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Abstract

It is known that the entries of a Riordan array satisfy horizontal recursive relations
represented by the A- and Z-sequences. In this paper, we study a vertical recursive
relation approach to Riordan arrays. This vertical recursive approach gives a way to
represent the entries of a Riordan array (g, f) in terms of a recursive linear combination
of the coefficients of g. We also give a matrix representation of the vertical recursive
relation. The set of all those matrices forms a group, called the quasi-Riordan group.
We present extensions of the horizontal recursive relation and the vertical recursive
relation in terms of c- and C-Riordan arrays, with illustrations by using the rook tri-
angle and the Laguerre triangle. These extensions represent a way to study nonlinear
recursive relations of the entries of some triangular matrices from linear recursive re-
lations of the entries of Riordan arrays. In addition, the matrix representation of the
vertical recursive relation of Riordan arrays provides transforms between lower order
and higher order finite Riordan arrays, where the mth order Riordan array is defined
by (g, f)m = (dn,k)m≥n,k≥0. Furthermore, the vertical relation approach to Riordan
arrays provides a unified approach to construct identities.

1 Introduction

Riordan matrices are infinite, lower triangular matrices defined by the generating function
of their columns. With matrix multiplication, they form a group, called the Riordan group
(see Shapiro, Getu, Woan and Woodson [29]).
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More formally, let us consider the set of formal power series ring F = K[[t]], where K is
the field of R or C. The order of f(t) ∈ F , f(t) =

∑∞

k=0 fkt
k (fk ∈ K), is the minimum

number r ∈ N0 such that fr 6= 0, where N0 = N ∪ {0} and N is the positive integer set. We
let Fr denote the set of formal power series of order r. Let g(t) ∈ F0 and f(t) ∈ F1; the pair
(g, f) defines the (proper) Riordan matrix D = (dn,k)n,k∈N0

= (g, f) where

dn,k = [tn]g(t)f(t)k (1)

or, in other words, having gfk as the generating function of the kth column of (g, f). The
first fundamental theorem of Riordan matrices concerns the action of the proper Riordan
matrices on the formal power series presented by

(g(t), f(t))h(t) = g(t)(h ◦ f)(t),

which can be abbreviated as (g, f)h = gh(f). Thus we immediately see that the usual
row-by-column product of two Riordan matrices is also a Riordan matrix:

(g1, f1)(g2, f2) = (g1g2(f1), f2(f1)). (2)

The Riordan matrix I = (1, t) is the identity matrix because its entries are dn,k = [tn]tk =
δn,k.

Let (g (t) , f(t)) be a Riordan matrix. Then its inverse is

(g (t) , f(t))−1 =

(

1

g(f(t))
, f(t),

)

, (3)

where f(t) is the compositional inverse of f(t), i.e., (f ◦ f)(t) = (f ◦ f)(t) = t. In this way,
the set R of all proper Riordan matrices forms a group (see [29]) called the Riordan group.

Here is a list of six important subgroups of the Riordan group (see [29, 31, 1, 30]):

• the Appell subgroup {(g(z), z)}.

• the Lagrange (associated) subgroup {(1, f(z))}.

• the k-Bell subgroup {(g(z), z(g(z))k)}, where k is a fixed positive integer.

• the hitting-time subgroup {(zf ′(z)/f(z), f(z))}.

• the derivative subgroup {(f ′(z), f(z))}.

• the checkerboard subgroup {(g(z), f(z))}, where g is an even function and f is an odd
function.

The 1-Bell subgroup is referred to as the Bell subgroup for short, and the Appell subgroup
can be considered as the 0-Bell subgroup if we allow k = 0 to be included in the definition
of the k-Bell subgroup.

Let G be a group, and let H and N be two subgroups of G with N normal. Then the
following statements are equivalent:
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• NH = G and N ∩H = e.

• Every g ∈ G can be written uniquely as g = nh, where n ∈ N and h ∈ H.

• Define ψ : H → G/N by ψ(h) = Nh, h ∈ H. Then ψ is an isomorphism.

If these conditions hold, we write G = N ⋊ H and say that G is expressed as a semidirect
product of N and H. Since for every (g, f) ∈ R we have

(g, f) = (g, t)(1, f),

where (g, t) ∈ A and (1, f) ∈ L and A and L are the Appell subgroup, the normal subgroup
of R, and the Lagrange subgroup, respectively.

An infinite lower triangular matrix [dn,k]n,k∈N0
is a Riordan matrix if and only if a unique

sequence A = (a0 6= 0, a1, a2, . . .) exists such that for every n, k ∈ N0 we have

dn+1,k+1 = a0dn,k + a1dn,k+1 + · · ·+ an−kdn,n. (4)

This is equivalent to
f(t) = tA(f(t)) or t = f̄(t)A(t). (5)

Here A(t) is the generating function of the A-sequence. The first formula of (5) is also
called the second fundamental theorem of Riordan matrices. Moreover, there exists a unique
sequence Z = (z0, z1, z2, . . .) such that every element in column 0 can be expressed as the
linear combination

dn+1,0 = z0dn,0 + z1dn,1 + · · ·+ zndn,n, (6)

or equivalently,

g(t) =
1

1− tZ(f(t))
, (7)

in which and throughout we always assume g(0) = g0 = 1, a usual hypothesis for proper
Riordan matrices with normalization. From (7), we may obtain the equation.

Z(t) =
g(f̄(t))− 1

f̄(t)g(f̄(t))
.

A- and Z-sequence characterizations of Riordan matrices were introduced, developed,
and/or studied in Merlini, Rogers, Sprugnoli, and Verri [24], Roger [28], Sprugnoli and the
author [17], Cheon and Jin [5], Cheon, Luzón, Morón, Prieto Martinez, and Song [7], [13],
Jean-Louis and Nkwanta [19], Luzón, Morón, and Prieto-Martinez [21, 22], etc. In [17] the
expressions of the A- and Z-sequences of the product depend on the analogous sequences of
the two given factors.

The Catalan numbers, Cn =
(

2n
n

)

/(n+ 1), are a sequence of integers that occur in many
counting situations. The books Enumerative Combinatorics, Volume 2 [33] and the more
recent Catalan Numbers by Richard Stanley [34] give a wealth of information about them.
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The generating function of the Catalan numbers is denoted by C(z), which can be written
as

C(t) =
∞
∑

n=0

Cnt
n =

1−
√

1− 4t

2t
,

which is equivalent to the functional equation C(t) = 1 + tC(t)2. It can be shown that [11]

C(t)k =
∞
∑

n=0

k

2n+ k

(

2n+ k

n

)

tn.

A Dyck path of length 2n is a path in the plane lattice Z × Z from the origin (0, 0) to
(2n, 0), made up with steps (1, 1) and (1,−1). The other requirement is that a path can
never go below the x -axis. We refer to n as the semilength of the path. It is well known
that the number of Dyck paths of semilength n is the n-th Catalan number Cn. A partial
Dyck path is a Dyck path without requiring that the end point be on the x-axis. Hence we
have that

C(n, k) := [tn]C(t)k =
k

2n+ k

(

2n+ k

n

)

(8)

is the number of the partial Dyck paths from (0, 0) to (2n+ k, k).
For a positive integer m, an m-Dyck path is a path from the origin to (mn, 0) using the

steps (1, 1) and (1, 1 − m) and again not going below the x-axis. We refer to mn as the
length of the path. A partial m-Dyck path is defined as an m-partial Dyck path. It is well
known that the number of m-Dyck paths of length mn is (see, for example, [11])

Fm(n, 1) =
1

mn+ 1

(

mn+ 1

n

)

,

the Fuss-Catalan numbers. For m = 2, the Fuss-Catalan numbers are the Catalan numbers
F2(n, 1). More generally, the Fuss-Catalan numbers are

Fm(n, r) :=
r

mn+ r

(

mn+ r

n

)

, (9)

which are named after N. I. Fuss and E. C. Catalan (see [9, 11, 20, 25, 26, 12, 15, 18]). The
Fuss-Catalan numbers have many combinatorial applications (see, for example, Shapiro and
the author [18]).

The generating function Fm(t) for the Fuss-Catalan numbers, {Fm(n, 1)}n≥0 is called the
generalized binomial series in [11], and it satisfies the function equation Fm(t) = 1+tFm(t)

m.
Hence from Lambert’s formula for the Taylor expansion of the powers of Fm(t) (see [11]), we
have that

F r
m ≡ Fm(t)

r =
∑

n≥0

r

mn+ r

(

mn+ r

n

)

tn (10)
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for all r ∈ R. The key case(10) leads to the following formula for Fm(t):

Fm(t) = 1 + tFm
m (t). (11)

Actually,

1 + tFm
m (t) = 1 +

∑

n≥0

m

mn+m

(

mn+m

n

)

tn+1

= 1 +
∑

n≥1

m

mn

(

mn

n− 1

)

tn

=
∑

n≥0

1

mn+ 1

(

mn+ 1

n

)

tn = Fm(t).

For the cases m = 1 and 2, we have F1 = 1/(1 − t) and F2 = C(z), respectively. When
m = 3, the Fuss-Catalan numbers (F3)n form the sequence A001764 (see [32]),

1, 1, 3, 12, 55, 273, 1428, . . . ,

the so-called ternary numbers. The ternary numbers count the number of 3-Dyck paths
or ternary paths. The generating function of the ternary numbers is denoted by T (t) =
∑∞

n=0 Tnt
n with Tn = 1

3n+1

(

3n+1
n

)

, and is given equivalently by the equation

T (t) = 1 + tT (t)3.

2 A vertical recursive relation view of Riordan arrays

In a Riordan array (g, f) = (dn,k)n,k≥0, the first column (0th column), with its generating
function g(t), usually possesses an interesting combinatorial interpretation or represents an
important sequence, while the other columns might be considered as the compositions of the
first column in the view of the following recurrence relation:

dn,k = [tn]gfk =
n
∑

j=1

fj[t
n−j]gfk−1 =

n−k+1
∑

j=1

fjdn−j,k−1 (12)

for n, k ≥ 1, where f(t) =
∑

j≥1 fjt
j. For instance,

d1,1 = f1d0,0,

d2.1 = f2d0,0 + f1d1,0, d2,2 = f1d1,1,

d3,1 = f3d0,0 + f2d1,0 + f1d2.0, d3,2 = f2d2,1 + f1d1,1, d3,3 = f1d2,2, . . .

5
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Example 1. For the Pascal triangle (1/(1−t), t/(1−t)), from (12) we obtain the well-known
recursive relation

(

n

k

)

=
n−k+1
∑

j=1

(

n− j

k − 1

)

. (13)

Recurrence relation (12) provides a resource for constructing identities and an algorithm
for computing powers and multiplications of formal power series. The latter approach may
simplify the corresponding computation process by using Faà di Bruno’s formula.

Theorem 2. Let (g, f) = (dn,k)n,k≥0 be a Riordan array, and let C(n, k) and Fm(n, r)
be defined by (8) and (9), respectively. Then we obtain the recurrence relation (12). In
particular, for g = Fm we have

k + 1

m(n− k) + k + 1

(

m(n− k) + k + 1

n− k

)

=
n−k
∑

j=0

k

(mj + 1)(m(n− j − k) + k)

(

mj + 1

j

)(

m(n− j − k) + k

n− k − j

)

. (14)

If m = 2, then g = F2 = C and (14) becomes

k + 1

2n− k + 1

(

2n− k + 1

n− k

)

=
n−k
∑

j=0

k

(2j + 1)(2(n− j − k) + k)

(

2j + 1

j

)(

2(n− j − k) + k

n− k − j

)

, (15)

or equivalently,

C(n− k, k + 1) =
n−k
∑

j=0

C(j, 1)C(n− j − k, k), (16)

where C(m, ℓ) are defined by (8), and C(j, 1) = [tj]C(t), the jth Catalan number.

Theorem 3. Let (g, f) = (dn,k)n,k≥0 be a Riordan array. Then its entries dn,k, n, k ≥ 0,
can be represented recursively by

dn,k =

n−(k−1)
∑

ik=1

fik

n−(k−2)−ik
∑

ik−1=1

fik−1

n−(k−3)−ik−ik−1
∑

ik−2=1

fik−2
· · ·

n−ik−ik−1−i2
∑

i1=1

fi1gn−i1−i2−···−ik . (17)

Let A and B be m×m and n× n matrices, respectively. Then we define the direct sum
of A and B by

A⊕ B =

[

A 0
0 B

]

(m+n)×(m+n)

. (18)
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Definition 4. Let g ∈ F0 with g(0) = 1 and f ∈ F1. We let [g, f ] denote the following
array, called a quasi-Riordan array.

[g, f ] := (g, f, tf, t2f, . . .), (19)

where g, f , tf , t2f · · · are the generating functions of the 0th, 1st, 2nd, 3rd, · · · , columns of
the matrix [g, f ], respectively. It is clear that [g, f ] can be written as

[g, f ] =

(

g(0) 0
(g − g(0))/t (f, t)

)

, (20)

where (f, t) = (f, tf, t2f, t3f, . . .). Particularly, if f = tg, then the quasi-Riordan array
[g, tg] = (g, t), an Appell-type Riordan array.

Note that [g, f ] defined by (19) is not the Riordan-Krylov matrix defined in [6], which
relationship is worth being investigated. Paul Barry pointed out a connection between quasi-
Riordan arrays and almost-Riordan arrays (cf. Barry [2] and Barry and Pantelidis [3]) in a
personal communication, which is being studied by Barry, Pantelidis, and the author.

Theorem 5. Let (g, f) = (dn,k)n,k≥0 be a Riordan array, and let ([1] ⊕ (g, f)) and [g, f ] be
defined by (17) and (19), respectively. Then (g, f) has the expression

(g, f) = [g, f ]([1]⊕ (g, f)). (21)

Proof. We write the formal power series g and f in the Riordan array (g, f) as g =
∑

n≥0 gnt
n

and f =
∑

n≥1 fnt
n. Then

(

g(0) 0
(g − g(0))/t (f, t)

)

([1]⊕ (g, f))

=



















d0,0
d1,0 f1
d2,0 f2 f1
d3,0 f3 f2 f1
d4,0 f4 f3 f2 f1
...

...
...

...
. . .





































1
0 d0,0
0 d1,0 d1,1
0 d2,0 d2,1 d2,2
0 d3,0 d3,1 d3,2 d3,3
...

...
...

...
. . .



















=















d0,0
d1,0 f1d0,0
d2,0 f2d0,0 + f1d1,0 f1d1,1
d3,0 f3d0,0 + f2d1,0 + f1d2,0 f2d1,1 + f1d2,1 f1d2,2
...

...
...

...
. . .














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=



















d0,0
d1,0 d1,1
d2,0 d2,1 d2,2
d3,0 d3,1 d3,2 d3,3
d4,0 d4,1 d4,2 d4,3 d4,4
...

...
...

...
. . .



















, (22)

where the last step follows (12), which completes the proof of (19).

For an integer r ≥ 0 we let h|r :=
∑r

n=0 hnt
n denote the r-th truncations of a power

series h =
∑

n≥0 hnt
n.

Corollary 6. Let (g, f) = (dn,k)n,k≥0 be a Riordan array with g =
∑

n≥0 gnt
n and f =

∑

n≥1 fnt
n, and let (g, f)n be the nth order leading principle submatrix of (g, f). Then we

have the recursive relation of (g, f)n in the following form:

(g, f)n = [g, f ]n([1]⊕ (g, f)n−1), (23)

where [g, f ]n is the nth order leading principle submatrix of the quasi-Riordan array [g, f ]
defined by (17), namely

[g, f ]n =

(

g(0) 0
((g − g(0))/t)|n−1 (f, t)n−1

)

, (24)

where the n − 1st truncation of (g − g(0)/t)|n−1 is (g − g(0)/t)|n−1 =
∑n−1

k=1 gkt
k−1, and

(f, t)n−1 = (f, tf, t2f, . . . , tn−1f). We call [g, f ]n the recursive matrix of the Riordan array
(g, f).

Mao, Mu, and Wang [23] use (24) to give another interesting criterion for the total
positivity of Riordan arrays.

In the next section, we will show that the set of all quasi-Riordan arrays forms a group,
called the quasi-Riordan group.

3 The quasi-Riordan group

Let Rr denote the set of all quasi-Riordan arrays defined by (19). In this section, we show
that Rr is a group with respect to regular matrix multiplication.

Proposition 7. Let [g, f ], [d, h] ∈ Rr, and let u =
∑

n≥0 unt
n ∈ F0. Then the first funda-

mental theorem for quasi-Riordan arrays (FFTQRA) is

[g, f ]u = gu0 +
f

t
(u− u0), (25)
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which implies that

[g, f ][d, h] =

[

g +
f

t
(d− 1),

fh

t

]

. (26)

Hence, [1, t] is the identity of Rr.

Proof. The FFTQRA (25) can be proved as follows.

[g, f ]u = (g, f, tf, t2f, · · · )











u0
u1
u2
...











= gu0 + f
∑

n≥1

unt
n−1 = gu0 +

f

t
(u− u0).

By using FFTQRA and noting d(0) = 1 and h(0) = 0, we have

[g, f ][d, h] = (g, f, tf, t2f, · · · )(d, h, th, t2h, · · · )

=

(

g +
f

t
(d− 1),

f

t
h,
f

t
th,

f

t
t2h, · · ·

)

,

which implies (26).
Substituting [g, f ] = [1, t] and [d, h] = [1, t] into (26), we obtain, respectively,

[1, t][g, f ] = [1 + (g − 1), f ] = [g, f ] and

[g, f ][1, t] =

[

g +
f

t
(1− 1),

f

t
t

]

= [g, f ],

which implies [1, t], the identity matrix, is the identity of Rr.

Theorem 8. The set of all quasi-Riordan arrays Rr is a group, called the quasi-Riordan
group, with respect to the multiplication represented in (26).

Proof. From (26) of Proposition 7, Rr is closed with respect to the multiplication. (26) also
shows [1, t] is the identity of Rr. For any [g, f ] ∈ Rr, its inverse is

[g, f ]−1 =

[

1 +
t

f
(1− g),

t2

f

]

, (27)

since
[

1 +
t

f
(1− g),

t2

f

]

[g, f ] =

[

1 +
t

f
(1− g) +

t2/f

t
(g − 1),

t2

f

f

t

]

= [1, t]. (28)

Finally, the associative law is satisfied for any [g, f ], [d, h], and [u, v] ∈ Rr because

([g, f ][d, h])[u, v] =

[

g +
f

t
(d− 1),

fh

t

]

[u, v]

9



=

[

g +
f

t
(d− 1) +

fh

t2
(u− 1),

fhv

t2

]

and

[g, f ]([d, h])[u, v] = [g, f ]

[

d+
h

t
(u− 1),

hv

t

]

=

[

g +
f

t

(

d+
h

t
(u− 1)− 1

)

,
fhv

t2

]

=

[

g +
f

t
(d− 1) +

fh

t2
(u− 1),

fhv

t2

]

shows ([g, f ][d, h])[u, v] = [g, f ]([d, h][u, v]).

Example 9. Consider the quasi-Riordan array [1/(1− t), t/(1− t)], which is an Appell-type
Riordan array (1/(1− t), t) with its inverse (1− t, t). From (27) its inverse in Rr is

[

1

1− t
,

t

1− t

]−1

=

[

1 +
t

f
(1− g),

t2

f

]

=

[

1 +
t

t/(1− t)

(

1−
1

1− t

)

,
t2

t/(1− t)

]

= [1− t, t(1− t)]

= (1− t, t) =















1
−1 1
0 −1 1
0 0 −1 1
...

...
...

. . .















.

Theorem 10. A quasi-Riordan array [g, f ] is a Riordan array if and only if f = tg, i.e.,
when [g, f ] is an Appell-type Riordan array. Hence, A = {[g, tg] : g ∈ F0, g(0) = 1} is a
subgroup of Rr, which is called the Appell quasi-Riordan subgroup.

Proof. Let [g, tg], [d, td] ∈ Rr. Then

[g, tg][d, td] =

[

g +
tg

t
(d− 1),

t2gd

t

]

= [gd, tgd].

A is closed under multiplication. In addition, the inverse of [g, f ]

[g, tg]−1 =

[

1 +
t

tg
(1− g),

t2

tg

]

=

[

1

g
,
t

g

]

is also in A.
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Theorem 11. Let Rr be the quasi-Riordan group. Then every conjugate of an element
[g, f ] ∈ Rr is in the set R(f)r := {[d, f ] : d ∈ F0, d(0) = 1}. Hence, A = {[g, tg] : g ∈
F0, g(0) = 1} is a normal subgroup of Rr.

Proof. Let [d, h] ∈ Rr. Then for an arbitrarily fixed [g, f ] ∈ Rr, we have

[d, h][g, f ][d, h]−1 = [d, h][g, f ]

[

1 +
t

h
(1− d),

t2

h

]

=

[

d+
h

t
(g − 1)−

f

t
(d− 1), f

]

∈ R(f)r.

In particular, if f = tg in [g, f ], then

[d, h][g, tg][d, h]−1 =

[

d+
h

t
(g − 1)− g(d− 1), tg

]

,

which implies A = {[g, tg] : g ∈ F0, g(0) = 1} is a normal subgroup of Rr.

4 A vertical recursive relation view of (c)- and (C)-

Riordan arrays

In this section, we extend the vertical recursive relation to (c) Riordan arrays. We start from
the following definition of the (c)-class of Riordan arrays.

Definition 12. Let (g, f) = (dn,k)n,k≥0 be a Riordan array, and let c = (c0, c1, c2, . . .) be a
sequence satisfying c0 = 1 and ck 6= 0 for all k = 1, 2, . . .. We define

(g, f)c =

(

cn
ck
dn,k

)

n,k≥0

. (29)

Then the set
{R}c := {(g, f)c : (g, f) = (dn,k)n,k≥0 ∈ R} (30)

is called the (c)-class of R or the set of the (c)-Riordan arrays. Since we may change cn and
ck respectively to 1/cn and 1/ck,

(

ck
cn
dn,k

)

n,k≥0

=

(

1/cn
1/ck

dn,k

)

n,k≥0

is in the (1/c)-class of R, where (1/c) = (1/c0, 1/c1, 1/c2, . . .).
Let (g, f) = (dn,k)n,k≥0 be a Riordan array, and let C = (cn,k)n,k≥0 be a lower triangular

matrix satisfying cn,0 = 1 and cn,k 6= 0 for all 0 ≤ k ≤ n and cn,k = 0 for all k > n. We
define

11



(g, f)C =

(

cn,n
cn,k

dn,k

)

n,k≥0

. (31)

The set
{R}C := {(g, f)C : (g, f) = (dn,k)n,k≥0 ∈ R} (32)

is called the (C)-class of R, or the set of the (C)-Riordan arrays. Similarly,
(

cn,k

cn,n
dn,k

)

n,k≥0

is in the (1/C)-class of R, where (1/C) = (1/cn,k)n,k≥0.

Wang and Wang [35] defined the (c)-Riordan arrays by using the generalized formal power
series. Gould and the author [10] claimed that for a sequence (c) the (c)-class of R, or the
set of the (c)-Riordan arrays {R}c, forms a group. More precisely, we have the following
theorem.

Theorem 13. [10] Let c = (c0, c1, c2, . . .) be a sequence satisfying c0 = 1 and ck 6= 0 for
all k = 1, 2, . . ., and let {R}c be the (c)-class defined by (30). Then {R}c forms a group
with respect to the regular matrix multiplication. We let Rc denote this group and called the
(c)-Riordan group with respect to the sequence (c).

Proof. If (g1, f1)c, (g2, f2)c ∈ {(g, f)}c, and define (g1, f1) = (dn,k)n,k≥0, (g2, f2) = (en,k)n,k≥0,
and (g1, f1)(g2, f2) = (g1g2(f1), f2(f1)) = (hn,k)n,k≥0, then (dn,k)n,k≥0(en,k)n,k≥0 = (hn,k)n,k≥0,
and

(g1, f1)c(g2, f2)c =

(

minn,k
∑

j=0

(

cn
cj
dn,j

)(

cj
ck
ej,k

)

)

n,k≥0

=

(

cn
ck

minn,k
∑

j=0

(dn,jej,k)

)

n,k

=

(

cn
ck
hn,k

)

n,k≥0

= (g1g2(f1), f2(f1))c.

Hence, we may find (1.t)c is the identity of Rc and the inverse of an element (g, f)c ∈ Rc is
(1/g(f), f), where f is the compositional inverse of f . Finally, we have

((g, f)c(d, h)c) (u, v)c = (gd(f)u(h(v)), v(h(f)))

= (g, f)c ((d, h)c(u, v)c) ,

completing the proof.

More material on (c)-Riordan arrays can be found in [14, 30].
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Example 14. Let (g, f) = (1/(1−t), t/(1−t)). Then (1/(1−ℓt), t/(1−ℓt)) = (1/(1−t), t/(1−
t))c with c = (cn)n≥0 = (ℓn)n≥0, where ℓ ∈ K. The (c)-Riordan array (1/(1− ℓt), t/(1− ℓt))c
with c = (cn)n≥0 = (ℓn)n≥0 begins























1 0 0 0 0 0 0
ℓ 1 0 0 0 0 0
ℓ2 ℓ2 1 0 0 0 0
ℓ3 ℓ2 + ℓ3 ℓ2 + ℓ 1 0 0 0
ℓ4 2ℓ3 + ℓ4 2ℓ2 + 2ℓ3 ℓ2 + 2ℓ 1 0 0
ℓ5 3ℓ4 + ℓ5 4ℓ3 + 3ℓ4 4ℓ2 + 3ℓ3 ℓ2 + 3ℓ 1 0
...

...
...

...
...

...
. . .























Example 15. Let (g, f) = (1/(1− t), t/(1− t)) = (
(

n

k

)

)n,k≥0, and let c = (n!)n≥0. Then

(rn,k)n,k≥0 =

(

n!

k!

(

n

k

))

n,k≥0

=

(

(n− k)!

((

n

k

))2
)

∈ {(1/(1− t), t/(1− t))}c, (33)

where c = (cn)n≥0 = (n!)n≥0. The (c)-Riordan array (rn,k)n,k≥0 begins

(rn,k)n,k≥0 =























1 0 0 0 0 0 0
1 1 0 0 0 0 0
2 4 1 0 0 0 0
6 18 9 1 0 0 0
24 96 72 16 1 0 0
120 600 600 200 5 1 0
...

...
...

...
...

...
. . .























.

The matrix (rn,k)n,k≥0 is called a rook matrix. The polynomial rn(x) =
∑n

k=0 r(n, k)x
n−k is

called the rook polynomial of nth order (cf. Fielder [8] and Riordan [27, §7.2, 7.3, and 7.4]).
In general, consider a board that represents a full or a part chess board. Let m be the

number of squares present in the board. Two pawns or rooks placed on a board are said to
be in non capturing positions if they are not in same row or same column. For 2 ≤ k ≤ m,
let rk denote the number of ways in which k rooks can be placed on a board such that no
two rooks capture each other. Then the polynomial 1 + r1x + r2x

2 + · · · + rmx
m is called

the (general) rook polynomial for the board considered. If the board is denoted by C, then
the corresponding polynomial is denoted by r(C, x). The rook polynomials are defined for
m ≥ 2. If m = 1, then the board contains only one square so that rk = 0 for k ≥ 2, and
r(C, x) = 1 + x. Hence, the coefficient rn,k of the roof polynomial rn(x) =

∑n

k=0 r(n, k)x
n−k

is referred to as the number of ways in which k rooks can be placed on a n × n full chess
board such that no two rooks capture each other. The rook polynomials for 1 × 1, 2 × 2,
3× 3, 4× 4, and 5× 5 full boards are, respectively,

r1(x) = x+ 1,

13



r2(x) = 2x2 + 4x1 + 1,

r3(x) = 6x3 + 18x2 + 9x+ 1,

r4(x) = 24x4 + 96x3 + 72x2 + 16x+ 1,

r5(x) = 120x5 + 600x4 + 600x3 + 200x2 + 5x+ 1.

In a given board C, suppose we choose a particular square and let (∗) denote the square.
Let D denote the board obtained from C by deleting the row and column containing the
square (∗), and let E be the board obtained from C by deleting only the square (∗). Then
the rook polynomial for the board C is given by r(C, x) = xr(D, x)+ r(E, x). This is known
as expansion formula for r(C, x).

We let Cn+1 denote the (n + 1) × (n + 1) full board. We suppose n × n full board Cn

is located at the left upper corner of Cn+1, and let En denote the board obtained from the
board Cn+1 by deleting only the square at the right lower corner of Cn+1. Then, we have

r(En, x) = r(Cn+1, x)− xr(Cn, x) = rn+1(x)− xrn(x)

=
n+1
∑

k=0

(n+ 1)!

k!

(

n+ 1

k

)

xn+1−k − x

n
∑

k=0

n!

k!

(

n

k

)

xn−k

=
n+1
∑

k=0

n!

k!

(

(n+ 1)

(

n+ 1

k

)

−

(

n

k

))

xn+1−k

=
n
∑

k=0

n!

k!

(

n

k

)(

(n+ 1)2

n− k + 1
− 1

)

xn+1−k + 1

=
n
∑

k=0

n!

k!

n2 + n+ k

n− k + 1

(

n

k

)

xn+1−k + 1

=
n
∑

k=0

n2 + n+ k

n− k + 1
(n− k)!

((

n

k

))2

xn+1−k + 1. (34)

We define r(En, x) =
∑n+1

k=0 En,kx
n+1−k and call it the remainder polynomial, where

En,k =
n2 + n+ k

n− k + 1
(n− k)!

((

n

k

))2

(35)

for 0 ≤ k ≤ n and En,n+1 = 1. Then, the lower triangle matrix (En,k)n,k≥0, called the
remainder triangle, begins

(En,k)n,k≥0 =



















0 1 0 0 0 0 0
1 3 1 0 0 0 0
4 14 8 1 0 0 0
18 78 63 15 1 0 0
96 504 528 184 4 1 0
...

...
...

...
...

...
. . .



















.
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Here is a recursive relation related to the rook triangle (rn,k)n,k≥0 and the triangle
(En,k)n,k≥0.

Proposition 16. Let (rn,k)n,k≥0 and (En,k)n,k≥0 be the rook triangles and the remainder tri-
angle defined in Example 15, and let rn(x) =

∑n

k=0 r(n, k)x
n−k and r(En, x) =

∑n

k=0En,kx
n−k

be the rook polynomial and the remainder polynomial, respectively. Then, there exists the re-
cursive relation

rn+1(x) = xrn(x) + r(En, x) (36)

for n ≥ 0, which can be expressed as a matrix form

(rn,k) = (rn,k) + (En,k), (37)

where n ≥ 0 and (rn,k) is obtained from (rn,k) by deleting its first row. Furthermore, we have
the expansion formula for rn+1(x) as

rn+1(x) =
n
∑

k=0

xn−kr(Ek, x) + xn+1. (38)

Proof. Equation (36) comes from the expansion formula. Substituting rn(x) =
∑n

k=0 r(n, k)x
n−k

and r(En, x) =
∑n

k=0En,kx
n−k into (36) and comparing the coefficients of the same powers

of x on the both sides yields
rn+1,k = rn,k + En,k,

which can be combined as the matrix form (37) for n, k ≥ 0. From (36) we have

rn+1(x) = xrn(x) + r(En, x)

xrn(x) = x2rn−1(x) + xr(En−1, x)

x2rn−1(x) = x3rn−2(x) + x2r(En−2, x)

...

xnr1(x) = xn+1r0(x) + xnr(E0, x).

Adding up the above system and cancelling the same terms from the both sides yields
(38).

Example 17. Let (g, f) = (1/(1− t), t/(1− t)) = (
(

n

k

)

)n,k≥0. Then

(Ln,k)n,k≥0 =

(

(−1)n/(n)n
(−1)k/(n)k

(

n

k

))

n,k≥0

=

(

(−1)n−k

(n− k)!

(

n

k

))

∈ {(1/(1− t), t/(1− t))}C , (39)
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where C = (cn,k)n,k≥0 = ((−1)n/(n)k)n,k≥0. The (C)-Riordan array (Ln,k)n,k≥0 begins























1 0 0 0 0 0 0
−1 1 0 0 0 0 0
1
2

−2 1 0 0 0 0
−1

6
3
2

−3 1 0 0 0
1
24

−2
3

3 −4 1 0 0
− 1

120
5
24

−5
3

5 −5 1 0
...

...
...

...
...

...
. . .























.

The matrix (Ln,k)n,k≥0 is called the Laguerre matrix. The polynomial Ln(n, k) =
∑n

k=0 Ln,kx
n−k

is called the Laguerre polynomial of order n (cf., for example, Hsu, Shiue, and the author
[16] and Riordan [27, pp. 164–170]).

Comparing (33) and (39) and noting that

rn,k =
n!

k!

(

n

k

)

,

we immediately obtain

rn,n−k =
n!

(n− k)!

(

n

k

)

=
n!

(n− k)!
(−1)n−k(n− k)!Ln,k = (−1)n−kn!Ln,k, (40)

which implies
n
∑

k=0

rn,n−kx
n−k = n!

n
∑

k=0

Ln,k(−x)
n−k = n!Ln(−x) (41)

for 0 ≤ k ≤ n. The left-hand side of (41) can be written as

n
∑

k=0

rn,n−kx
n−k =

n
∑

k=0

rn,kx
k = xn

n
∑

k=0

rn,k

(

1

x

)n−k

= xnrn

(

1

x

)

.

Hence, we have the well-known formula

rn(x) = n!xnLn

(

−
1

x

)

for n ≥ 0.

Definition 18. We may extend the rook triangle and the rook polynomials to a general case
by defining the following generalized rook triangle and generalized rook polynomials:

(r̂n,k)n,k≥0 =

(

n!

k!
dn,k

)

n,k≥0

=

(

(n− k)!

(

n

k

)

dn,k

)

∈ {(g(t), f(t)}c, (42)
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where c = (cn)n≥0 = (n!)n≥0 and (g, f) = (dn,k)n,k≥0. In addition, the polynomial

r̂n(x) =
n
∑

k=0

r̂n,kx
n−k (43)

is referred to as the generalized rook polynomial of degree n.
We may also extend the Laguerre triangle and the Laguerre polynomials to a general

case by defining the following generalized Riordan type Laguerre triangle and generalized
Riordan type Laguerre polynomials:

(L̂n,k)n,k≥0 =

(

(−1)n/(n)n
(−1)k/(n)k

dn,k

)

n,k≥0

=

(

(−1)n−k

(n− k)!

(

n

k

)

dn,k

)

∈ {(g(t), f(t)}Ĉ , (44)

where Ĉ = (cn,k)n,k≥0 = (n!)n≥0 and (g, f) = (dn,k)n,k≥0. In addition, the polynomial

L̂n(x) =
n
∑

k=0

L̂n,kx
n−k (45)

is referred to as the generalized Laguerre polynomial of degree n.

Similar to the relationship between the rook triangle and the Laguerre triangle and the
relationship between the rook polynomials and the Laguerre polynomials, we may extend
the relationships to the general cases as follows.

Theorem 19. Let the generalized rook triangle and the rook polynomials and the generalized
Riordan type Laguerre triangle and the generalized Riordan type Laguerre polynomials be
defined in Definition 18. Then we have

r̂n,n−k = (−1)n−kn!L̂n,k (46)

for 0 ≤ k ≤ n and

r̂n(x) = n!xnL̂n

(

−
1

x

)

for n ≥ 0.

From Examples 15 and 47, we have a relationship between

Theorem 20. Let (g, f) = (dn,k)n,k≥0 be a Riordan array, and let (g, f)c and (g, f)Ĉ be

defined in Definition 12. Then (g, f)c = (d
(c)
n,k)n,k≥0 and (g, f)Ĉ = d

(Ĉ)
n,k≥0 satisfy the horizontal

recursive relations, which are extensions of A- and Z-sequence representation (4) and (6) of
(g, f) to (g, f)c and (g, f)Ĉ, respectively:

d
(c)
n+1,k+1 =

cn+1

cnck+1

n−k
∑

j=0

ajck+jd
(c)
n,k+j (47)
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for k ≥ 0 and

d
(c)
n+1,0 =

cn+1

cn

n
∑

j=0

zjcjd
(c)
n,j (48)

as well as

d
(Ĉ)
n+1,k+1 =

cn+1,n+1

cn,ncn+1,k+1

n−k
∑

j=0

ajcn,k+jd
(Ĉ)
n,k+j (49)

for k ≥ 0 and

d
(Ĉ)
n+1,0 =

cn+1,n+1

cn,n

n
∑

j=0

zjcn,jd
(Ĉ)
n,j . (50)

Theorem 21. Let (g, f) = (dn,k)n,k≥0 be a Riordan array, and let (g, f)c and (g, f)Ĉ be

defined in Definition 12. Then (g, f)c = (d
(c)
n,k)n,k≥0 and (g, f)Ĉ = d

(Ĉ)
n,k≥0 satisfy the vertical

recursive relations, which are extensions of vertical recursive relation (12) of the entries of
(g, f) to (g, f)c and (g, f)Ĉ, namely,

d
(c)
n,k =

cn
ck

n−k+1
∑

j=1

fj
ck−1

cn−j

d
(c)
n−j,k−1 (51)

and

d
(Ĉ)
n,k =

cn,n
cn,k

n−k+1
∑

j=1

fj
cn−j,k−1

cn−j,n−j

d
(Ĉ)
n−j,k−1, (52)

respectively.

Example 22. It is known that the A- and Z- sequences of (1/(1−t), t/(1−t)) are (1, 1, 0, . . .)
and (1, 0, 0, . . .), respectively. Then for the rook triangle represented in Example 15 with
dn,k =

(

n

k

)

, from (47) and (48), we obtain the horizontal recursive relations for the entries of
the rook triangle,

rn,k = nrn−1,k +
n

k
rn−1,k−1 (53)

for k ≥ 1 and
rn,0 = nrn−1,0. (54)

From (51) and noting (13) we obtain the vertical recursive relation for the entries of the rook
triangle

rn,k =
n−k+1
∑

j=1

(n)j
k
rn−j,k−1 (55)

for k ≥ 1.
From (33), one may obtain an identity equivalent to (53); namely,

(

n

k

)2

=
n

n− k

(

n− 1

k

)2

+
n

k

(

n− 1

k − 1

)2

.
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Similarly, from (55), we get

(

n

k

)2

=
n−k+1
∑

j=1

(n)j
k(n− k)j−1

(

n− j

k − 1

)2

.

Example 23. Similarly, for the Laguerre triangle represented in Example 17 with dn,k =
(

n

k

)

,
from (47) and (48), we obtain the horizontal recursive relations for the entries of the Laguerre
triangle; namely,

Ln,k = Ln−1,k−1 −
1

n− k
Ln−1,k (56)

for k ≥ 1 and

Ln,0 = −
1

n
Ln−1,0. (57)

From (51) and noting (13) we obtain the vertical recursive relation for the entries of the
Laguerre triangle; namely,

Ln,k =
1

(n− k)!

n−k+1
∑

j=1

(−1)j−1(n− k − j + 1)!Ln−j,k−1 (58)

for k ≥ 1. It can be seen that (58) is equivalent to (13).
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Riordan involutions, Revista Matemática Complutense, https://doi.org/10.1007/

s13163-020-00382-8, 2020.

[23] J. Mao, L. Mu, and Y. Wang, Yet another criterion for the total positivity of Riordan
arrays, Linear Algebra Appl. 634 (2022), 106–111.

[24] D. Merlini, D. G. Rogers, R. Sprugnoli, and M. C. Verri, On some alternative charac-
terizations of Riordan matrices, Canadian J. Math. 49 (1997), 301–320.

[25] W. Mlotkowski, Fuss-Catalan numbers in noncommutative probability, Doc. Math. 15
(2010), 939–955.

[26] K. A. Penson and K. Życzkowski, Product of Ginibre matrices: Fuss-Catalan and Raney
distributions, Phys. Rev. E 83 (2011), 061118.

[27] J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958.

[28] D. G. Rogers, Pascal triangles, Catalan numbers and renewal matrices, Discrete Math.
22 (1978), 301–310.

[29] L. W. Shapiro, S. Getu, W. J. Woan, and L. Woodson, The Riordan group, Discrete
Appl. Math. 34 (1991), 229–239.

[30] L. W. Shapiro, R. Sprugnoli, P. Barry, G.-S. Cheon, T.-X. He, D. Merlini, and W.
Wang, The Riordan Group and Applications, Springer, 2022.

[31] L. W. Shapiro, Bijections and the Riordan group, Random generation of combinatorial
objects and bijective combinatorics, Theoret. Comput. Sci. 307 (2003), 403–413.

[32] N. J. A. Sloane, The On-Line Encyclopedia of Integer Sequences, https://oeis.org.

[33] R. P. Stanley, Enumerative Combinatorics, Vol. 2, Cambridge University Press, 1999.

[34] R. P. Stanley, Catalan Numbers, Cambridge University Press, 2015.

[35] W. Wang and T. Wang, Generalized Riordan arrays, Discrete Math. 308 (2008), 6466–
6500.

2020 Mathematics Subject Classification: Primary 05A15. Secondary 05A05, 15B36, 15A06,
05A19, 11B83.

Keywords : Riordan array, Riordan group, quasi-Riordan array, vertical recursive relation, A-
sequence, Z-sequence, rook triangle, Laguerre triangle, Fuss-Catalan number, Fuss-Catalan
matrix, Catalan number, Catalan matrix, (c)-Riordan array, (C)-Riordan array.

21

https://doi.org/10.1007/s13163-020-00382-8
https://doi.org/10.1007/s13163-020-00382-8
https://oeis.org


(Concerned with sequence A001764.)

Received September 30 2022; revised versions received October 1 2022; October 3 2022;
November 14 2022; November 15 2022; November 16 2022; November 17 2022. Published in
Journal of Integer Sequences, November 18 2022.

Return to Journal of Integer Sequences home page.

22

https://oeis.org/A001764
https://cs.uwaterloo.ca/journals/JIS/

	Introduction
	A vertical recursive relation view of Riordan arrays
	The quasi-Riordan group
	A vertical recursive relation view of (c)- and (C)-Riordan arrays
	Acknowledgments

