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Abstract

Sierpiński graphs Snp and Sierpiński triangle graphs Ŝnp form two-parametric families
of connected simple graphs which are related, for p = 3, to the Tower of Hanoi with n
discs and for n→∞ to the Sierpiński triangle fractal. The vertices of minimal degree
play a special role as extreme vertices in Snp and primitive vertices in Ŝnp . The key
concept of this note is that of an m-key vertex whose distance to one of the extreme
or primitive vertices, respectively, is m times the distance to another one. The number
of such vertices and the distances occurring lead to integer sequences with respect to
parameter n like, e.g., the Fibonacci sequence (golden) for p = 3 and the Pell sequence
(silver) for p = 4. The elements of most of these sequences form self-generating sets.
We discuss the cases m = 1, 2, 3, 4 in detail.
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1 Introduction

The vertices of Sierpiński graph Snp with base p ∈ N, p ≥ 2, and exponent n ∈ N0 are n-
tuples of the set P := [p]0 := {0, . . . , p − 1} and written as s = sn . . . s1 with sd ∈ P for
d ∈ [n] := {1, . . . , n}. The edge set is given by

E(Snp ) =
{
{sijd−1, sjid−1} | {i, j} ∈

(
P
2

)
, d ∈ [n], s = sn . . . sd+1 ∈ P n−d} . (1)

Note that S0
p = ({ε}, ∅) ∼= K1 with the empty word ε, S1

p
∼= Kp and that Sn2 is a path on

2n vertices. Sierpiński graphs were introduced in the 1990s as mathematical models for the
famous Tower of Hanoi (p = 3) and the Chinese Rings (p = 2); see [8, Chapter 4]. In the
past two decades they developed a life on their own as can be seen in a recent survey [9].
Apart from many graph parameters determined, metric properties have been investigated,
and the graphs Sn3 were used to approximate the fractal structure of the Sierpiński triangle
(see [10]).

If we concatenate sn+1 = k ∈ P to the left of all vertices of Snp we get what we may
call the graph kSnp

∼= Snp as a subgraph of S1+n
p . These p copies of Snp are mutually linked

in S1+n
p by the so-called critical edges {ijn, jin}, {i, j} ∈

(
P
2

)
, according to (1). This shows

that Sierpiński graphs Snp are connected and therefore endowed with the canonical distance
function δ where δ(s, t) is the length of a shortest s, t-path in Snp . The importance of the
critical edges lies in the fact that for p ≥ 3 a shortest is, jt-path may either run through
critical edge {ijn, jin} (direct path) or via two critical edges, namely {ikn, kin} and {kjn, jkn}
for some (but only one) k ∈ P \ {i, j} (indirect path). The decision whether the direct or an
indirect path is shortest (or both are) and for which k, is not easy and has been analyzed
and solved with an algorithm by Hinz and Holz auf der Heide [6]. The decisive ingredient is
the distance δ(s, jn) of an arbitrary vertex s ∈ P n to a so-called extreme vertex jn in Snp . It
is given (see [8, Theorem 4.5]) by the formula

∀ s ∈ P n ∀ j ∈ P : δ(s, jn) =
n∑
d=1

(sd 6= j) · 2d−1, (2)

where we make use of the Iverson bracket (or Iverson convention) which assigns a numerical
(binary) value (A) to a statement A; it is defined by (A) = 1, if A is true, and (A) = 0,
if A is false. Obviously, δ(s, jn) ≤ 2n − 1 and putting s = in for some i ∈ P \ {j} we
have diam(Snp ) = δ(in, jn) = 2n − 1. Another immediate consequence of (2) is the following
invariant:

∀ s ∈ P n :

p−1∑
j=0

δ(s, jn) = (p− 1) · (2n − 1). (3)

Sierpiński graphs Sn3 are isomorphic to Hanoi graphs Hn
3 ; see [8, pp. 177ff]. For these, the

number of 2-key vertices with δ(s, 2n) = 2 · δ(s, 0n) has been found to be Fibonacci number
Fn−1 in [11, Theorem 3.1]. Here, for n ≥ 3, the 2-key distances δ(s, 0n) have the form
2β + 2n−2 + 1 with β running through the set of (n − 3)-bit numbers without consecutive
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0s; see [11, Lemma 3.2]. The fact that all 2-key distances are odd follows also from the
observation from (2) that exactly one of the distances δ(s, jn) is even, namely for j = s1 in
Sn3 and for j = sn

/ · · · /
s1 in Hn

3 , where the operation given by i
/
k = i+(3−2i−k)(i 6= k)

for i, k ∈ {0, 1, 2} has to be evaluated from the right; see [8, (2.8)].
In the present note we want to extend these results in three ways. We will consider

Sierpiński graphs of any base p ≥ 2 (Section 2), thereby looking at m-key vertices, i.e., those
s ∈ P n for which δ(s, (p− 1)n) = m · δ(s, 0n) and their respective m-key distances for m = 1
(Section 2.1), m = 2 (Section 2.2), m = 3 (Section 2.3), and m = 4 (Section 2.4). Finally,

we will consider the corresponding questions for Sierpiński triangle graphs Ŝnp (Section 3).
These are graphs which have often been mistaken for Sierpiński graphs and even been called
so (see [9] for a discussion), but whose metric properties are somewhat more difficult to
access (see [7]). Our focus will be on integer sequences emerging from these considerations.
Some of the sequences come from the so-called self-generating sets, like, e.g., the Mersenne
sequence Mn = 2n− 1 (A000225, referring to the On-Line Encyclopedia of Integer Sequences
(OEIS)) with α = 1 and F = {k 7→ 2k + 1} in the following lemma.

Lemma 1. Let α ∈ N and F be a finite set of functions from N to N with

∀ f ∈ F ∀x ∈ N : f(x) > x. (4)

We say that Γ ⊂ N fulfills property SG(α,F), iff {α} ∪
⋃
{f(Γ) | f ∈ F} ⊂ Γ.

Then the following are equivalent:
1. N ⊃ C = {α} ∪

⋃
{f(C) | f ∈ F},

2. C = {ck ◦ · · · ◦ c1(α) | c` ∈ F , ` ∈ [k], k ∈ N0},
3. C =

⋂
{Γ ⊂ N | Γ fulfills SG(α,F)},

4. C is the smallest subset of N (w.r.t. “⊂”) that fulfills SG(α,F).
Such a C is called a self-generating set, α is its seed and F is its generating function set.
Points 2 to 4 guarantee that C is defined uniquely by 1.

Proof. 1. ⇒ 2. Let N ⊃ C = {α} ∪
⋃
{f(C) | f ∈ F} and define C ′ :=

⋃
{Ck | k ∈ N0}

with Ck := {ck ◦ · · · ◦ c1(α) | c` ∈ F , ` ∈ [k]}. We prove Ck ⊂ C by induction on k.
C0 = {α} ⊂ C. If x = ck+1 ◦ ck ◦ · · · ◦ c1(α) ∈ Ck+1, then x = f(x′) with f = ck+1 ∈ F ,
x′ = ck ◦· · ·◦c1(α) ∈ Ck ⊂ C, the latter by induction assumption. Therefore, x ∈ f(C) ⊂ C.

For C ⊂ C ′, we apply the Algorithm to x ∈ C. The condition in the while loop can be
checked because F is finite and x′ must be smaller than x by virtue of (4). The algorithm
terminates because x is getting strictly smaller in each iteration of the while loop. The
output of c = ck . . . c1 then provides the representation of x as an element of C ′, i.e., x =
ck ◦ · · · ◦ c1(α).

2. ⇒ 3. Let C = {ck ◦ · · · ◦ c1(α) | c` ∈ F , ` ∈ [k], k ∈ N0} and C ′ =
⋂
{Γ ⊂

N | Γ fulfills SG(α,F)}. For every Γ ⊂ N which fulfills SG(α,F) we can prove Ck ⊂ Γ by
induction as before. So Ck ⊂ C ′ and consequently C ⊂ C ′. Obviously, C fulfills SG(α,F),
so that C ′ ⊂ C.
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Algorithm

Procedure C ⊂ C ′

Parameter x: element of C
Parameter c: string of elements of F

input x
c← ε (empty word)
while ∃ f ∈ F ∃x′ ∈ C : x = f(x′)
x← x′, c← cf

end while
output c

3. ⇒ 4. C =
⋂
{Γ ⊂ N | Γ fulfills SG(α,F)} fulfills SG(α,F). If Γ ⊂ N fulfills SG(α,F),

then C ⊂ Γ.
4. ⇒ 1. Let C be the smallest subset of N that fulfills SG(α,F) and assume that

x ∈ C \ ({α} ∪
⋃
{f(C) | f ∈ F}). Let C ′ := C \ {x}. Then α ∈ C ′ and if f ∈ F and

x′ ∈ C ′, then f(x′) 6= x, i.e., f(x′) ∈ C ′. So C ′ fulfills SG(α,F), but is smaller than C, a
contradiction.

2 Sierpiński graphs

For p ∈ N, p ≥ 2, and n ∈ N0 we define Sierpiński graph Snp with V (Snp ) = P n and edge set
as in (1). Let m ∈ N. An m-key vertex in Snp is an s ∈ P n with δ(s, (p− 1)n) = m · δ(s, 0n).
If s is an m-key vertex, the value δ(s, 0n) is called an m-key distance. If there is no doubt
about the m we just write “key vertex (distance)”. The set of m-key vertices in Snp is denoted
by mΨp,n, occasionally without the indices m or p. A special case is n = 0, where the only
vertex ε is a key vertex for every m, i.e., mΨp,0 = {ε}, and 0 is the only key distance. For
n ∈ N, key distances are always positive.

In the discussion of the case p = 2, Mersenne numbers Mn = 2n − 1 play a central role.
The following is probably well-known:

Lemma 2. Every odd k > 1 divides some Mκ with dln(k + 1)/ ln(2)e ≤ κ < k. In particular,
every odd number is a proper divisor of some Mersenne number.

Proof. It suffices to prove the first statement because Mersenne number Mκ is a proper
divisor of M2κ = (2κ + 1)Mκ for κ ∈ N.

The set of residues modulo k of powers of 2 has size at most k − 1 because k > 1 is odd
and therefore the remainder 0 is impossible. So by the pigeonhole principle there must be
0 ≤ i < j ≤ k − 1 such that 2j

k
− 2i

k
∈ N, whence k | 2i(2j−i − 1). Again because k is odd we

get k | 2κ − 1 with 1 ≤ κ := j − i ≤ k − 1.

As we have seen before, Sn2 , n ∈ N, is a path graph on 2n vertices which can be labeled
by binary strings s ∈ {0, 1}n, leading from 0n to 1n in natural order of their values as binary
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numbers. An m-key vertex s must therefore satisfy (m+1)δ = Mn, where the m-key distance
δ is δ(s, 0n) = (s)2 and must be odd. We get

1 ≤ δ =
Mn

m+ 1
≤ Mn

2
, n ≥ 2.

So we find m-key vertices if and only if m+ 1 > 1 is a divisor of Mn and δ is a proper divisor
of Mn. From Lemma 2 we see that there are m-key vertices iff m is even and that every
odd δ is a key distance. We call δ = 1 trivial, which leads to an (Mn − 1)-key distance with
trivial key vertex 0n−11. Note that

Mn is prime if and only if no non-trivial key vertex exists in Sn2 .

So for odd m and n ∈ N we have mΨ2,n = ∅. For m = 2 we get 2Ψ2,n =
{

(01)n/2
}

, if n is
even and 2Ψ2,n = ∅, if n is odd. This reflects the famous formula Mn mod 3 = n mod 2 (cf. [8,
p. 100]). For n = 2ν, ν ∈ N, the (positive) 2-key distances form the sequence A002450 of
odd Lichtenberg numbers `2ν−1 = 1

3
(22ν − 1) = δ ((01)ν , 02ν). (For the Lichtenberg sequence

(A000975), see [5] and [13]). For m = 4 we note that 5 |Mn ⇔ 4 |n, as can be seen by
looking at the residues modulo 5 of powers of 2, so that there are 4-key vertices if and
only if n = 4ν, ν ∈ N0, namely 4Ψ2,4ν = {(0011)ν}. The sequence of 4-key distances is
A182512(ν) = 1

5
(24ν − 1) = 0, 3, 51, 819, 13107, . . . .

2.1 The case m = 1

As a warm-up for general p we ask whether for some key vertices s ∈ P n, n ∈ N, the distances
to two extreme vertices, 0n and (p − 1)n say, are equal. From (3) we see that this cannot
happen for p = 2. For p ≥ 3 we have from (2):

δ(s, (p− 1)n) = δ(s, 0n) ⇔
n∑
d=1

(sd 6= p− 1) · 2d−1 =
n∑
d=1

(sd 6= 0) · 2d−1

⇔ ∀ d ∈ [n] : sd 6= p− 1⇔ sd 6= 0

⇔ ∀ d ∈ [n] : sd ∈ [p− 2]

⇔ s ∈ [p− 2]n.

Theorem 3. For p ∈ N, p ≥ 2, and n ∈ N0 we have 1Ψp,n = [p− 2]n.

So there are (p − 2)n key vertices and the corresponding key distance δ(s, 0n) is always
2n − 1. In particular, for p = 3 there is only one key vertex at distance 2n − 1 from both 0n

and 2n, namely extreme vertex 1n.
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2.2 The case m = 2

The Fibonacci sequence turns up in |2Ψ3,n| = Fn−1, which is also the number of 2-key
distances occurring for Snp ; see Proposition 6 below. (This is formally compatible for n = 0,
if we put F−1 = 1.) In order to generalize this result we define Fq,n for q, n ∈ N0 by

Fq,0 = 0, (5)

Fq,1 = 1, (6)

Fq,n+2 = q · Fq,n+1 + Fq,n. (7)

(Fq is the Lucas sequence of the first kind U(P,Q) for the parameters P = q and Q = −1;
see [12, formula (10)]. The numbers Fq,n are sometimes called q-Fibonacci numbers, as, e.g.,
in [3].) Again, for formal reasons, we put Fq,−1 = 1, compatible with (5), (6), and (7) for
n = −1. Special cases are

F0,n = n mod 2,

F1,n = Fn,

F2,n = Pn,

where Fn are the Fibonacci numbers (A000045) and Pn are the Pell numbers (A000129),

respectively. Let Q± := 1
2

(
q ±

√
4 + q2

)
; then

Fq,n =
1√

4 + q2

(
(Fq,1 −Q−Fq,0)Qn

+ − (Fq,1 −Q+Fq,0)Q
n
−
)

(8)

=
Qn

+ −Qn
−

Q+ −Q−

is the solution of (7), the latter if (5) and (6) are fulfilled. For q ∈ N the ratios Fq,n+1/Fq,n
tend to Q+ as n→∞. These irrational numbers have recently been called metallic means;
see, e.g., [4, p. 2]. Since this expression is used inconsistently in literature, we prefer to refer
to them as precious metal means as, e.g., the golden (q = 1, Q+ = 1

2

(
1 +
√

5
)
), silver (q = 2,

Q+ = 1 +
√

2) and bronze (q = 3, Q+ = 1
2

(
3 +
√

13
)
) ratio. They have the constant infinite

continued fraction representation [q; q].
Our first main result now reads

Theorem 4. For p ∈ N, p ≥ 2, and n ∈ N0 we have |2Ψp,n| = Fp−2,n−1.

Proof. Let s = sn . . . s1 ∈ P n and s = sn+1s ∈ Ψn+1. Then sn+1 = 0, because (p − 1)n+1 is
the closest extreme vertex to vertex (p− 1)s in Sn+1

p and if sn+1 ∈ [p− 2], then

δ(s, (p− 1)n+1) = δ(s, (p− 1)n) + 2n < 2n+1

and
δ(s, 0n+1) = δ(s, 0n) + 2n ≥ 2n.

6
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Let Φn := {s ∈ P n | 2n + δ(s, (p− 1)n) = 2 · δ(s, 0n)}, i.e., Ψn+1 = 0Φn. We show that
|Φn| fulfills the recurrence (5), (6), (7) for q = p− 2. If s ∈ Φ0, then 1 = 0, whence |Φ0| = 0,
i.e., (5) holds. So let n ∈ N. Then

s ∈ Φn ⇔ 2n +
n∑
d=1

(sd 6= p− 1) · 2d−1 = 2 ·
n∑
d=1

(sd 6= 0) · 2d−1

⇔ 2n +
n−1∑
d=1

(sd+1 6= p− 1) · 2d + (s1 6= p− 1) = (sn 6= 0) · 2n +
n−1∑
d=1

(sd 6= 0) · 2d

⇔ s1 = p− 1, ∀ d ∈ [n− 1] : sd = 0⇔ sd+1 = p− 1, sn 6= 0. (9)

For n = 1 we have s ∈ Φ1 iff s = p − 1, so |Φ1| = 1, i.e., (6) is satisfied. Together with (9)
(cf. also the standard drawings of Snp , e.g., in [8, Chapter 4]) we can deduce

∀n ∈ N0 : Φn+2 = [p− 2]Φn+1 ∪̇ (p− 1)0Φn.

Therefore |Φn| also satisfies (7) for q = p− 2.

Remark 5. 1. 2-key vertices s lie at 2
3

=
(
0.10

)
2

on the only optimal path from (p− 1)n to
0n which passes s.

2. For p = 2 it follows immediately from (9) that Ψn = ∅, if n is odd, and that otherwise
s = (01)n/2 is the only element of Ψn, as we have seen before.

Sierpiński graph Sn2 and Rn, the state graph of the Chinese Rings (see [8, Chapter 2]),
being isomorphic, we see that if the number of rings is odd, there is no state at 2

3
distance

between the extreme states 0n and 10n−1, while for an even positive number of rings there
is exactly one, which is the state 1n.

The approach taken in [11] was slightly different. We looked at the binary representation
of the key distance δ(s, 0n+1) and observed [11, Lemma 3.2(2)] that the last bit is 1 and
that the representation does not contain a square 00 [11, Lemma 3.2(3)] (this would, e.g.,
contradict the distance formula (2), because there would be a 0 at the same place in the
binary representations of δ(s, 0n+1) and δ(s, (p − 1)n+1); for p = 2 there are no squares 11
either because there are only two types of bits). Conversely, every binary number with these
properties represents some δ(s, 0n+1). To achieve this, one can construct a bijection between
P n and the set of those binary matrices b = (bj,d−1)j∈P,d∈[n] ∈ {0, 1}p×n which satisfies

∀ d ∈ [n] :

p−1∑
i=0

bi,d−1 = p− 1; (10)

in fact, bj,d−1 = (sd 6= j) for s ∈ P n. This can be based on the fact that the set of those
binary matrices which satisfy (10) has size pn (as can easily be seen by induction on n).

Note that this bijection shows that p− 1 rows of the matrix suffice to recover s, because
the missing row can be reconstructed by virtue of (10). Moreover, from this representation
one can immediately deduce [8, Corollary 4.7].
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Let us add our observations that sn+1 = 0 for key vertices s = sn+1s in Sn+1
p [11,

Lemma 3.2(1)] and that therefore the first and last bits of δ(s, 0n) are 1. The quest for key
distances in Sn+1

p can then be reduced, for p ≥ 3, to the problem of finding, for n ≥ 2, the
value of |Bn−2| for the sets B` defined as the sets of bit strings of length ` ∈ N0 which do
not contain the substring 00. A counting like this can be found in [2, Section 1.2]. Quite
obviously, B0 just contains the empty word, and B1 = {0, 1}. As before, we get

B`+2 = {1t | t ∈ B`+1} ∪̇ {01t | t ∈ B`},

whence |B`| = F`+2.
The elements of the union of the B`, ` ∈ N, considered as decimal numbers, form the

sequence a given by

a0 = 0, ∀n ∈ N, n ≥ 2 ∀k ∈ [Fn]0 : aFn+1−1+k = aFn−1−1+k + 2n−2;

this is, apart from the offset, the sequence A003754 of the OEIS, i.e., an = A003754(n + 1)
for n ∈ N0.

The distances occurring in Cn := {δ(s, 0n) | s ∈ Φn} are none for n = 0, (1)2 for n = 1, and
(1β1)2 with β running through Bn−2 for n ≥ 2 or, in other words, Cn = 2n−1+(Cn−1∪Cn−2).
Hence these distances are all different so that |Cn| = Fn. We arrive at

Proposition 6. The number of 2-key distances in Snp , p ≥ 3, is Fn−1.

The sequence c obtained from
⋃
n∈N0

Cn, ordered by size, is given by cn = 2an−1 + 1 for

n ∈ N, i.e.,
c0 = 0, ∀n ∈ N ∀k ∈ [Fn]0 : cFn+1+k = cFn−1+k + 2n−1.

It is A247648 = 2·A003754+1 and starts (0, )1, 3, 5, 7, 11, 13, 15, 21, 23, 27, . . .; see [11, p. 77].
The sequence forms the self-generating set obtained from α = 1 and F = {k 7→ 2k + 1, k 7→
4k + 1} in Lemma 1. In particular, the sequence c includes the odd Lichtenberg numbers,
i.e., the positive 2-key distances for p = 2, which are generated by k 7→ 4k + 1 with seed 1.

The sets Φn contain, for p ∈ N, p ≥ 3, and n ∈ N, the vertices s ∈ [p − 2]n−1(p − 1)

with maximal distance δ(s, 0n) = 2n− 1. Similarly, the vertices s = ((p− 1)0)(n−1)/2 (p− 1),

if n is odd, and s ∈ ((p− 1)0)(n−2)/2 [p − 2](p − 1), if n is even, have minimal distance
δ(s, 0n) = Jn+1 (Jacobsthal numbers (A001045); cf. [5]). For p = 3 it is possible to prove
that all elements of Φn are those which lie on the straight line joining maximal distance with
minimal distance vertices in the standard triangular drawing of Sn3 . If the side length of the
triangle is chosen to be 1, this magic line is the same for all n [11, Theorem 3.3] and leads to a
fractal if intersected with the Sierpiński triangle (of side length 1), see [11, Section 4]. When
drawn as tetrahedra with side length 1, the graphs Sn4 contain an analogue magic triangle
accommodating all 2-key vertices and leading to another fascinating fractal structure, the
Pell fractal (cf. [11, Section 5]).
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2.3 The case m = 3

A 3-key vertex s of Snp must satisfy

n∑
d=1

(sd 6= p− 1) · 2d−1 = 3
n∑
d=1

(sd 6= 0) · 2d−1. (11)

If sn 6= 0, then RHS ≥ 3 · 2n−1 > Mn ≥ LHS; therefore sn = 0 and (11) can be replaced by

2n−1 +
n−1∑
d=1

(sd 6= p− 1) · 2d−1 = 3
n−1∑
d=1

(sd 6= 0) · 2d−1. (12)

For n = 1 this leads to a contradiction, whence 3Ψp,1 = ∅. So let n ≥ 2 and assume that
sn−1 = 0. Then RHS ≤ 3 ·Mn−2 < 3 · 2n−2 = 2n−1 + 2n−2 ≤ LHS, a contradiction. Similarly,
if sn−1 = p−1, then LHS ≤ 2n−1+Mn−1 < 3·2n−2 ≤ RHS, another contradiction. Therefore,
sn−1 ∈ [p− 2] and (12) reduces to

n−2∑
d=1

(sd 6= p− 1) · 2d−1 = 3
n−2∑
d=1

(sd 6= 0) · 2d−1. (13)

For n = 2 we are done with 3Ψp,2 = 0[p − 2]. For n ≥ 3 we notice that (13) is the same as
(11), but with n replaced by n− 2. It follows that

3Ψp,n = 0[p− 2] 3Ψp,n−2

with δ(s, (p − 1)n) = Mn for s ∈ 3Ψp,n. We can summarize the case m = 3 in the following
theorem.

Theorem 7. The set of 3-key vertices in Snp is empty for odd n and otherwise 3Ψp,n =

(0[p − 2])n/2 with |3Ψp,n| = (p − 2)n/2. The sequence of positive 3-key distances is 1
3
M2k =

`2k−1 = 1, 5, 21, 85, . . . for k ∈ N; these are the odd Lichtenberg numbers, A002450. It is the
self-generating sequence for seed 1 and generating function set {k 7→ 4k + 1}.

2.4 The case m = 4

For this case we need some preparation. For q ∈ N0 let the sequences (FFq,n)n∈N0 be defined
by

FFq,0 = FFq,1 = FFq,2 = 0, (14)

FFq,3 = 1, (15)

FFq,n+4 = q (FFq,n+3 + FFq,n+1) + FFq,n. (16)

As before and consistent with (14), (15) and (16), we put FFq,−1 = 1. For q = 0, the
sequence is FF0,n = (nmod 4 = 3). If q = 1, we write FFn for FF1,n; then the sequence

9
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FF3+n is A006498. The sequence of differences FF is, apart from the shift of the offset,
A070550. For the sequence of partial sums ΣFF , cf. the somewhat obscure entry A097083
of the OEIS. The sequences FF2,n and FF3,n are, but for the offsets, A089928 and A089931,
respectively. The relation between the sequences FFq,n and Fq,n is the following.

Proposition 8. For all q, k ∈ N0: FFq,2k = Fq,k−1Fq,k, FFq,2k+1 = F 2
q,k.

Proof. Induction on k, where the cases k = 0 and k = 1 are obvious. For k ∈ N we get:

FFq,2(k+1) = FFq,2(k−1)+4 = q · FFq,2(k−1)+3 + q · FFq,2(k−1)+1 + FFq,2(k−1)

= q · F 2
q,k + q · F 2

q,k−1 + Fq,k−2Fq,k−1

= q · F 2
q,k + Fq,k−1(q · Fq,k−1 + Fq,k−2)

= q · F 2
q,k + Fq,k−1Fq,k = Fq,kFq,k+1

and

FFq,2(k+1)+1 = FFq,2k−1+4 = q · FFq,2k+2 + q · FFq,2k + FFq,2k−1

= q · FFq,2(k+1) + q · FFq,2k + FFq,2(k−1)+1

= q · Fq,kFq,k+1 + q · Fq,k−1Fq,k + F 2
q,k−1

= q · Fq,kFq,k+1 + Fq,k−1Fq,k+1 = F 2
q,k+1.

In particular, for all k ∈ N0 we have

FF1,2k = Fk · Fk−1,
FF1,2k+1 = F 2

k

and
FF2,2k = Pk · Pk−1,
FF2,2k+1 = P 2

k .

We will now set out to prove

Theorem 9. For p ∈ N, p ≥ 2, and n ∈ N0 we have |4Ψp,n| = FFp−2,n−1.

Proof. For n = 0, we have 4Ψp,0 = {ε}, whence |4Ψp,0| = 1 = FFp−2,−1 by our convention.
In S1

p
∼= Kp there is no distance four times a different one, so 4Ψp,1 = ∅ and |4Ψp,1| = 0 =

FFp−2,0. For n ≥ 2 we have that s ∈ P n lies in 4Ψp,n iff

(s1 6= p− 1) + (s2 6= p− 1) · 2 +
n∑
d=3

(sd 6= p− 1) · 2d−1

=
n∑
d=3

(sd−2 6= 0) · 2d−1 + (sn−1 6= 0) · 2n + (sn 6= 0) · 2n+1.

This, in turn, is only possible if

s1 = p− 1 = s2, ∀ d ∈ [n− 2] : sd = 0⇔ sd+2 = p− 1, sn−1 = 0 = sn.
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For n = 2 and n = 3 this cannot be fulfilled, so 4Ψp,2 = ∅ = 4Ψp,3 and consequently |4Ψp,2| =
0 = FFp−2,1 and |4Ψp,3| = 0 = FFp−2,2. For n ≥ 4 this amounts to s = 00s(p − 1)(p − 1)
with s = sn−2 . . . s3 ∈ P n−4 fulfilling

s3 6= p− 1 6= s4, ∀ d ∈ [n− 4] \ [2] : sd = 0⇔ sd+2 = p− 1, sn−3 6= 0 6= sn−2. (17)

Let S1 = S2 = S3 = ∅ and for n ≥ 4 denote the set of s fulfilling (17) by Sn. Then S4 = {ε},
S5 = [p−2], S6 = [p−2]2, and S7 = [p−2]3 ∪̇ (p−1)[p−2]0. For n ≥ 8 we have the following
three cases for an s = sn−2sn−3 . . . s3 ∈ Sn, depending on the number of initial p− 1 (there
cannot be three in a row because of (17)):

1. 0 6= sn−2 6= p− 1,

2. sn−2 = p− 1 6= sn−3 6= 0,

3. sn−2 = p− 1 = sn−3.

In case 1, s will run through [p− 2]Sn−1, because sn−3 6= 0 6= sn−4. In case 2, sn−4 has to be
0, and all elements of (p − 1)[p − 2]0Sn−3 are admissible because sn−5 6= 0 6= sn−6. Finally,
in case 3, sn−4 = 0 = sn−5, and all elements of (p− 1)(p− 1)00Sn−4 are admissible because
sn−6 6= 0 6= sn−7. So we obtain that for n ≥ 8 (in fact, for n ≥ 5):

Sn = [p− 2]Sn−1 ∪ (p− 1)[p− 2]0Sn−3 ∪ (p− 1)(p− 1)00Sn−4, (18)

with the unions disjoint. We can conclude that (for n ∈ N)

|S1| = |S2| = |S3| = 0, (19)

|S4| = 1, (20)

|Sn+4| = (p− 2)
(
|Sn+3|+ |Sn+1|

)
+ |Sn|. (21)

Comparison of (19), (20), (21) with (14), (15), (16) yields |Sn| = FFp−2,n−1 and since
|4Ψp,n| = |Sn|, the theorem is proved.

If we ask for DDn := {δ(s, 0n) | s ∈ 4Ψp,n}, we see that DD0 = {0}, DD1 = DD2 =
DD3 = ∅, and for n ≥ 4 we have

DDn = 3 +

{
n−2∑
d=3

(sd 6= 0) · 2d−1 | s = sn−2 . . . s3 ∈ Sn

}
. (22)

All elements of Sn have the form σ = σk . . . σ1, where σ` ∈ [p − 2] ∪̇ (p − 1)[p − 2]0 ∪̇ {(p −
1)(p − 1)00} and k ∈ N0 is such that σ has overall length n. It follows that the binary
representation of a distance in DDn has the form 00βk . . . β111 with β` = 1 if σ` ∈ [p − 2],
β` = 110 if σ` ∈ (p−1)[p−2]0, and β` = 1100 if σ` = (p−1)(p−1)00, respectively. Therefore,
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maxDDn = Mn−2, if p > 2; maxDDn = 1
5
Mn = minDDn, if p = 2 and nmod 4 = 0 (this is

A182512; cf. supra); and finally, for p > 2,

minDDn =


(00(1100)(n−4)/411)2 = 1

5
(2n − 1), if nmod 4 = 0 ;

(00(1100)(n−5)/4111)2 = 1
5
(2n + 3), if nmod 4 = 1 ;

(00(1100)(n−6)/41111)2 = 1
5
(2n + 11), if nmod 4 = 2 ;

(00(1100)(n−7)/411011)2 = 1
5
(2n + 7), if nmod 4 = 3.

Asymptotically, for large n, we have minDDn ∼ 1
5
2n and maxDDn ∼ 1

4
2n. Note further

that for n ≥ 6 every element of DDn has a binary representation 0011β11 with a bit string
β of length n− 6 and which does not contain a substring 000 or 010. From (22) and (18) we
also obtain the recurrence relation DDn+4 = 2n+1 + (DDn+3 ∪ (2n + (DDn+1 ∪DDn))) for
n ∈ N0. The sequence cc resulting from the union over n ∈ N of the sets DDn by order of
size is given by cc(1) = 3 and ∀n ∈ N0:

∀ k ∈ [FFn + FFn+1] : cc(ΣFFn+3 + k) = 3 · 2n+1 + cc(ΣFFn−1 + k),

∀ k ∈ [FFn+3] : cc(ΣFFn+4 − FFn+3 + k) = 2n+2 + cc(ΣFFn+2 + k).

The sequence cc (with offset 1) starts

3, 7, 15, 27, 31, 51, 55, 59, 63, 103, 111, 115, 119, 123, 127, . . .

and is A353578 of the OEIS. It can be viewed as the self-generating sequence with seed 3
and generating function set {k 7→ 2k + 1, k 7→ 8k + 3, k 7→ 16k + 3} (cf. Lemma 1).

As an example, we consider the case n = 8. Theorem 9 and Proposition 8 assert that
there are FFp−2,7 = F 2

p−2,3 4-key vertices. For p = 2 this is (3 mod 2)2 = 1, for p = 3 this is
F 2
3 = 22 = 4, while for p = 4 this is P 2

3 = 52 = 25. The 4-key vertices come in four forms:

02[p− 2]4(p− 1)2,

02[p− 2](p− 1)[p− 2]0(p− 1)2,

02(p− 1)[p− 2]0[p− 2](p− 1)2, and

02(p− 1)202(p− 1)2.

The numbers of key vertices of these types are (p − 2)4, (p − 2)2, (p − 2)2, and 1, totaling
1 for p = 2, 4 for p = 3, and 25 for p = 4, as expected. The corresponding key dis-
tances are (00111111)2 = 63 = cc9, (00111011)2 = 59 = cc8, (00110111)2 = 55 = cc7, and
(00110011)2 = 51 = cc6. Figure 1 illustrates the four 4-key vertices 00111122, 00121022,
00210122, and 00220022 when p = 3.

3 Sierpiński triangle graphs

The approximation of the Sierpiński triangle by a sequence of graphs is even more direct
when we consider Sierpiński triangle graphs Ŝn. They are embedded as the case p = 3 in
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Figure 1: 4-key vertices in S8
3 (subgraph 00S6

3 shown)

the class Ŝnp with vertex sets

V (Ŝnp ) = P̂ ∪
{
sν . . . s2s1 | sν . . . s2 ∈ P ν−1, ν ∈ [n], s1 = îj, {i, j} ∈

(
P
2

)}
,

where p ∈ N, p ≥ 2, and P̂ stands for the set of primitive vertices k̂, k ∈ P = [p]0; in

particular, Ŝ0
p is the complete graph on P̂ . All non-primitive vertices sν . . . s2îj in Ŝnp come

about by contracting the edge between vertices sν . . . s2ij
n−ν+1 and sν . . . s2ji

n−ν+1 in Sn+1
p ;

note that îj = ĵi. The primitive vertex k̂ corresponds to extreme vertex kn+1, and all non-
contracted edges of Sn+1

p are preserved in Ŝnp . For a direct definition of the edge set of Ŝnp , see

[7, Definition 3]. The Sierpiński triangle graph Ŝ1+n
p can be obtained recursively by taking

p copies kŜnp in which a k ∈ P has been concatenated to the left of the vertices of Ŝnp and

finally writing k̂ for kk̂ and identifying k̂̀and `k̂ for ` ∈ P , k 6= `, resulting in critical vertex
k̂`. Consequently, Ŝnp is connected; the canonical distance function is denoted by δ(n). In the
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case of p = 2, we obtain a 0̂, 1̂-path of length 2n with the only critical vertex 0̂1. For p = 3
we write Ŝn := Ŝn3 ; see Figure 2.

Figure 2: Drawing of the Sierpiński triangle graph Ŝ3

For our purpose the distance of a vertex to a primitive vertex is of utmost importance.
We have (cf. [7, Equations (3) to (5)]):

δ(n)(k̂, ̂̀) = 2n · (k 6= `) (23)

and

δ(n)(sν . . . s2îj, ̂̀) = 2n−νδ(ν)(sν . . . s2îj, ̂̀)
= 2n−ν

(
1 + (i 6= ` 6= j) +

ν−1∑
d=1

(sd+1 6= `) · 2d
)
. (24)

As before, we are interested in m-key vertices s for which, without loss of generality, the
distance to p̂− 1 is m times the distance to 0̂. Primitive vertices k̂ are m-key vertices, iff
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m = 1 and k ∈ [p − 2]; the key distance is 2n. We write 1Φ̂p,0 = [̂p− 2] and mΦ̂p,0 = ∅ for
m > 1. Moreover, by (24) it suffices to look at the case ν = n ∈ N, i.e., we consider the sets

mΦ̂p,n given by{
sîj | s = sn . . . s2 ∈ P n−1, {i, j} ∈

(
P
2

)
; δ(n)(sîj, p̂− 1) = m · δ(n)(sîj, 0̂)

}
.

The set of m-key vertices in Ŝnp is then Ψ̂n =
n⋃
ν=0

mΦ̂p,ν and its size is |Ψ̂n| =
n∑
ν=0

|mΦ̂p,ν |.

As we already know, Ŝn2 is a path graph on 2n + 1 vertices whose leaves are the primitive
vertices 0̂ and 1̂. A δ is an m-key distance iff (m+ 1)δ = 2n, i.e., if

1 ≤ δ =
2n

m+ 1
≤ 2n−1.

So m = Mν , ν ∈ [n], and δ = δ(n)(s, 0̂) = 2n−ν with m-key vertex s = 0ν−10̂1 ∈ V (Ŝν2 ) ⊂
V (Ŝn2 ).

3.1 The case m = 1

For m = 1 and n ∈ N we have

sîj ∈ Φ̂n ⇔ 1 + (i 6= p− 1 6= j) +
n−1∑
d=1

(sd+1 6= p− 1) · 2d

= 1 + (i 6= 0 6= j) +
n−1∑
d=1

(sd+1 6= 0) · 2d

⇔ (i 6= p− 1 6= j) = (i 6= 0 6= j) and ∀ d ∈ [n− 1] : (sd+1 6= p− 1) = (sd+1 6= 0)

⇔ s ∈ [p− 2]n−1 and
(
îj = ̂0(p− 1) or {i, j} ∈

(
[p−2]
2

))
.

Let Vp :=
{

̂0(p− 1)
}
∪̇
{
îj | {i, j} ∈

(
[p−2]
2

)}
and fp := |Vp| = 1 +

(
p−2
2

)
. Then we have

shown:

Theorem 10. For all p ∈ N, p ≥ 2, and all n ∈ N0:

1Ψ̂p,n = [̂p− 2] ∪̇
n⋃
ν=1

[p− 2]ν−1Vp;

∣∣∣1Ψ̂3,n

∣∣∣ = 1 + n;
∣∣∣1Ψ̂p,n

∣∣∣ = p− 2 + fp
(p− 2)n − 1

p− 3
, if p 6= 3.

In particular, 1Ψ̂2,n = ∅ if n = 0, 1Ψ̂2,n = {0̂1} otherwise;

1Ψ̂3,n = {1̂} ∪̇ {1µ0̂2 | µ ∈ [n]0}; |1Ψ̂4,n| = 2n+1.
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When we ask for 1-key distances, we can enter the 1-key vertices from Theorem 10 into
the distance formulas (23) and (24). The case p = 2 can contribute only one value, and only
for n 6= 0, namely 2n−1. For p ≥ 3 we get 2n and 2n − 2n−ν , ν ∈ [n]. These sets only overlap
at powers of 2, so that the sequence of all 1-key distances is given by

(
n
2

)
+ ν 7→ 2n − 2n−ν

for n ∈ N and ν ∈ [n]. These are the numbers whose binary representation is (1n−µ0µ)2 with
µ ∈ [n]0. They form, apart from the offset, sequence A023758 of the OEIS.

Figure 3 illustrates the six key vertices in Ŝ5
3 = Ŝ5 that are equidistant from primitive

vertices 0̂ and 2̂. From left to right, these vertices are 1̂ at distance 32, 14−µ0̂2 for µ from 0
to 4 at distances (15−µ0µ)2, i.e., 31, 30, 28, 24, and 16, respectively.

Figure 3: m-key vertices in Ŝ5 for m = 1 (red), 2 (green), 3 (blue), and 4 (violet)

16

https://oeis.org/A023758


3.2 The case m = 2

For q, n ∈ N0 let us define F̃q,n by

F̃q,0 = q,

F̃q,1 =
(
q
2

)
,

F̃q,n+2 = q · F̃q,n+1 + F̃q,n. (25)

We notice that F̃0,n = 0, F̃1,n+1 = Fn, and F̃2,n+2 = 4 · Pn+1 + Pn = A048654(n+ 1).

Theorem 11. For p ∈ N, p ≥ 2, 2Φ̂p,0 = ∅ and for n ∈ N we have |2Φ̂p,n| = F̃p−2,n−1.

Proof. Since 3 does not divide 2n, there are no 2-key vertices in Ŝn2 ; so we may assume that
p ≥ 3.

We know already that a 2-key vertex cannot be primitive, i.e., 2Φ̂p,0 = ∅. From (24) we
deduce for n ∈ N0:

sîj ∈ 2Φ̂p,n+1 ⇔ (i 6= p− 1 6= j) +
n∑
d=1

(sd+1 6= p− 1) · 2d

= 1 + 2(i 6= 0 6= j) +
n∑
d=1

(sd+1 6= 0) · 2d+1.

This means that i 6= p− 1 6= j and that for n = 0 we have 2Φ̂p,1 = ̂0[p− 2] and consequently

|2Φ̂p,1| = p − 2 = F̃p−2,0. Moreover, for n ∈ N we get sn+1 = 0 so that we can reduce the

problem to finding |Φ̂n| = |0Φ̂n| = |2Φ̂p,n+1| for

Φ̂n :=
{
sîj | s = sn . . . s2 ∈ P n−1, {i, j} ∈

(
P ′

2

)
; 2n + δ(n)(sîj, p̂− 1) = 2 · δ(n)(sîj, 0̂)

}
,

where P ′ := [p− 1]0. For completeness, we also define

Φ̂0 :=
{
k̂ | k ∈ P, 1 + δ(0)(k̂, p̂− 1) = 2 · δ(0)(k̂, 0̂)

}
= [̂p− 2],

so that |Φ̂0| = p − 2 = F̃p−2,0. Note that 0Φ̂0 = ̂0[p− 2] due to the recursive definition of

Ŝ1+n
p . For n ∈ N we have

sîj ∈ Φ̂n ⇔
n−1∑
d=1

(sd+1 6= p− 1) · 2d + 2n = 2(i 6= 0 6= j) +
n−1∑
d=1

(sd+1 6= 0) · 2d+1.

If n = 1, this means that i 6= 0 6= j, whence Φ̂1 =
{
îj | {i, j} ∈

(
[p−2]
2

)}
, i.e., |Φ̂1| =

(
p−2
2

)
=

F̃p−2,1. For n ≥ 2 we have sîj ∈ Φ̂n if and only if

s2 6= p− 1⇔ i 6= 0 6= j, ∀ d ∈ [n− 1] \ {1} : sd+1 = p− 1⇔ sd = 0, sn 6= 0.
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As in the proof of Theorem 4 we can deduce from this that

Φ̂n+2 = [p− 2]Φ̂n+1 ∪̇ (p− 1)0Φ̂n, (26)

so that |Φ̂n+2| = (p− 2)|Φ̂n+1|+ |Φ̂n| for n ∈ N0, i.e., (25) is satisfied with q = p− 2.

As an example, the 2-key vertices in Ŝ5
3 = Ŝ5 are 0̂1, 020̂1, 0120̂1, 02020̂1, and 01120̂1 (see

Figure 3). To see why there are exactly 5 = F5 of them, we have to calculate F̂q,n =
n−1∑
ν=0

F̃q,ν .

It fulfills
F̂q,0 = 0, F̂q,1 = q, ∀n ∈ N0 : F̂q,n+2 = −

(
q
2

)
+ qF̂q,n+1 + F̂q,n.

This can be solved by putting Gq,n = F̂q,n − q−1
2

which then fulfills

Gq,0 = − q−1
2
, Gq,1 = q+1

2
, ∀n ∈ N0 : Gq,n+2 = qGq,n+1 +Gq,n.

For q = 1 we obtain F̂1,n = G1,n = Fn, and q = 2 yields (cf. (8))

F̂2,n = G2,n + 1
2

= 1
4

(
(2
√

2− 1)(1 +
√

2)n − (2
√

2 + 1)(1−
√

2)n + 2
)

= 0, 2, 3, 7, 16, 38, 91, 219, 528, . . . ,

which is A353580 in the OEIS.
To find out about the 2-key distances, i.e., the distances of 2-key vertices to the primitive

vertex 0̂, we define, for ν, n ∈ N0:

Dν =
{
δ(ν+1)(sîj, 0̂) | sîj ∈ 2Φ̂p,ν+1

}
=
{
δ(ν)(sîj, 0̂) | sîj ∈ Φ̂ν

}
,

the latter if ν ≥ 1, and

Bn =
n−1⋃
ν=0

2n−1−νDν =
n−1⋃
ν=0

2νDn−1−ν , B =
⋃
n∈N

Bn.

Bn is the set of distances to 0̂ occurring among 2-key vertices in Ŝnp . It fulfills the recurrence

B0 = ∅, ∀n ∈ N0 : Bn+1 = 2Bn ∪Dn. (27)

For ν = 0 we have 2Φ̂p,1 = ̂0[p− 2] and δ(1)(0̂j, 0̂) = 1 for j ∈ [p− 2], so that D0 = {1}. For

ν = 1 we have Φ̂1 =
{
îj | {i, j} ∈

(
[p−2]
2

)}
and δ(1)(îj, 0̂) = 2, so that D1 = ∅, if p = 3, and

D1 = {2}, if p ≥ 4. Using (26) we get:

∀n ∈ N0 : Dn+2 = 2n+1 + (Dn+1 ∪Dn). (28)
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Note that for p = 3 this is the recurrence of the sets Cn (cf. supra) with the seeds switched
and that the elements of Dn are the odd elements of Bn+1. Independent of p ≥ 3 we get

B0 = ∅, B1 = {1}, ∀n ∈ N0 : Bn+2 = 2n + (Bn+1 ∪Bn). (29)

The first two statements are clear, as is B2 = {2} for the base step of an induction proof for
the recurrence relation. The induction step is

Bn+3 = 2Bn+2 ∪Dn+2 = 2n+1 + (2Bn+1 ∪ 2Bn ∪Dn+1 ∪Dn)

= 2n+1 + (Bn+2 ∪Bn+1).

From equations (28) and (29) we immediately get

2n−1 < Dn ≤ 2n, 2n−1 < Bn+1 ≤ 2n;

in particular, the sets in the sequence B are disjoint, as are those from the sequence D,
whence |Dn| = Fn−1, if p = 3, |Dn| = Fn+1, if p ≥ 4, and |Bn| = Fn for n ∈ N0. More
precisely:

Proposition 12. For n ∈ N we have
(a) max Bn = 2n−1,
(b) min Bn = An+1. (Arima sequence; see [5] and cf. A005578 in the OEIS. Recall that
An+1

2n
→ 1

3
as n→∞; cf. [5, p. 7].)

(c) If the sequence b ∈ NN is given by

b1 = 1, ∀n ∈ N0 ∀ k ∈ [Fn+2]0 : bFn+3+k = bFn+1+k + 2n,

then B = b(N). (This corresponds to sequence A052499 of the OEIS: bn = A052499(n− 1).)

Proof. Statement (a) follows by induction from (29). Similarly, the recurrence for min Bn

in (b) is
min B1 = 1, min B2 = 2, ∀n ∈ N : min Bn+2 = 2n + min Bn,

a recurrence also fulfilled by the Arima numbers An+1; cf. [5, p. 7].
For (c) we can show by induction and making use of (29) that

∀n ∈ N0 : Bn = {bk | k ∈ [Fn+2]0 \ [Fn+1]0} .

As N =
⋃̇

n∈N(0)

[Fn+2]0 \ [Fn+1]0, the elements of sequence b exhaust the whole set B.

Remark 13. The maximum distance from 0̂ among 2-key vertices in Ŝnp , n ∈ N, is attained

for s = 0̂j, j ∈ [p − 2], and s ∈ 0[p − 2]ν îj, {i.j} ∈
(
[p−2]
2

)
, ν ∈ [n − 1]0. The minimum is

taken in vertices s = (0(p− 1))b(n−1)/2c 0̂j, j ∈ [p−2] and in addition, if n is even, in vertices

s = (0(p− 1))(n−2)/2 0îj, {i, j} ∈
(
[p−2]
2

)
.
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If we compare (29) with the recurrence for the sequence c, we see that 2bn = cn + 1, i.e.,
2 ·A052499(n−1) = 2 ·A003754(n) + 2, whence A052499(n−1) = A003754(n) + 1 for n ∈ N
(cf. [1, Corollary 1]).

The recurrence in (29) shows that the sequence B does not depend on p, so we may
assume that p = 3, i.e., D1 = ∅. Then another consequence of equations (28) and (29) is the
following.

Proposition 14. Let n ∈ N0. Then Dn+1 = 4Bn − 1 and Bn+2 = 2Bn+1 ∪̇ (4Bn − 1).

Proof. For n = 0 we have D1 = ∅ = 4B0−1. For n = 1 we get D2 = {3} = 4{1}−1 = 4B1−1.
Now for n ∈ N0:

Dn+3 = 2n+2 +Dn+2 ∪Dn+1

= 2n+2 + (4Bn+1 − 1) ∪ (4Bn − 1)

= 2n+2 + 4(Bn+1 ∪Bn)− 1

= 4(2n +Bn+1 ∪Bn)− 1

= 4Bn+2 − 1.

The second statement then follows by (27). The union is disjoint for parity reasons.

From Proposition 14 it follows that B = {1} ∪ 2B ∪ (4B − 1) (disjoint unions), so that
B fulfills the definition given in [1, p. 2] and which is assumed to characterize the sequence
A052499, albeit with offset 0, in the OEIS. It is, however, not stated in literature, why the
set B ⊂ N should be determined uniquely by the above condition. It is an example of a
self-generating set; cf. Lemma 1.

3.3 The case m = 3

Primitive vertices cannot be 3-key vertices in Ŝnp , which are therefore the elements of Ψ̂n :=
n⋃
ν=1

3Φ̂p,ν , where for n ∈ N:

3Φ̂p,n =
{
sîj | s = sn . . . s2 ∈ P n−1, {i.j} ∈

(
P
2

)
; δ(n)(sîj, p̂− 1) = 3 · δ(n)(sîj, 0̂)

}
.

A vertex sîj lies in 3Φ̂p,n, iff

(i 6= p− 1 6= j) +
n∑
d=2

(sd 6= p− 1) · 2d−1 = 2 + 3(i 6= 0 6= j) + 3
n∑
d=2

(sd 6= 0) · 2d−1. (30)

If n = 1, then LHS ≤ 1 < 2 ≤ RHS, so 3Φ̂p,1 = ∅ = Ψ̂1. So let n ≥ 2 and assume that
sn 6= 0. Then RHS ≥ 2 + 3 · 2n−1 > 2n − 1 ≥ LHS, a contradiction. Therefore, sn = 0 and
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(30) becomes

(i 6= p− 1 6= j) +
n−1∑
d=2

(sd 6= p− 1) · 2d−1 + 2n−1 = 2 + 3(i 6= 0 6= j) + 3
n−1∑
d=2

(sd 6= 0) · 2d−1. (31)

If n = 2, then necessarily (i 6= p− 1 6= j) = 0 = (i 6= 0 6= j), whence 3Φ̂p,2 = {0 ̂0(p− 1)} =

Ψ̂2. Let n ≥ 3 and assume that sn−1 = 0. Then RHS ≤ 2 + 3Mn−2 = 2n−1 + 2n−2 − 1 <
2n−1 + 2n−2 ≤ LHS, a contradiction. Similarly, if sn−1 = p− 1, then LHS ≤ Mn−2 + 2n−1 =
3 · 2n−2 − 1 < 2 + 3 · 2n−2 ≤ RHS; again a contradiction. It follows that sn−1 ∈ [p − 2] and
(31) becomes

(i 6= p− 1 6= j) +
n−2∑
d=2

(sd 6= p− 1) · 2d−1 = 2 + 3(i 6= 0 6= j) + 3
n−2∑
d=2

(sd 6= 0) · 2d−1. (32)

We notice that (32) is the same as (30), but with n replaced by n − 2. It follows that

3Φ̂p,n = ∅, if n is odd, and 3Φ̂p,n = (0[p− 2])(n−2)/20 ̂0(p− 1), if n is even. In the latter case,

δ(n)(sîj, p̂− 1) = Mn for sîj ∈ 3Φ̂p,n.
We can summarize the case m = 3 in the following theorem.

Theorem 15. The set of 3-key vertices in Ŝnp is

Ψ̂n =

bn/2c−1⋃
µ=0

(0[p− 2])µ0 ̂0(p− 1)

with

|Ψ̂n| =
bn/2c−1∑
µ=0

(p− 2)µ =

bn/2c , if p = 3 ;

(p− 2)bn/2c − 1

p− 3
, if p 6= 3 .

The set of 3-key distances from Ŝnp is B̂n :=
{

1
3
2n−νMν | ν ∈ [n] even

}
with |B̂n| = bn/2c

(A004526).

Remark 16. 1. In our test case Ŝ5
3 we have key vertices 00̂2 and 0100̂2 with key distances 8

and 10, respectively (see Figure 3).

2. Note that B̂0 = ∅ = B̂1 and that for n ≥ 2 we have min B̂n = 2n−2 and max B̂n = `n−1,
the Lichtenberg numbers (A000975). As `n−1 < 2n−1, the sets B̂n are disjoint. The elements

of B̂n can be written as 1
3
2n−νMν = 1

3
(2n − 2n−ν) = 2n−ν`ν−1 for even ν ∈ [n]. The set of all

3-key distances is

B̂ :=
∞⋃
n=0

B̂n = {2i`2j+1 | i, j ∈ N0} = {(1(01)j0i)2 | i, j ∈ N0}. (33)
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This set can be written as a sequence b̂ ∈ NN in an interesting way. If we define ∆̃0 = 0 = ∆̃1

and ∆̃N+2 = ∆̃N +N + 1 for N ∈ N0, i.e.,

∆̃N =
N∑
n=0

bn/2c =
⌊
N2/4

⌋
= bN/2c · dN/2e = 1

4
(N2 −N mod 2)

(see the many entries for A002620 in the OEIS and note that ∆̃N+1 + ∆̃N =
(
N+1
2

)
= ∆N),

every n ∈ N can be written uniquely as n = ∆̃N−1 + ρ with N = d2
√
n e ≥ 2 and a

ρ ∈ [bN/2c]. Then B̂ = b̂(N) for the sequence b̂ given by

b̂(∆̃N−1 + ρ) = 1
3
(2N − 2N−2ρ) = 2N−2ρ`2ρ−1 =

(
1(01)ρ−10N−2ρ

)
2
,

i.e., with i = N − 2ρ and j = ρ− 1 in (33). (This sequence b̂ is A181666.) The bijection

N 3 ∆̃N−1 + ρ↔ (N − 2ρ, ρ− 1) ∈ N2
0

is quite remarkable.
B̂ is also the self-generating set (cf. Lemma 1) with seed 1 and engendered by the two

generating functions given by N 3 k 7→ 2k and f(2i(2h+ 1)) = 2i(8h+ 5) for i, h ∈ N0; note

that f(2i`2j+1) = 2i`2(j+1)+1, whence f(B̂) = B̂ \ {2i | i ∈ N0}.

3.4 The case m = 4

Again, primitive vertices cannot be 4-key vertices in Ŝnp , which are therefore the elements of

Ψ̂n :=
n⋃
ν=1

4Φ̂p,ν , where for n ∈ N:

4Φ̂p,n =
{
sîj | s = sn . . . s2 ∈ P n−1, {i.j} ∈

(
P
2

)
; δ(n)(sîj, p̂− 1) = 4 · δ(n)(sîj, 0̂)

}
.

A vertex sîj lies in 4Φ̂p,n, iff

(i 6= p− 1 6= j) +
n∑
d=2

(sd 6= p− 1) · 2d−1 = 3 + 4(i 6= 0 6= j) +
n∑
d=2

(sd 6= 0) · 2d+1.

As the RHS is odd, we must have i 6= p− 1 6= j and

n∑
d=2

(sd 6= p− 1) · 2d−1 = 2 + 4(i 6= 0 6= j) +
n∑
d=2

(sd 6= 0) · 2d+1.

The case n = 1 cannot be satisfied, so that 4Φ̂p,1 = ∅ and |4Φ̂p,1| = 0. Let n ≥ 2. Then
s2 6= p− 1, whence

n∑
d=3

(sd 6= p− 1) · 2d−1 = 4(i 6= 0 6= j) +
n∑
d=2

(sd 6= 0) · 2d+1. (34)
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For n = 2 we necessarily have i = 0 and j ∈ [p − 2] and s2 = 0, so that 4Φ̂p,2 = 0 ̂0[p− 2]

and |4Φ̂p,2| = p− 2; key distance is δ(2)(00̂j, 0̂) = 1. For n ≥ 3 we get sn−1 = 0 = sn, which

for n = 3 means {i, j} ∈
(
[p−2]
2

)
, s2 = 0 = s3, whence 4Φ̂p,3 =

{
00îj | {i, j} ∈

(
[p−2]
2

)}
and

|4Φ̂p,3| =
(
p−2
2

)
; key distance is δ(3)(00îj, 0̂) = 2. For n = 4 we get i 6= 0 6= j, s2 ∈ [p−2], and

s3 = 0 = s4, i.e., 4Φ̂p,4 =
{

00s2îj | s2 ∈ [p− 2], {i, j} ∈
(
[p−2]
2

)}
and |4Φ̂p,4| = (p − 2)

(
p−2
2

)
;

key distance is δ(4)(00s2îj, 0̂) = 4. For n ≥ 5 we deduce from (34) that, in addition to the

conditions already fixed, s3 = p−1⇔ îj ∈ ̂0[p− 2], ∀ d ∈ [n−2]\ [3] : sd = p−1⇔ sd−2 = 0
and sn−3 6= 0 6= sn−2. This leads to the following recurrence relation for n ∈ N0.

4Φ̂p,4+n = 00[p− 2]4Φ̂
′′
p,3+n ∪̇ 00(p− 1)[p− 2]4Φ̂

′
p,1+n ∪̇ 00(p− 1)(p− 1)4Φ̂p,n,

where each prime indicates the deletion of a leading 0; e.g., 4Φ̂
′
p,2 = ̂0[p− 2]. This means

that
|4Φ̂p,4+n| = (p− 2)|4Φ̂p,3+n|+ (p− 2)|4Φ̂p,1+n|+ |4Φ̂p,n|.

If for q ∈ N0 we define the sequences (F̃F q,n)n∈N0 by

F̃F q,0 = 0 = F̃F q,1, F̃F q,2 = q, F̃F q,3 =
(
q
2

)
,

F̃F q,n+4 = q(F̃F q,n+3 + F̃F q,n+1) + F̃F q,n,

we get

Theorem 17. If p ∈ N, p ≥ 2, and n ∈ N0, then |4Φ̂p,n| = F̃F p−2,n.

For q = 0 we have F̃F 0,n = 0, which reflects the fact that 5 does not divide 2n. For

q = 1 the sequence is F̃F 1,n = FF n+1. The sequence of partial sums is |4Ψ̂3,n| = FFn+1. In

our standard example, the graph Ŝ5
3 , we therefore have two 4-key vertices, namely 00̂1 and

00210̂1 with 4-key distances 8 and 7, respectively (see Figure 3). The sequence

F̃F 2,n = 1
8

(
(5− 3

√
2)(1 +

√
2)n + (5 + 3

√
2)(1−

√
2)n + xn

)
,

where xn = −10, 2, 10, −2, if n mod 4 = 0, 1, 2, 3, respectively, starts

0, 0, 2, 1, 2, 8, 20, 45, 108, 264, 638, 1537, . . . ;

this is A353581 in the OEIS. Its partial sums form sequence A353582, namely

|4Ψ̂4,n| = 1
16

(
(4−

√
2)(1 +

√
2)n + (4 +

√
2)(1−

√
2)n + yn

)
= 0, 0, 2, 3, 5, 13, 33, 78, 186, 450, 1088, 2625, . . .

with yn = −8, −4, 16, 12, if n mod 4 = 0, 1, 2, 3, respectively.
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For the sets of 4-key distances in Ŝnp , p ≥ 3, we get the recurrence

D̂D0 = ∅ = D̂D1, D̂D2 = {1}, D̂D3 = {2},

D̂Dn+4 = 2n+1 +
(
D̂Dn+3 ∪

(
2n +

(
D̂Dn+1 ∪ D̂Dn

)))
.

For n ≥ 2 we have max D̂Dn = 2n−2 and

min D̂Dn =


1
5
(2n + 4), if nmod 4 = 0 ;

1
5
(2n + 3), if nmod 4 = 1 ;

1
5
(2n + 1), if nmod 4 = 2 ;

1
5
(2n + 2), if nmod 4 = 3 .

Asymptotically, for large n, we have min D̂Dn ∼ 1
5
2n and max D̂Dn ∼ 1

4
2n.

The sequence ĉc obtained from the union over n ∈ N of the sets D̂Dn by order of size is
given by ĉc(1) = 1 and ∀n ∈ N0:

∀ k ∈ [FFn + FFn+1] : ĉc(ΣFFn+3 + k) = 3 · 2n−1 + ĉc(ΣFFn−1 + k),

∀ k ∈ [FFn+3] : ĉc(ΣFFn+4 − FFn+3 + k) = 2n + ĉc(ΣFFn+2 + k).

The sequence ĉc (with offset 1) starts

1, 2, 4, 7, 8, 13, 14, 15, 16, 26, 28, 29, 30, 31, 32, . . .

and is A353579 in the OEIS. It can be viewed as the self-generating sequence with seed 1
and generating function set {k 7→ 2n + k, k 7→ 3 · 2n+1 + k, k 7→ 3 · 2n+2 + k}, where n is the
smallest non-negative integer such that k ≤ 2n (cf. Lemma 1).

4 Outlook

For fixed m and p, the string sets of m-key vertices, mΨp,n for Sierpiński graphs Snp and mΨ̂p,n

for Sierpiński triangle graphs Ŝnp , are often, perhaps always, regular languages, denoted
by regular expressions. For example, the language of non-empty strings in 2Ψ3,n can be
represented by the regular expression

0(1 ∨ 20)?2,

illustrating equation (9) in the proof of Theorem 4. This regular expression denotes the
language of all strings that begin with the character 0 and end with the character 2, with
zero or more substrings, each either 1 or 20, in between; the star character stands for the
star closure, or Kleene closure, of a language. If we wish to include the empty string, which
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is the only key vertex when n = 0, we can use the more compact but perhaps less intuitive
regular expression

(01?2)?.

From this, all distance properties can be deduced via the formulas (2) and (23), (24), re-
spectively. The counting sequences |2kΨp,n| for m-key vertices when m = 2k appear to have
interesting forms, extending the formulas for k ∈ {0, 1, 2} presented here. Moreover, it will
be interesting to investigate the fractal structures engendered by the underlying sets of key
vertices.
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