x = 2 in (23) to see

k−1
∑

i=1

Fi

2i+1
(k − i) =

1

2k
F ′

k(2)

=
1

2k
(

(k + 1)2k − 3Fk(2)− Fk+1

)

=
1

2k
(

(k + 1)2k − 3(2k+1 − Fk+3)− Fk+1

)

= k − 5 +
1

2k
Fk+5,

where we apply (15) in the last equality. Rearranging gives (26).
For (27), assume k < 0 and let m = −k. Using x = −1/2 in (23) gives
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−k−1
∑

i=1

F−i

2−i+1
(k + i)

= (−1)m+12m−2F ′
m

(

−1

2

)

= (−1)m2m
(

2Fm

(

−1

2

)

+

(

−1

2

)m

(m+ 1)− Fm+1

)

= (−1)m2m

(

(−8)

(

(

−1

2

)m+1

+
1

2
Fm+1 − Fm

)

+

(

−1

2

)m

(m+ 1)− Fm+1

)

= (−1)m2m
(

−Fm−5 +

(

−1

2

)m

(m+ 5)

)

,

again using (15). Putting the expression back in terms of k establishes (27), which completes
the base cases of the induction.

Let n > 1 and assume that the theorem holds for all nonnegative integers no greater than
n. We prove that Rn+1(x) has degree n + 1 and leading coefficient (−1)n+1/(n + 1)!, more
specifically, that

Rn+1(k) = 2n−kFk+2n+5 + (−1)n+1

k−n−1
∑

i=1

Fi

2i+1

(

k − i

n+ 1

)

(28)

for each integer k > n+ 1 and

Rn+1(k) = 2n−kFk+2n+5 + (−1)n
−k−1
∑

i=1

F−i

2−i+1

(

k + i

n+ 1

)

(29)

for each integer k < 0.
We begin with (28); let k > n+ 1. Using x = 2 in (24) leads to

F (n+1)
k (2) + 3(n+ 1)F (n)

k (2) + n(n+ 1)F (n−1)
k (2) = 2k−n(k + 1)n+1. (30)

The induction hypothesis and (7) with x = 2 give

Rn(k) = 2n−k−1

(

Fk+2n+3 +
(−1)n

n!
F (n)

k (2)

)

,

Rn−1(k) = 2n−k−2

(

Fk+2n+1 +
(−1)n−1

(n− 1)!
F (n−1)

k (2)

)

.

Substituting these into (30), we have
(

k−n−1
∑

i=1

2k−n−1−iFi(k − i)n+1

)

+ 3(n+ 1)21+k−nn!(−1)n
(

Rn(k)− 2n−k−1Fk+2n+3

)

+ n(n+ 1)22+k−n(n− 1)!(−1)n−1
(

Rn−1(k)− 2n−k−2Fk+2n+1

)

= (k + 1)n+1.
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Rearranging and using the identity (16) gives

(−1)n+1

(

k + 1

n+ 1

)

+ 6Rn(k)− 4Rn−1(k) = 2n−kFk+2n+5 + (−1)n+1

k−n−1
∑

i=1

Fi

2i+1

(

k − i

n+ 1

)

.

Now define the polynomial g(x) as

g(x) = (−1)n+1

(

x+ 1

n+ 1

)

+ 6Rn(x)− 4Rn−1(x).

To complete the verification of (28), it suffices to show g(x) = Rn+1(x). This will also
establish (8).

Notice that g(x) is a degree n + 1 polynomial with leading coefficient (−1)n+1/(n + 1)!.
It is then enough to verify that g(k) = 2n−kFk+2n+5 for k = 0, . . . , n+1. We do this in three
cases, each using (16).

• For 0 ≤ k ≤ n − 1, we have Rn(k) = 2n−k−1Fk+2n+3 and Rn−1(k) = 2n−k−2Fk+2n+1.
Since

(

k+1
n+1

)

= 0,

g(k) = 6·2n−k−1Fk+2n+3−4·2n−k−2Fk+2n+1 = 2n−k(3Fk+2n+3−Fk+2n+1) = 2n−kFk+2n+5.

• For k = n, we have Rn(n) = F3n+3/2 and

Rn−1(n) =
F3n+1

22
+ (−1)n−1F1

22

(

n− 1

n− 1

)

=
F3n+1

4
+

(−1)n−1

4
.

Hence we have

g(n) = (−1)n+1 + 6
F3n+3

2
− 4

(

F3n+1

4
+

(−1)n−1

4

)

= F3n+5.

• For k = n+ 1, we have

Rn(n+ 1) =
F3n+4

4
+

(−1)n

4
,

Rn−1(n+ 1) =
F3n+2

8
+

(−1)n−1

4
n+

(−1)n−1

8

so that

g(n+ 1) = (−1)n+1(n+ 2) + 6

(

F3n+4

4
+

(−1)n

4

)

− 4

(

F3n+2

8
+

(−1)n−1

4
n+

(−1)n−1

8

)

=
F3n+6

2
.
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It remains to establish (29). Assume k < 0 and let m = −k. Also, let m′ = m + n.
Recall the identity

(

a

b

)

= (−1)b
(

b− a− 1

b

)

(31)

for integers a and b with b ≥ 0. This allows us to write the sum in (29) as

−k−1
∑

i=1

F−i

2−i+1

(

k + i

n+ 1

)

=
m−1
∑

i=1

F−i

2−i+1

(−m+ i

n+ 1

)

= (−1)n+1

m−1
∑

i=1

F−i

2−i+1

(

m+ n− i

n+ 1

)

=
(−1)n+1

(n+ 1)!

m−1
∑

i=1

(−1)i−1

2−i+1
Fi(m+ n− i)n+1

=
(−1)n+1

(n+ 1)!

m′−(n+1)
∑

i=1

(

−1

2

)−i+1

Fi(m
′ − i)n+1

=
(−1)n+1

(n+ 1)!

(

−1

2

)(n+2)−m′ m′−(n+1)
∑

i=1

(

−1

2

)m′−(n+1)−i

Fi(m
′ − i)n+1

=
(−1)m+n+1

22−m(n+ 1)!
F (n+1)

m+n

(

−1

2

)

.

Using (24) with x = −1/2, we write the last expression as

(−1)m+n+1

22−m(n+ 1)!

×
(

−8(n+ 1)F (n)
m+n

(

−1

2

)

+ 4n(n+ 1)F (n−1)
m+n

(

−1

2

)

− 4

(

−1

2

)m

(m+ n+ 1)n+1

)

. (32)

Next, we determine F (n)
m+n(−1/2) and F (n−1)

m+n (−1/2). Using (21) with x = −1/2, identity
(31), and the induction hypothesis gives

F (n)
m+n

(

−1

2

)

=
m
∑

i=1

(

−1

2

)m−i

Fi(m+ n− i)n

= n!

(m+1)−1
∑

i=1

(

−1

2

)m−i

(−1)n+i+1F−i

(−(m+ 1) + i

n

)

=
(−1)m+n+1n!

2m−1

(m+1)−1
∑

i=1

F−i

2−i+1

(−(m+ 1) + i

n

)

=
(−1)mn!

2m−1

(

Rn(−m− 1)− 2m+nF2n−m+2

)

.
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Similarly,

F (n−1)
m+n

(

−1

2

)

=
(−1)m+1(n− 1)!

2m
(

Rn−1(−m− 2)− 2m+nF2n−m−1

)

.

Substituting these expressions into (32) gives

(−1)m+n+1

22−m(n+ 1)!

(

−8(n+ 1)
(−1)mn!

2m−1

(

Rn(−m− 1)− 2m+nF2n−m+2

)

+ 4n(n+ 1)
(−1)m+1(n− 1)!

2m
(

Rn−1(−m− 2)− 2m+nF2n−m−1

)

− 4

(

−1

2

)m

(m+ n+ 1)n+1

)

= (−1)n+12m+nF2n−m+5 + (−1)n (4Rn(−m− 1) +Rn−1(−m− 2))−
(−m− 1

n+ 1

)

,

using (17). Now define j(x) as

j(x) = (−1)n+1

(

x− 1

n+ 1

)

+ 4Rn(x− 1) +Rn−1(x− 2).

Establishing j(x) = Rn+1(x) will verify (29) and also show (9). As with g(x) above, it
suffices to show j(k) = 2n−kFk+2n+5 for k = 0, . . . , n+ 1. The three cases here, presented in
less detail, all use (17).

• For k = 0,

j(0) = (−1)n+1

( −1

n+ 1

)

+ 4Rn(−1) +Rn−1(−2) = 2n(4F2n+2 + F2n−1) = 2nF2n+5.

• For k = 1,

j(1) = (−1)n+1

(

0

n+ 1

)

+ 4Rn(0) +Rn−1(−1) = 2n−1(4F2n+3 + F2n) = 2n−1F2n+6.

• For 2 ≤ k ≤ n+ 1,

j(k) = (−1)n+1

(

k − 1

n+ 1

)

+ 4Rn(k − 1) +Rn−1(k − 2) = 2k−n(4Fk+2n+2 + Fk+2n−1)

= 2k−nFk+2n+5.

13



Finally, we show that each of the recurrences (8) and (9) with some initial conditions
determines the polynomials Rn(x) completely. That is, the polynomial sequences given by

U0(x) = 1, U1(x) = −x+ 5, and

Un+1(x) = 6Rn(x)− 4Rn−1(x) + (−1)n+1

(

x+ 1

n+ 1

)

for n ≥ 1,

V0(x) = 1, V1(x) = −x+ 5, and

Vn+1(x) = 4Vn(x− 1) + Vn−1(x− 2) + (−1)n+1

(

x− 1

n+ 1

)

for n ≥ 1

satisfy Un(x) = Vn(x) = Rn(x) for all n. We prove this for Vn(x); the proof for Un(x) is
similar.

By inspection, V0(x) = R0(x) and V1(x) = R1(x). Assume that Vn(x) = Rn(x) and
Vn−1(x) = Rn−1(x) for some n ≥ 1. By its defining recurrence, Vn+1(x) has degree n + 1
and leading coefficient (−1)n+1/(n+ 1), as does Rn+1(x), so it is enough to show Vn+1(j) =
Rn+1(j) for 0 ≤ j ≤ n. The following verification makes frequent use of (17).

• For j = 0, from (7) we have

Vn+1(0) = 4Vn(−1) + Vn−1(−2) + (−1)n+1

( −1

n+ 1

)

= 4Rn(−1) +Rn−1(−2) + (−1)n+1(−1)n+1

= 4 · 2nF2n+2 +

(

2nF2n−1 + (−1)nF−1

( −1

n− 1

))

+ 1

= 2nF2n+5,

which matches Rn+1(0).

• For j = 1, from the definition of Rn(x) and (7) we have

Vn+1(1) = 4Vn(0) + Vn−1(−1) + (−1)n+1

(

0

n+ 1

)

= 4Rn(0) +Rn−1(−1)

= 4 · 2n−1F2n+3 + 2n−1F2n

= 2n−1F2n+6,

which matches Rn+1(1).

• For 2 ≤ j ≤ n, from the definition of Rn(x) we have

14



Vn+1(j) = 4Vn(j − 1) + Vn−1(j − 2) + (−1)n+1

(

j − 1

n+ 1

)

= 4Rn(j − 1) +Rn−1(j − 2)

= 4 · 2n−jF2n+j+2 + 2n−jF2n+j−1

= 2n−jF2n+j+5,

which matches Rn+1(j) for 2 ≤ j ≤ n.

It is apparent from the statements of Theorems 4 and 5 that these are more compli-
cated results, with different interpolation points depending on the parity of the degree n.
Nonetheless, the Sn(x) polynomials are connected between even and odd values of n by re-
lations including (11). The Tn(x) polynomials have more connections between parities, e.g.,
(13) and (14). We detail the first of these two similar proofs.

Proof of Theorem 4. We proceed by induction on n with two base cases. First, S0(x) is a
constant polynomial satisfying S0(0) = −L0/2 = −2/2 = −1, i.e., S0(x) = −1 with leading
coefficient −1 = −50/2/0! as claimed. We want to show that, for integers k > 0,

S0(k) = −1 =
Lk

(−2)1+k
+

5

2

k
∑

i=1

Fi

(−2)i

and, for integers k < 0,

S0(k) = −1 =
Lk

(−2)1+k
+ 5

−k−1
∑

i=1

(−2)i−1F−i.

These follow from substituting x = −2 and x = 1/2, respectively, into (22).
For n = 1, the polynomial S1 satisfies S1(0) = 20F1 = 1 and S1(1) = 2−1F0 = 0, so

S1(x) = −x + 1, a linear polynomial with leading coefficient −1 = −5(1−1)/2/1! as claimed.
We want to establish that, for integers k > 1,

S1(k) = −k + 1 =
Fk−1

(−2)k
− 5

k−1
∑

i=1

Fi

(−2)i+1
(k − i) (33)

and, for integers k < 0,

S1(k) = −k + 1 =
Fk−1

(−2)k
+ 5

−k−1
∑

i=1

(−2)i−1F−i(k + i). (34)

15



Given k > 1, using x = −2 in the equations of Lemma 7 yields

F ′
k(−2) =

k−1
∑

i=1

(−2)k−1−iFi(k − i),

5Fk(−2) = (−2)k+1 + 2Fk+1 − Fk,

5F ′
k(−2) = (k + 1)(−2)k + 5Fk(−2)− Fk+1.

Hence we have

k−1
∑

i=1

Fi

(−2)i+1
(k − i) =

1

(−2)k
F ′

k(−2)

=
1

(−2)k

(

1

5
(k + 1)(−2)k + Fk(−2)− 1

5
Fk+1

)

=
1

5(−2)k
(

(k + 1)(−2)k + (−2)k+1 + 2Fk+1 − Fk − Fk+1

)

=
1

5

(

k − 1 +
Fk−1

(−2)k

)

.

Rearranging gives (33).
For (34), assume k < 0 and write k = −m. Substituting x = 1/2 into (21) and (23) gives

F ′
m

(

1

2

)

=
m−1
∑

i=1

(

1

2

)m−1−i

Fi(m− i),

−5

4
F ′

m

(

1

2

)

=

(

1

2

)m

(m+ 1)− Fm+1.

Hence

−k−1
∑

i=1

(−2)i−1F−i(k + i) = −
m−1
∑

i=1

(−2)i−1F−i(m− i) = −2m−2F ′
m

(

1

2

)

=
1

5
(m+ 1− 2mFm+1) =

1

5

(

−k + 1− Fk−1

(−2)k

)

.

This establishes (34), completing the base cases.
Let n > 1 and assume that the theorem holds for all nonnegative integers no greater

than n. We want to prove that, if n + 1 is even, then Sn+1(x) has degree n + 1 and leading
coefficient −5(n+1)/2/(n+ 1)! and, for each integer k > n+ 1,

Sn+1(k) =
Lk−n−1

(−2)k−n
− 5

n+3
2

k−n−1
∑

i=1

Fi

(−2)i+1

(

k − i

n+ 1

)

(35)
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and, for each integer k < 0,

Sn+1(k) =
Lk−n−1

(−2)k−n
+ 5

n+3
2

−k−1
∑

i=1

(−2)i−1F−i

(

k + i

n+ 1

)

. (36)

If n+1 is odd, then Sn+1(x) has degree n+1 and leading coefficient −5n/2/(n+1)! and,
for each integer k > n+ 1,

Sn+1(k) =
Fk−n−1

(−2)k−n
− 5

n+2
2

k−n−1
∑

i=1

Fi

(−2)i+1

(

k − i

n+ 1

)

(37)

and, for each integer k < 0,

Sn+1(k) =
Fk−n−1

(−2)k−n
+ 5

n+2
2

−k−1
∑

i=1

(−2)i−1F−i

(

k + i

n+ 1

)

. (38)

We begin with odd n, thus (35) and (36). Let k > n+ 1. Using x = −2 in (24) gives

5F (n+1)
k (−2)− 5(n+ 1)F (n)

k (−2) + n(n+ 1)F (n−1)
k (−2) = (−2)k−n(k + 1)n+1. (39)

By the induction hypothesis, Sn(x) has degree n and leading coefficient −5(n−1)/2/n! while
Sn−1(x), since n−1 is even, has degree n−1 and leading coefficient −5(n−1)/2/(n−1)!. Also,

Sn(k) =
Fk−n

(−2)1+k−n
− 5

n+1
2

(−2)1+k−nn!
F (n)

k (−2),

Sn−1(k) =
Lk−n+1

(−2)2+k−n
− 5

n+1
2

(−2)2+k−n(n− 1)!
F (n−1)

k (−2).

By (21) with x = −2 and (39),

5
k−n−1
∑

i=1

(−2)k−n−1−iFi(k − i)n+1 − 5(n+ 1)(−2)1+k−nn!5−
n+1
2

(

Fk−n

(−2)1+k−n
− Sn(k)

)

+ n(n+ 1)(−2)2+k−n(n− 1)!5−
n+1
2

(

Lk−n+1

(−2)2+k−n
− Sn−1(k)

)

= (−2)k−n(k + 1)n+1.

Rearranging and (19) give

−4Sn−1(k)− 10Sn(k)− 5
n+1
2

(

k + 1

n+ 1

)

=
Lk−n−1

(−2)k−n
− 5

n+3
2

k−n−1
∑

i=1

Fi

(−2)i+1

(

k − i

n+ 1

)

.

To prove (35), let

g(x) = −4Sn−1(x)− 10Sn(x)− 5
n+1
2

(

x+ 1

n+ 1

)

.

We show that g(x) = Sn+1(x). Notice that −5(n+1)/2/(n + 1)! is the leading coefficient of
g(x). Thus it suffices to verify that g(k) = Lk−n−1/(−2)k−n for k = 0, . . . , n+ 1. We do this
in three cases.
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• For 0 ≤ k ≤ n−1, we have Sn(k) = Fk−n/(−2)1+k−n and Sn−1(k) = Lk−n+1/(−2)2+k−n

from the definition. Also,
(

k+1
n+1

)

= 0, so

g(k) = −4
Lk−n+1

(−2)2+k−n
− 10

Fk−n

(−2)1+k−n
− 5

n+1
2

(

k + 1

n+ 1

)

=
1

(−2)k−n
(−Lk−n+1 + 5Fk−n) =

Lk−n−1

(−2)k−n
.

• For k = n, we have Sn(n) = −F0/2 = 0 and, by the induction hypothesis,

Sn−1(n) =
L1

(−2)2
− 5

n+1
2

F1

(−2)2

(

n− 1

n− 1

)

=
1

4

(

1− 5
n+1
2

)

.

Also,
(

k+1
n+1

)

=
(

n+1
n+1

)

= 1, so g(k) = −1 + 5
n+1
2 − 5

n+1
2 = −1 = L−1.

• For k = n+ 1, by the induction hypothesis,

Sn(n+ 1) =
F1

(−2)2
− 5

n+1
2

F1

(−2)2

(

n

n

)

=
1

4

(

1− 5
n+1
2

)

,

Sn−1(n+ 1) =
L2

(−2)3
− 5

n+1
2

(

F1

(−2)2

(

n

n− 1

)

+
F2

(−2)3

(

n− 1

n− 1

))

= −1

8

(

3 + 5
n+1
2 (2n− 1)

)

.

Also,
(

k+1
n+1

)

=
(

n+2
n+1

)

= n+ 2. Altogether,

g(k) =
3

2
+ 5

n+1
2

(

n− 1

2

)

− 5

2

(

1− 5
n+1
2

)

− 5
n+1
2 (n+ 2) = −1 = −L1

2
.

Thus we have established (35) and the polynomial recurrence, for n odd,

Sn+1(x) + 10Sn(x) + 4Sn−1(x) = −5
n+1
2

(

x+ 1

n+ 1

)

. (40)

For (36), let k < 0 and write k = −m. Also, let m′ = m + n. Using (31), we can write
the sum in (36) as

−k−1
∑

i=1

(−2)i−1F−i

(

k + i

n+ 1

)

=
m−1
∑

i=1

(−2)i−1F−i

(−m+ i

n+ 1

)

18



= (−1)n+1

m−1
∑

i=1

(−2)i−1F−i

(

m+ n− i

n+ 1

)

=
(−1)n+1

(n+ 1)!

m−1
∑

i=1

(−1)i−1(−2)i−1Fi(m+ n− i)n+1

=
(−1)n+1

(n+ 1)!

m′−(n+1)
∑

i=1

(

1

2

)−i+1

Fi(m
′ − i)n+1

=
(−1)n+1

(n+ 1)!

(

1

2

)(n+2)−m′ m′−(n+1)
∑

i=1

(

1

2

)m′−(n+1)−i

Fi(m
′ − i)n+1

=
(−1)n+1

22−m(n+ 1)!
F (n+1)

m+n

(

1

2

)

.

Using (24) with x = 1/2, we write the last expression as

(−1)n+1

22−m(n+ 1)!

(

4

5
n(n+ 1)F (n−1)

m+n

(

1

2

)

− 4

5

(

1

2

)m

(m+ n+ 1)n+1

)

. (41)

Next, we determine F (n−1)
m+n (1/2). Using (21), (31), and the induction hypothesis gives

F (n−1)
m+n

(

1

2

)

=
m+1
∑

i=1

(

1

2

)m+1−i

Fi(m+ n− i)n−1

= (n− 1)!

(m+2)−1
∑

i=1

(

1

2

)m+1−i

(−1)n+iF−i

(−(m+ 2) + i

n− 1

)

=
(−1)n+1(n− 1)!

2m

(m+2)−1
∑

i=1

(−2)i−1F−i

(−(m+ 2) + i

n− 1

)

= (n− 1)!2−m5−
n+1
2

(

Sn−1(−m− 2) + 2m+nLm+n+1

)

.

Substituting this expression into (41) gives

(−1)n+1

22−m(n+ 1)!

(

4

5
n(n+ 1)(n− 1)!2−m5−

n+1
2

(

Sn−1(−m− 2) + 2m+nLm+n+1

)

−4

5

(

1

2

)m

(m+ n+ 1)n+1

)

= 5−
n+3
2 (Sn−1(−m− 2) + 2m+nLm+n+1)−

1

5

(

m+ n+ 1

n+ 1

)

.

This implies

Sn−1(k − 2)− 5
n+1
2

(

k − 1

n+ 1

)

=
Lk−n−1

(−2)k−n
+ 5

n+3
2

−k−1
∑

i=1

(−2)i−1F−i

(

k + i

n+ 1

)

.
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Now define j(x) as

j(x) = Sn−1(x− 2)− 5
n+1
2

(

x− 1

n+ 1

)

.

Establishing j(x) = Sn+1(x) will verify (36). It suffices to show that j(k) = −2n−kLn−k+1

for k = 0, . . . , n+ 1. We consider three cases.

• For k = 0,

j(0) = Sn−1(−2)− 5
n+1
2

( −1

n+ 1

)

=
L−1−n

(−2)−n
+ 5

n+1
2 F−1

( −1

n+ 1

)

− 5
n+1
2

( −1

n+ 1

)

= −2nLn+1.

• For k = 1,

j(1) = Sn−1(−1)− 5
n+1
2

(

0

n+ 1

)

= −2n−1Ln.

• For 2 ≤ k ≤ n+ 1, since
(

k−1
n+1

)

= 0, we have

j(k) = Sn−1(k − 2)− 5
n+1
2

(

k − 1

n+ 1

)

= −2n−kLn−k+1.

Thus we have established (36) and the polynomial recurrence, for n odd,

Sn+1(x)− Sn−1(x− 2) = −5
n+1
2

(

x− 1

n+ 1

)

. (42)

For n even, the proofs of (37) and (38) are completely analogous to the odd case. The
polynomial recurrences corresponding to (40) and (42) that arise for n even are

Sn+1(x) + 2Sn(x) + 4Sn−1(x) = −5
n

2

(

x+ 1

n+ 1

)

, (43)

Sn+1(x)− Sn−1(x− 2) = −5
n

2

(

x− 1

n+ 1

)

. (44)

Combining (40) and (43) gives (11), likewise (42) and (44) for (12).
Finally, we want to show that each of the recurrences (11) and (12) with some initial

conditions determines the polynomials Sn(x) completely. That is, the polynomial sequences
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given by

U0(x) = −1, U1(x) = −x+ 1, and

Un+1(x) = −2 · 5 1−(−1)n

2 Un(x)− 4Un−1(x)− 5⌊
n+1
2

⌋

(

x+ 1

n+ 1

)

for n ≥ 1,

V0(x) = −1, V1(x) = −x+ 1, and

Vn+1(x) = Vn−1(x− 2)− 5⌊
n+1
2

⌋

(

x− 1

n+ 1

)

for n ≥ 1

satisfy Un(x) = Vn(x) = Sn(x) for all n. We prove this for Un(x); the proof for Vn(x) is
similar.

By inspection, U0(x) = S0(x) and U1(x) = S1(x). Assume that Un(x) = Sn(x) and
Un−1(x) = Sn−1(x) for some n ≥ 1. By its defining recurrence, Un+1(x) has degree n+1 and
leading coefficient −5⌊(n+1)/2⌋, as does Sn+1(x), so it is enough to show Un+1(j) = Sn+1(j)
for 0 ≤ j ≤ n. We need to consider n even or odd separately, each with two cases.

For n even:

• For 0 ≤ j ≤ n− 1,

Un+1(j) = −2 · 5 1−(−1)n

2 Sn(j)− 4Sn−1(j)− 5⌊
n+1
2

⌋

(

j + 1

n+ 1

)

= −2 · 50(−2n−1−jLn−j)− 4(−2)n−2−jFj−n+1

= 2n−j(Fn−j+1 + Fn−j−1)− (−2)n−jFj−n+1

= (−2)n−jFj−n+1,

which matches Sn+1(j).

• For j = n, we have Un+1(n) = −2(−1)− (1− 5
n

2 )− 5
n

2 = 1, which matches Sn+1(n).

For n odd:

• For 0 ≤ j ≤ n− 1,

Un+1(j) = −2 · 51((−2)n−1−jFj−n)− 4(−2n−2−j)Ln−1−j − 0

= −2n−j(Ln−j+1 + Ln−j−1) + 2n−jLn−j−1

= −2n−jLn−j+1,

which matches Sn+1(j).

• For j = n, we have Un+1(n) = −2 · 5 · 0 − (1 − 5
n+1
2 ) − 5

n+1
2 = −1, which matches

Sn+1(n).

Proof of Theorem 5. The proof is analogous to that of Theorem 4.
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4 Expansion in binomial polynomials

The binomial polynomials
(

x
n

)

provide an alternative basis for polynomials: For any degree
n polynomial h(x) with complex coefficients, there exist unique complex numbers a0, . . . , an
such that h(x) =

∑n
i=0 ai

(

x
i

)

. Moreover, the coefficients a0, . . . , an can be determined by

ai =
i
∑

k=0

(−1)i−k

(

i

k

)

h(k) (45)

for i = 0, . . . , n. Cahen and Chabert [1, 2] provide background on integer-valued polynomials
such as these, including historical notes mentioning Newton and Pólya.

In this section we determine the binomial polynomial expansions for the polynomials of
Section 2. This will contribute to the identities of Section 5. As in Section 3, we provide
complete proofs for two of the five results, as the remaining proofs are very similar.

Theorem 8. The polynomials Pn(x) defined in Theorem 1 satisfy

Pn(x) =
n
∑

i=0

Fn−i+2

(

x

i

)

. (46)

Proof. Multiplying (4) by tn and forming the formal power series over n gives

∞
∑

n=1

tnPn+1(x)−
∞
∑

n=1

tnPn(x)−
∞
∑

n=1

tnPn−1(x) =
∞
∑

n=1

tn
(

x+ 1

n+ 1

)

.

Letting g(t, x) =
∑∞

n=0 t
nPn(x), we have

1

t
(g(t, x)− P0(x)− tP1(x))− (g(t, x)− P0(x))− tg(t, x) =

∞
∑

n=1

tn
(

x+ 1

n+ 1

)

.

Putting in P0(x) = 1, P1(x) = x + 2, recognizing the generating function for Fn+1, and
solving for g(t, x) yields

g(t, x) =
1

1− t− t2

(

1 + (x+ 1)t+
∞
∑

n=2

tn
(

x+ 1

n

)

)

=

(

∞
∑

n=0

Fn+1t
n

)(

∞
∑

n=0

tn
(

x+ 1

n

)

)

=
∞
∑

n=0

tn
n
∑

i=0

Fn−i+1

(

x+ 1

i

)
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so that

Pn(x) =
n
∑

i=0

Fn−i+1

(

x+ 1

i

)

(47)

=
n
∑

i=0

Fn−i+1

(

x

i

)

+
n
∑

i=1

Fn−i+1

(

x

i− 1

)

=
n
∑

i=0

Fn−i+2

(

x

i

)

.

The analogous results for Qn(x) and Rn(x) have very similar proofs.

Theorem 9. The polynomials Qn(x) defined in Theorem 2 satisfy

Qn(x) =
n
∑

i=0

(−1)iF2n−2i+1

(

x

i

)

. (48)

Theorem 10. The polynomials Rn(x) defined in Theorem 3 satisfy

Rn(x) =
n
∑

i=0

(−1)i2n−i−1F2n−2i+3

(

x

i

)

. (49)

We record the equations analogous to (47):

Qn(x) =
n
∑

i=0

(−1)iF2n−2i+2

(

x+ 1

i

)

, (50)

Rn(x) =
n
∑

i=0

(−1)i2n−iF2n−2i+2

(

x+ 1

i

)

. (51)

Again, Sn(x) and Tn(x) have more complicated results. We provide the complete proof
for Tn(x); the proof for Sn(x) is very similar.

Theorem 11. The polynomials Sn(x) defined in Theorem 4 satisfy,

• for n ≥ 2,

Sn+2(x)− 12Sn(x) + 16Sn−2(x) = −5⌊
n

2
⌋

(

5

(

x+ 1

n+ 2

)

− 10

(

x+ 1

n+ 1

)

+ 4

(

x+ 1

n

))

;

• for positive even n,

Sn(x) = −
n/2
∑

i=0

5i−12n−2iFn−2i+2

(

5

(

x+ 1

2i

)

− 10

(

x+ 1

2i− 1

)

+ 4

(

x+ 1

2i− 2

))

, (52)

Sn(x) =
n
∑

i=0

(−1)i+15⌊
i+1
2

⌋2n−i−1bn−i

(

x

i

)

with bk as defined in (2); (53)
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• for positive odd n,

Sn(x) = −
(n+1)/2
∑

i=0

5i−22n−2i+1Fn−2i+3

(

5

(

x+ 1

2i− 1

)

− 10

(

x+ 1

2i− 2

)

+ 4

(

x+ 1

2i− 3

))

, (54)

Sn(x) =
n
∑

i=0

(−1)i5⌊
i

2
⌋2n−i−1cn−i

(

x

i

)

with ck as defined in (3). (55)

Theorem 12. The polynomials Tn(x) defined in Theorem 5 satisfy,

• for n ≥ 2,

Tn+2(x)− 27Tn(x) + 81Tn−2(x) = (−1)n5⌊
n

2
⌋

(

5

(

x+ 1

n+ 2

)

− 15

(

x+ 1

n+ 1

)

+ 9

(

x+ 1

n

))

;

(56)

• for positive even n,

Tn(x) =

n/2
∑

i=0

5i−13n−2iFn−2i+2

(

5

(

x+ 1

2i

)

− 15

(

x+ 1

2i− 1

)

+ 9

(

x+ 1

2i− 2

))

, (57)

Tn(x) =
n
∑

i=0

(−1)i5⌊
i+1
2

⌋3n−i−1bn+2−i

(

x

i

)

with bk as defined in (2); (58)

• for positive odd n,

Tn(x) = −
(n+1)/2
∑

i=0

5i−23n−2i+1Fn−2i+3

(

5

(

x+ 1

2i− 1

)

− 15

(

x+ 1

2i− 2

)

+ 9

(

x+ 1

2i− 3

))

, (59)

Tn(x) =
n
∑

i=0

(−1)i5⌊
i

2
⌋3n−i−1cn+2−i

(

x

i

)

with ck as defined in (3). (60)

Proof. To prove (56), we consider the even and odd cases separately.
For n even, (13) gives

Tn+1(x)− 3Tn(x) + 9Tn−1(x) = −5
n

2

(

x+ 1

n+ 1

)

,

Tn(x)− 15Tn−1(x) + 9Tn−2(x) = 5
n

2

(

x+ 1

n

)

,

and a similar equation with initial term Tn+2(x). These combine to give

Tn+2(x)− 27Tn(x) + 81Tn−2(x) = 5
n

2

(

5

(

x+ 1

n+ 2

)

− 15

(

x+ 1

n+ 1

)

+ 9

(

x+ 1

n

))

. (61)
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The case of n odd similarly leads to

Tn+2(x)− 27Tn(x) + 81Tn−2(x) = −5
n−1
2

(

5

(

x+ 1

n+ 2

)

− 15

(

x+ 1

n+ 1

)

+ 9

(

x+ 1

n

))

. (62)

With the integer floor notation, (61) and (62) can be combined as (56).
For (57) and (59), we introduce generating functions, as in the proof of Theorem 8. By

(56),

∞
∑

n=2

tnTn+2(x)− 27
∞
∑

n=2

tnTn(x) + 81
∞
∑

n=2

tnTn−2(x)

=
∞
∑

n=2

tn(−1)n5⌊
n

2
⌋

(

5

(

x+ 1

n+ 2

)

− 15

(

x+ 1

n+ 1

)

+ 9

(

x+ 1

n

))

.

Writing g(t, x) =
∑∞

n=0 t
nTn(x) and using initial Tn(x) values from Table 5, we find

g(t, x) =
1

1− 27t2 + 81t4

∞
∑

n=0

tn(−1)n5⌊
n−2
2

⌋

(

5

(

x+ 1

n

)

− 15

(

x+ 1

n− 1

)

+ 9

(

x+ 1

n− 2

))

.

From the identity (16) and weighting the Fibonacci numbers by powers of 3, we have the
generating function

1

1− 27t2 + 81t4
=

∞
∑

n=0

32nF2n+2t
2n =

∞
∑

n=0

dnt
n,

where

dn =

{

3nFn+2, if n is even;

0, if n is odd.

(This dn allows us to avoid some separate parity cases.) Therefore,

g(t, x) =
∞
∑

n=0

n
∑

k=0

tn(−1)k5⌊
k−2
2

⌋dn−k

(

5

(

x+ 1

k

)

− 15

(

x+ 1

k − 1

)

+ 9

(

x+ 1

k − 2

))

and comparing coefficients of tn gives

Tn(x) =
n
∑

k=0

(−1)k5⌊
k−2
2

⌋dn−k

(

5

(

x+ 1

k

)

− 15

(

x+ 1

k − 1

)

+ 9

(

x+ 1

k − 2

))

,

a combined expression for (57) and (59).
Finally, for (58) and (60), let Tn(x) =

∑n
i=0 ai

(

x
i

)

and apply (45).
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If n is even, then for 0 ≤ i ≤ n we have, using (20) and the binomial theorem,

ai =
i
∑

k=0

(−1)i−k

(

i

k

)

Tn(k)

=
i
∑

k=0

(−1)i+k3n−k−1Ln+k+2

(

i

k

)

= (−1)i3n−1αn+2

i
∑

k=0

(

−α

3

)k
(

i

k

)

+ (−1)i3n−1βn+2

i
∑

k=0

(

−β

3

)k (
i

k

)

= (−1)i3n−1αn+2
(

1− α

3

)i

+ (−1)i3n−1βn+2

(

1− β

3

)i

= (−1)i3n−i−15
i

2 (αn−i+2 + (−1)iβn−i+2)

=

{

3n−i−15
i

2Ln−i+2, if i is even;

−3n−i−15
i+1
2 Fn−i+2, if i is odd.

Given the definition of the bk, this is (58).
The case of n odd is analogous using (18):

ai =
i
∑

k=0

(−1)i+k3n−k−1Fn+k+2

(

i

k

)

= (−1)i3n−15−
1
2αn+2

(

1− α

3

)i

− (−1)i3n−15−
1
2βn+2

(

1− β

3

)i

=

{

3n−i−15
i

2Fn−i+2, if i is even;

−3n−i−15
i−1
2 Ln−i+2, if i is odd.

Given the definition of the ck, this is (60).

5 Applications

We conclude with several identities involving Fibonacci numbers, Lucas numbers, binomial
coefficients, and the harmonic numbers that follow from the preceding results.

The first results follow from the theorems of Section 2 concerning the leading coefficients
of the various polynomials.

Corollary 13. For every nonnegative integer n,

(a)
n
∑

i=0

(−1)iF2n−i+1

(

n

i

)

= 1,
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(b)
n
∑

i=0

(

−1

2

)i

F2n+i+3

(

n

i

)

=

(

1

2

)n−1

.

For every even nonnegative n,

(c)
n−1
∑

i=0

Li−n

2i

(

n

i

)

=
5n/2 − 1

2n−1
,

(d)
n
∑

i=0

(

−1

3

)i

Ln+i+2

(

n

i

)

=
5n/2

3n−1
.

For every odd positive n,

(e)
n
∑

i=0

Fi−n

2i

(

n

i

)

=
5(n−1)/2 − 1

2n−1
,

(f)
n
∑

i=0

(

−1

3

)i

Fn+i−2

(

n

i

)

=
5(n−1)/2

3n−1
.

Proof. These identities follow from equating the leading coefficients of the polynomials in
Section 2 with their alternative forms obtained from the Lagrange interpolation formula,
e.g., (25). In particular, (a) follows from Theorem 2 and (b) from Theorem 3. For even n,
(c) follows from Theorem 4 and (d) from Theorem 5. Similarly, for odd n, (e) and (f) also
follow from Theorems 4 and 5, respectively.

Next, we give a two-parameter result generalizing Corollary 13(a).

Corollary 14. For all nonnegative integers n and k,

n
∑

i=0

(−1)iF2n−i+k

(

n

i

)

= Fk.

Proof. We proceed by induction. Since F1 = 1, Corollary 13(a) is the k = 1 case. The k = 2
case,

n
∑

i=0

(−1)iF2n−i+2

(

n

i

)

= 1 = F2, (63)

was established as Corollary 3.2 in our previous article [3]. For k ≥ 3, the result follows
using the Fibonacci recurrence. For k = 0, subtracting Corollary 13(a) from (63) leaves

n
∑

i=0

(−1)iF2n−i

(

n

i

)

= 0 = F0.
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There are several direct applications of the results in Section 4.

Corollary 15. For positive integers n,

(a)
n
∑

i=0

Fn−i+2

(

n

i

)

= F2n+2,

(b)
n
∑

i=0

(−1)iF2n−2i+1

(

n

i

)

= Fn+1,

(c)
n
∑

i=0

(−1)i2n−i−1F2n−2i+3

(

n− 1

i

)

= F3n+2.

Also, for n even,

(d)

n/2
∑

i=0

5i−12n−2iFn−2i+2

(

5

(

n

2i

)

− 10

(

n

2i− 1

)

+ 4

(

n

2i− 2

))

= 1,

(e)

n/2
∑

i=0

5i−13n−2iFn−2i+2

(

5

(

n

2i

)

− 15

(

n

2i− 1

)

+ 9

(

n

2i− 2

))

= L2n+1

and, for n odd,

(f) −
(n+1)/2
∑

i=0

5i−22n−2i+1Fn−2i+3

(

5

(

n

2i− 1

)

− 10

(

n

2i− 2

)

+ 4

(

n

2i− 3

))

= 1,

(g) −
(n+1)/2
∑

i=0

5i−23n−2i+1Fn−2i+3

(

5

(

n

2i− 1

)

− 15

(

n

2i− 2

)

+ 9

(

n

2i− 3

))

= F2n+1.

Proof. For (a), let x = n in (46). For (b), let x = n in (48). For (c), let x = n − 1 in (49).
For (d), let x = n − 1 in (52) and, for (e), let x = n − 1 in (57). For (f), let x = n − 1 in
(54) and, for (g), let x = n− 1 in (59).

The following several corollaries use the derivatives of the binomial polynomial expansions
found in Section 4. We provide one detailed proof and notes for the others. Note that the
terms δn,ℓ vary slightly for each result.

Corollary 16. For every integer n ≥ 2 and ℓ ≥ 0,

n+ℓ
∑

i=ℓ

HiFi−ℓ+2

((

n+ ℓ

i

)

− 3

(

n+ ℓ− 1

i

)

+

(

n+ ℓ− 2

i

))
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=
F2n+ℓ+2

n+ ℓ
− F2n+ℓ−2

n+ ℓ− 1
− δn,ℓ

−
ℓ−1
∑

j=0

(

(

Hn+ℓ

(

n+ j

n

)(

n+ j − 1

n− 1

)

− 3Hn+ℓ−1

(

n+ j − 1

n− 1

)

+Hn+ℓ−2

)

× Fℓ−j

(

n+ j − 2

j

)

)

,

where δn,0 =
1
n
and δn,ℓ =

(

n+ℓ−1
n

)

(Hn+ℓ−1 −Hℓ−1) for ℓ > 0.

Proof. Differentiating (46) with respect to x and evaluating at x = n+ ℓ gives

P ′
n(n+ ℓ) =

n
∑

i=0

Fn−i+2

(

n+ ℓ

i

) i−1
∑

j=0

1

n+ ℓ− j

=
n
∑

i=0

Fn−i+2

(

n+ ℓ

i

)

(Hn+ℓ −Hn+ℓ−i)

= Hn+ℓ

n
∑

i=0

Fn−i+2

(

n+ ℓ

i

)

−
n
∑

i=0

Hn+ℓ−iFn−i+2

(

n+ ℓ

i

)

= Hn+ℓPn(n+ ℓ)−
n
∑

i=0

Hn+ℓ−iFn−i+2

(

n+ ℓ

n+ ℓ− i

)

= Hn+ℓ

(

F2n+ℓ+2 −
ℓ
∑

i=1

Fi

(

n+ ℓ− i

n

))

−
n+ℓ
∑

j=ℓ

HjFj−ℓ+2

(

n+ ℓ

j

)

, (64)

where the last equality uses Theorem 1.
Differentiating (5) with respect to x and evaluating at x = n+ ℓ gives

P ′
n(n+ ℓ)− 3P ′

n−1(n− 1 + ℓ) + P ′
n−2(n− 2 + ℓ) =

(

x− 1

n

) n−1
∑

j=0

1

x− 1− j

∣

∣

∣

∣

x=n+ℓ

(65)

which, for ℓ = 0, becomes

lim
x→n

(

x− 1

n

)

1

x− 1− (n− 1)
=

1

n

while, for ℓ > 0, is
(

n+ ℓ− 1

n

)

(Hn+ℓ−1 −Hℓ−1) ,

matching δn,ℓ as defined in the corollary statement.
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Using (64) for P ′ terms in (65) and rearranging gives

n+ℓ
∑

i=ℓ

HiFi−ℓ+2

((

n+ ℓ

i

)

− 3

(

n+ ℓ− 1

i

)

+

(

n+ ℓ− 2

i

))

= (Hn+ℓF2n+2+ℓ − 3Hn−1+ℓF2n+ℓ +Hn−2+ℓF2n−2+ℓ)−
(

Hn+ℓ

ℓ
∑

i=1

Fi

(

n+ ℓ− i

n

)

− 3Hn−1+ℓ

ℓ
∑

i=1

Fi

(

n− 1 + ℓ− i

n− 1

)

+Hn−2+ℓ

ℓ
∑

i=1

Fi

(

n− 2 + ℓ− i

n− 2

)

)

− δn,ℓ. (66)

The first grouped expression in (66) simplifies as

Hn+ℓF2n+2+ℓ − 3Hn−1+ℓF2n+ℓ +Hn−2+ℓF2n−2+ℓ

=

(

Hn−2+ℓ +
1

n+ ℓ− 1
+

1

n+ ℓ

)

F2n+2+ℓ

− 3

(

Hn−2+ℓ +
1

n+ ℓ− 1

)

F2n+ℓ +Hn−2+ℓF2n−2+ℓ

= Hn−2+ℓ(F2n+2+ℓ − 3F2n+ℓ + F2n−2+ℓ) +
F2n+2+ℓ − 3F2n+ℓ

n+ ℓ− 1
+

F2n+2+ℓ

n+ ℓ

=
F2n+ℓ+2

n+ ℓ
− F2n+ℓ−2

n+ ℓ− 1
,

where the last equality uses (16).
The expression with summations in (66), using the identity

(

n
k

)

= n
k

(

n−1
k−1

)

, becomes

Hn+ℓ

ℓ
∑

i=1

Fi

(

n+ ℓ− i

n

)

− 3Hn−1+ℓ

ℓ
∑

i=1

Fi

(

n− 1 + ℓ− i

n− 1

)

+Hn−2+ℓ

ℓ
∑

i=1

Fi

(

n− 2 + ℓ− i

n− 2

)

=
ℓ
∑

i=1

((

Hn+ℓ ·
n+ ℓ− i

n
· n− 1 + ℓ− i

n− 1
− 3Hn−1+ℓ ·

n− 1 + ℓ− i

n− 1
+Hn−2+ℓ

)

× Fi

(

n− 2 + ℓ− i

n− 2

))

.

Using these two expressions in (66) and reindexing by j = ℓ − i leads to the desired
identity.
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Corollary 17. For every integer n ≥ 3 and ℓ ≥ 0,

n+ℓ
∑

i=ℓ+1

HiFi−ℓ

((

n+ ℓ

i

)

− 3

(

n+ ℓ− 1

i

)

+

(

n+ ℓ− 2

i

))

=
F2n+ℓ

n+ ℓ
− F2n+ℓ−4

n+ ℓ− 1
− δn,ℓ

−
ℓ−1
∑

j=0

(

(

Hn+ℓ

(

n+ j − 1

n− 1

)(

n+ j − 2

n− 2

)

− 3Hn+ℓ−1

(

n+ j − 2

n− 2

)

+Hn+ℓ−2

)

× Fℓ−j

(

n+ j − 3

j

)

)

,

where δn,0 =
1

n−1
and δn,ℓ =

(

n+ℓ−2
n−1

)

(Hn+ℓ−2 −Hℓ−1) for ℓ > 0.

Proof. Here, differentiate (47), otherwise the proof follows the same structure as that of
Corollary 16.

Corollary 18. For every integer n ≥ 2 and ℓ ≥ 0,

(−1)ℓ
n+ℓ
∑

i=ℓ

(−1)iHiF2i−2ℓ+1

((

n+ ℓ

i

)

+

(

n+ ℓ− 1

i

)

−
(

n+ ℓ− 2

i

))

= (−1)n
(

Fn−ℓ+1

n+ ℓ
+

Fn−ℓ−1

n+ ℓ− 1

)

− δn,ℓ

+
ℓ−1
∑

i=0

(

(

Hn+ℓ

(

n+ i

n

)(

n+ i− 1

n− 1

)

+Hn+ℓ−1

(

n+ i− 1

n− 1

)

−Hn+ℓ−2

)

× Fi−ℓ

(

n+ i− 2

i

)

)

,

where δn,0 =
1
n
and δn,ℓ =

(

n+ℓ−1
n

)

(Hn+ℓ−1 −Hℓ−1) for ℓ > 0.

Proof. The proof is similar to that of Corollary 16, incorporating (48) and (6).

Corollary 19. For every integer n ≥ 3 and ℓ ≥ 0,

(−1)ℓ
n+ℓ
∑

i=ℓ+1

(−1)iHiF2i−2ℓ

((

n+ ℓ

i

)

+

(

n+ ℓ− 1

i

)

−
(

n+ ℓ− 2

i

))

= (−1)n
(

Fn−ℓ

n+ ℓ
+

Fn−ℓ−2

n+ ℓ− 1

)

+ δn,ℓ
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−
ℓ−1
∑

i=0

(

(

Hn+ℓ

(

n+ i− 1

n− 1

)(

n+ i− 2

n− 2

)

+Hn+ℓ−1

(

n+ i− 2

n− 2

)

−Hn+ℓ−2

)

× Fi−ℓ

(

n+ i− 3

i

)

)

,

where δn,0 =
1

n−1
and δn,ℓ =

(

n+ℓ−2
n−1

)

(Hn+ℓ−2 −Hℓ−1) for ℓ > 0.

Proof. The proof is similar to that of Corollary 16, incorporating (50) and (6).

Corollary 20. For every integer n ≥ 2 and ℓ ≥ 0,

(−1)ℓ
n+ℓ
∑

i=ℓ

(−1)i2i−ℓ−1HiF2i−2ℓ+3

((

n+ ℓ

i

)

+ 4

(

n+ ℓ− 1

i

)

−
(

n+ ℓ− 2

i

))

=
(−1)n

2ℓ+1

(

F3n+ℓ+3

n+ ℓ
+

F3n+ℓ−3

n+ ℓ− 1

)

− δn,ℓ

+
ℓ−1
∑

i=0

(

(

Hn+ℓ

(

n+ i

n

)(

n+ i− 1

n− 1

)

+ 4Hn+ℓ−1

(

n+ i− 1

n− 1

)

−Hn+ℓ−2

)

× Fℓ−i

2ℓ−i+1

(

n+ i− 2

i

)

)

,

where δn,0 =
1
n
and δn,ℓ =

(

n+ℓ−1
n

)

(Hn+ℓ−1 −Hℓ−1) for ℓ > 0.

Proof. The proof is similar to that of Corollary 16, incorporating (49) and (9).

Corollary 21. For every integer n ≥ 3 and ℓ ≥ 0,

(−1)ℓ
n+ℓ
∑

i=ℓ+1

(−1)i2i−ℓ−1HiF2i−2ℓ

((

n+ ℓ

i

)

+ 4

(

n+ ℓ− 1

i

)

−
(

n+ ℓ− 2

i

))

=
(−1)n

2ℓ+1

(

F3n+ℓ

n+ ℓ
+

F3n+ℓ−6

n+ ℓ− 1

)

+ δn,ℓ

−
ℓ−1
∑

i=0

(

(

Hn+ℓ

(

n+ i− 1

n− 1

)(

n+ i− 2

n− 2

)

+ 4Hn+ℓ−1

(

n+ i− 2

n− 2

)

−Hn+ℓ−2

)

× Fℓ−i

2ℓ−i+1

(

n+ i− 3

i

)

)

,

where δn,0 =
1

n−1
and δn,ℓ =

(

n+ℓ−2
n−1

)

(Hn+ℓ−2 −Hℓ−1) for ℓ > 0.

Proof. The proof is similar to that of Corollary 16, incorporating (51) and (9).
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We record a few of the simpler particular identities that follow from the previous corol-
laries.

Corollary 22. For every integer n ≥ 2,

(a)
n
∑

i=1

HiFi+2

((

n

i

)

− 3

(

n− 1

i

)

+

(

n− 2

i

))

=
F2n+2 − 1

n
− F2n−2

n− 1
,

(b)
n
∑

i=1

HiFi

((

n

i

)

− 3

(

n− 1

i

)

+

(

n− 2

i

))

=
F2n

n
− F2n−4 − 1

n− 1
,

(c)
n
∑

i=1

(−1)iHiF2i+1

((

n

i

)

+

(

n− 1

i

)

−
(

n− 2

i

))

= (−1)n
(

Fn−1

n− 1
+

Fn+1

n

)

− 1

n
,

(d)
n
∑

i=1

(−1)iHiF2i

((

n

i

)

+

(

n− 1

i

)

−
(

n− 2

i

))

= (−1)n
(

Fn

n
+

Fn−2

n− 1

)

+
1

n− 1
,

(e)
n
∑

i=1

(−2)iHiF2i+3

((

n

i

)

+ 4

(

n− 1

i

)

−
(

n− 2

i

))

= (−1)n
(

F3n−3

n− 1
+

F3n+3

n

)

− 2

n
,

(f)
n
∑

i=1

(−2)iHiF2i

((

n

i

)

+ 4

(

n− 1

i

)

−
(

n− 2

i

))

= (−1)n
(

F3n

n
+

F3n−6

n− 1

)

+
2

n− 1
,

(g)
n
∑

i=1

Hi+1Fi

((

n+ 1

i+ 1

)

− 3

(

n

i+ 1

)

+

(

n− 1

i+ 1

))

=
F2n+1 − 1

n+ 1
− F2n−3 + 2

n
,

(h)
n
∑

i=1

Hi+2Fi

((

n+ 2

i+ 2

)

− 3

(

n+ 1

i+ 2

)

+

(

n

i+ 2

))

=
F2n+2 + 1

n+ 2
− F2n−2 − 3

n+ 1
+ n+ 1.

Proof. Identities (a)–(f) follow from Corollaries 16 through 21 with ℓ = 0, respectively.
Identities (g) and (h) follow from Corollary 17 with ℓ = 1 and ℓ = 2, respectively.

In fact, each value of ℓ in each of Corollaries 16 through 21 produces an identity.
We conclude this section with results particular to the polynomials Sn(x) of Theorem 4.

Notice that the recurrence (12) combines Sn+1(x) and Sn−1(x − 2) into a scaled binomial
polynomial; this simplification is the core of the following results. The analogous (14) does
not combine as nicely, so there are not similar results based on Tn(x).

We rewrite (12) as

Sk+1(x+ 1)− Sk−1(x− 1) = −5⌊
k+1
2

⌋

(

x

k + 1

)
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and differentiate with respect to x on both sides,

S ′
k+1(x+ 1)− S ′

k−1(x− 1) = −5⌊
k+1
2

⌋

(

x

k + 1

) k
∑

i=0

1

x− i
.

Letting x = k gives

S ′
k+1(k + 1)− S ′

k−1(k − 1) = −5⌊
k+1
2

⌋

k + 1
. (67)

That equation informs our last corollary.

Corollary 23. With bk and ck as defined in (2) and (3), and for every n ≥ 1,

(a)
2n
∑

k=1

(−2)k5n−⌊ k

2
⌋bkHk

(

2n

k

)

= 2H2n −
n
∑

k=1

5k

k
,

(b)
2n+1
∑

k=1

(−2)k−15n−⌊ k

2
⌋bkHk

(

2n+ 1

k

)

=
n
∑

k=0

5k

2k + 1
,

(c)
2n
∑

k=1

(−2)k−15n−⌊ k−1
2

⌋ckHk

(

2n

k

)

= −
n
∑

k=1

5k

2k − 1
,

(d)
2n+1
∑

k=1

(−2)k5n−⌊ k

2
⌋+

1+(−1)k

2 ckHk

(

2n+ 1

k

)

= −2H2n+1 +
n
∑

k=1

5k

k
.

Proof. For (a), summing (67) evaluated at k = 1, 3, . . . , 2n− 1 gives

S ′
2n(2n) = S ′

2n(2n)− S ′
0(0) = −5

2
− 52

4
− · · · − 5n

2n
= −1

2

n
∑

k=1

5k

k
. (68)

Next, we find a different expression for S ′
2n(2n). Differentiating (53) with respect to x and

evaluating at x = 2n gives

S ′
2n(2n) =

2n
∑

i=0

(−1)i+15⌊
i+1
2

⌋22n−i−1b2n−i

(

2n

i

) i−1
∑

j=0

1

2n− j

=
2n
∑

i=0

(−1)i+15⌊
i+1
2

⌋22n−i−1b2n−i

(

2n

i

)

(H2n −H2n−i)
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= H2n

2n
∑

i=0

(−1)i+15⌊
i+1
2

⌋22n−i−1b2n−i

(

2n

i

)

−
2n
∑

i=0

(−1)i+15⌊
i+1
2

⌋22n−i−1b2n−iH2n−i

(

2n

i

)

= H2nS2n(2n)−
2n
∑

i=0

(−1)i+15⌊
i+1
2

⌋22n−i−1b2n−iH2n−i

(

2n

2n− i

)

= −H2n −
2n
∑

k=0

(−1)2n−k+15⌊
2n−k+1

2
⌋2k−1bkHk

(

2n

k

)

= −H2n +
1

2

2n
∑

k=0

(−2)k5n−⌊ k

2
⌋bkHk

(

2n

k

)

.

Combining this with (68) establishes (a).
The verification of (b) is very similar: Sum (67) evaluated at k = 2, 4, . . . , 2n and use

(55) for the other expression of S ′
2n(2n).

For (c), differentiating (52) with respect to x and evaluating at x = 2n gives

S ′
2n(2n) = −

n
∑

i=0

5i−122n−2iF2n−2i+2

(

5

(

2n+ 1

2i

)

(H2n+1 −H2n−2i+1)

− 10

(

2n+ 1

2i− 1

)

(H2n+1 −H2n−2i+2) + 4

(

2n+ 1

2i− 2

)

(H2n+1 −H2n−2i+3)

)

= H2n+1S2n(2n) +
n
∑

i=0

5i22n−2iF2n−2i+2H2n−2i+1

(

2n+ 1

2n− 2i+ 1

)

−
n
∑

i=0

5i22n−2i+1F2n−2i+2H2n−2i+2

(

2n+ 1

2n− 2i+ 2

)

+
n
∑

i=0

5i−122n−2i+2F2n−2i+2H2n−2i+3

(

2n+ 1

2n− 2i+ 3

)

= −H2n+1 +
n
∑

k=0

5n−k22kF2k+2H2k+1

(

2n+ 1

2k + 1

)

−
n
∑

k=0

5n−k+122k−1F2kH2k

(

2n+ 1

2k

)

+
n
∑

k=0

5n−k22kF2kH2k+1

(

2n+ 1

2k + 1

)
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= −H2n+1 +
n
∑

k=0

5n−k22k(F2k + F2k+2)H2k+1

(

2n+ 1

2k + 1

)

−
n
∑

k=0

5n−k+122k−1F2kH2k

(

2n+ 1

2k

)

= −H2n+1 +
n
∑

k=0

5n−k22kL2k+1H2k+1

(

2n+ 1

2k + 1

)

−
n
∑

k=0

5n−k+122k−1F2kH2k

(

2n+ 1

2k

)

using (19). Doubling both sides, recalling the definition of the ck, and combining with (68)
gives (c).

The verification of (d) is similar, differentiating (54) and evaluating at x = 2n+ 1.

6 Further work

We believe that the coefficients of the various polynomials, with initial values given in the
tables of Section 2, merit further study.

Also, the sum in Corollary 22(b) can be rewritten

n
∑

i=1

HiFi

((

n

i

)

− 3

(

n− 1

i

)

+

(

n− 2

i

))

=
n
∑

i=1

HiFi

(

n

i

)

− 3
n−1
∑

i=1

HiFi

(

n− 1

i

)

+
n−2
∑

i=1

HiFi

(

n− 2

i

)

.

With the other side of Corollary 22(b), we have the sum Wn =
∑n

i=1 HiFi

(

n
i

)

satisfying the
recurrence

Wn − 3Wn−1 +Wn−2 =
F2n

n
− F2n−4 − 1

n− 1
(69)

for all n ≥ 2. A solution to the nonhomogeneous second order linear recurrence (69), with
initial condition W0 = 0 and W1 = 1, would give us a closed form for

∑n
i=1 HiFi

(

n
i

)

. Each
identity in Corollary 22 could give rise to a similar recurrence.

7 Acknowledgments

We appreciate the helpful comments of the anonymous referee.

36



References

[1] P. J. Cahen and J. L. Chabert, Integer-valued Polynomials, Surveys and Monographs 48,
American Mathematical Society, 1997.

[2] P. J. Cahen and J. L. Chabert, What you should know about integer-valued polynomials,
Amer. Math. Monthly 123 (2016), 311–337.

[3] B. Hopkins and A. Tangboonduangjit, Fibonacci-producing rational polynomials, Fi-
bonacci Quart. 56 (2018), 303–312.

[4] N. J. A. Sloane et al., The On-Line Encyclopedia of Integer Sequences, OEIS Foundation
Inc., https://oeis.org.

[5] S. Vajda, Fibonacci and Lucas Numbers, and the Golden Section, Dover, 2008.

2020 Mathematics Subject Classification: Primary 11B39; Secondary 11C08.
Keywords: interpolating polynomial, polynomial recurrence, Fibonacci number, Lucas num-
ber, harmonic number, identity.

(Concerned with sequences A000032, A000045, A001008, A002805, A005013, A005247, A007318,
A052568, and A078700.)

Received February 14 2022; revised versions received March 13 2022; March 16 2022. Pub-
lished in Journal of Integer Sequences, March 24 2022.

Return to Journal of Integer Sequences home page.

37

https://oeis.org
https://oeis.org/A000032
https://oeis.org/A000045
https://oeis.org/A001008
https://oeis.org/A002805
https://oeis.org/A005013
https://oeis.org/A005247
https://oeis.org/A007318
https://oeis.org/A052568
https://oeis.org/A078700
https://cs.uwaterloo.ca/journals/JIS/

	Introduction
	Main results
	Proofs of main results
	Expansion in binomial polynomials
	Applications
	Further work
	Acknowledgments

