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Abstract

Using reciprocal sums of powers of Fibonacci and Lucas numbers, we present series

representations for generalized Mathieu series via Lambert-type series. An application

of the Laplace-type integral for Dirichlet series yields some integral representations of

reciprocal sums of the Fibonacci numbers and generalized Mathieu series. Finally, we

analyze the asymptotic behavior of Mathieu-Fibonacci series by the Mellin transform

method.

1 Introduction

The Mathieu series is a functional series, introduced by Émile Léonard Mathieu (1835–1890),
for the purpose of his research on the elasticity of solid bodies. This series, its generaliza-
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tions and their alternating variants have been studied by many authors. The recent book
by Tomovski et al. [22] presents many of these results, including integral representations,
inequalities and asymptotic expansions. Srivastava and Tomovski [20] introduced the gener-
alized Mathieu series

S(α,β)
µ (r; a) = S(α,β)

µ (r; (an)
∞
n=1) =

∞
∑

n=1

2aβn
(aαn + r2)µ

, r, α, β, µ ∈ R
+, (1)

where it is tacitly assumed that the monotone–increasing, divergent sequence of positive real
numbers

a = (an)
∞
n=1 ( lim

n→∞
an = ∞)

is chosen such that the infinite series (1) converges, that is, the auxiliary series
∑∞

n=1
1

aµα−β
n

is convergent. We will also find it useful to consider the function ax = a(x), x ∈ N, and its

inverse a−1(x). The alternating variant S̃
(α,β)
µ (r; a) of (1) is defined by [21]

S̃(α,β)
µ (r; a) = S̃(α,β)

µ (r; (an)
∞
n=1) =

∞
∑

n=1

(−1)n−1 2aβn
(aαn + r2)µ

, r, α, β, µ ∈ R
+, (2)

if the auxiliary alternating series
∑∞

n=1
(−1)n−1

aµα−β
n

is convergent. From (1) and (2), Srivastava

and Tomovski [20] found the series representations

S(α,β)
µ (r; a) = 2

∞
∑

m=0

(

µ+m− 1

m

)

(−r2)
m

∞
∑

n=1

1

a
(µ+m)α−β
n

, 0 < r < 1, (3)

and

S̃(α,β)
µ (r; a) = 2

∞
∑

m=0

(

µ+m− 1

m

)

(−r2)
m

∞
∑

n=1

(−1)n−1

a
(µ+m)α−β
n

, 0 < r < 1.

Integral and series representations for various selections of the sequence (an)
∞
n=1 were derived

recently, for example, for (nγ)∞n=1, ((n!)
γ)∞n=1, ((log n!)

γ)∞n=1, etc. [22]. One of the goals of
the present article is to give series representations of generalized Mathieu series associated
with Fibonacci numbers and related sequences. We apply some results on series of reciprocal
Fibonacci numbers, a subject with a long history [2, 6, 13, 17, 24]. Moreover, we show how
our generalized Mathieu series can be analyzed asymptotically for r → ∞. This gives rise
to an interesting numerical phenomenon: Fourier series with extremely small coefficients
occur in the expansions, which cause oscillations that are numerically very hard to see by
computing the generalized Mathieu series.

2 Series of reciprocal Fibonacci and Lucas numbers

Before stating our first result, we recall some basic facts about Fibonacci and Lucas numbers
(see Grimaldi [11] for more information). Both of these number sequences satisfy the second-
order recurrence relation Gn+1 = Gn+Gn−1, but they have different initial terms. Fibonacci
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numbers Fn start with F0 = 0 and F1 = 1; Lucas numbers Ln have the initial values L0 = 2
and L1 = 1. With ϕ = 1+

√
5

2
, the explicit Binet forms of Fibonacci and Lucas numbers are

given by

Fn =
1√
5

(

ϕn − (−1)n

ϕn

)

, (4)

Ln = ϕn +
(−1)n

ϕn
.

Zucker [24] proved that for any integer s ≥ 1 the reciprocal sums

∞
∑

n=1

1

F s
2n

,

∞
∑

n=1

1

Ls
2n

,

∞
∑

n=1

1

F 2s
2n−1

,

∞
∑

n=1

1

L2s
2n−1

,

among others, can be expressed as rational functions of Jacobi’s theta functions with rational
coefficients. Let q = 1

ϕ2 , where ϕ
2 = 3+

√
5

2
. Zucker used the fact that the above series can be

expressed as Lambert-type series, for any complex s with Re(s) > 0,

∞
∑

n=1

1

F s
2n

= (
√
5)s

∞
∑

n=1

qns

(1− q2n)s
, (5)

∞
∑

n=1

1

Ls
2n

=
∞
∑

n=1

qns

(1 + q2n)s
,

∞
∑

n=1

1

F 2s
2n−1

= 5s
∞
∑

n=1

q(2n−1)s

(1 + q2n−1)2s
,

∞
∑

n=1

1

L2s
2n−1

=
∞
∑

n=1

q(2n−1)s

(1− q2n−1)2s
.

For s = 1, the Lambert-type series for (5) was already given by Landau [13].

3 Series representations

In this section we will give series representation for S
(α,β)
µ (r; (F2n)

∞
n=1), S

(α,β)
µ (r; (L2n)

∞
n=1),

S
(α,β)
µ (r; (F 2

2n−1)
∞
n=1), and S

(α,β)
µ (r; (L2

2n−1)
∞
n=1), by using formula (3). We have

S(α,β)
µ (r; (F2n)

∞
n=1) = 2

∞
∑

m=0

(

µ+m− 1

m

)

(−r2)
m

∞
∑

n=1

1

F
(µ+m)α−β
2n

, (6)

where µ, α, β are so chosen that µα− β > 0. Then, by (5), we get

S(α,β)
µ (r; (F2n)

∞
n=1) = 2

∞
∑

m=0

(

µ+m− 1

m

)

(−r2)
m
(
√
5)(µ+m)α−β

∞
∑

n=1

qn((µ+m)α−β)

(1− q2n)(µ+m)α−β
. (7)
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Analogously,

S(α,β)
µ (r; (L2n)

∞
n=1) = 2

∞
∑

m=0

(

µ+m− 1

m

)

(−r2)
m

∞
∑

n=1

1

L
(µ+m)α−β
2n

= 2
∞
∑

m=0

(

µ+m− 1

m

)

(−r2)
m

∞
∑

n=1

qn((µ+m)α−β)

(1 + q2n)(µ+m)α−β
, (8)

and

S(α,β)
µ (r; (F 2

2n−1)
∞
n=1) = 2

∞
∑

m=0

(

µ+m− 1

m

)

(−r2)
m
5(µ+m)α−β

∞
∑

n=1

q(2n−1)((µ+m)α−β)

(1 + q2n−1)2((µ+m)α−β)
,

as well as

S(α,β)
µ (r; (L2

2n−1)
∞
n=1) = 2

∞
∑

m=0

(

µ+m− 1

m

)

(−r2)
m

∞
∑

n=1

q(2n−1)((µ+m)α−β)

(1− q2n−1)2((µ+m)α−β)
.

Example 1. Setting µ = 2, α = 1, β = 1, and r2 = 1√
5
in (7), we get

S
(1,1)
2

(

1√
5
; (F2n)

∞
n=1

)

= 2
√
5

∞
∑

m=1

m(−1)m−1Lm(q),

where

Lm(q) =
∞
∑

n=1

qmn

(1− q2n)m

is a sequence of Lambert series. For example, L1(q) = L(q)− L(q2), where

L(q) =
∞
∑

n=1

qn

1− qn
=

Ψq(1) + log(1− q)

log q
. (9)

Here Ψq(z) is the q-digamma function, defined as

Ψq(z) =
1

Γq(z)

∂Γq(z)

∂z
,

where Γq(z) is the q-gamma function. We refer to Andrews at al. [3, Section 10.3]; the well-
known identity (9) follows immediately from the definition of the q-gamma function. The
second member of the sequence Lm(q) is

L2(q) =
∞
∑

n=1

q2n

(1− q2n)2
=

∞
∑

n=1

nq2n

1− q2n
=

∞
∑

n=1

ξ1(n)q
2n,
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where ξ1(n) =
∑

d|n d is the sum-of-divisors function (see Agarwal [1]). Similarly,

S
(1,1)
2

(

1

5
; (F 2

2n−1)
∞
n=1

)

= 10
∞
∑

m=1

m(−1)m−1L̃m(q),

where

L̃m(q) =
∞
∑

n=1

q(2n−1)m

(1 + q2n−1)2m

is a sequence of Lambert-type series. In the following, we use the notation of Whittaker and
Watson [23] for Jacobi theta functions. The identities we use are found in Whittaker and
Watson [23, pp. 471, 489] or in Borwein and Borwein [5, Section 3.7]. For example,

L̃1(q) =
∞
∑

n=1

q2n−1

(1 + q2n−1)2
= − ϑ′′

3(0, q)

8ϑ3(0, q)
,

where

ϑ3(z, q) = 1 + 2
∞
∑

n=1

qn
2

cos 2nz

and the derivative is taken with respect to z.

Example 2. Setting µ = 2, α = 1, β = 1, and r = 1 in (8), we get

S
(1,1)
2 (1; (L2n)

∞
n=1) = 2

∞
∑

m=1

m(−1)mL̂m(q),

where L̂m(q) is a variant of Lambert series:

L̂m(q) =
∞
∑

n=1

qmn

(1 + q2n)m
.

For example,

L̂1(q) =
∞
∑

n=1

qn

1 + q2n
=

1

4
(ϑ3(0, q)

2 − 1),

L̂2(q) =
∞
∑

n=1

q2n

(1 + q2n)2
= −1

8

(

1 +
ϑ′′
2(0, q)

ϑ2(0, q)

)

,

etc., where

ϑ2(z, q) = 2
∞
∑

n=0

q(n+
1
2
)2 cos(2n+ 1)z.
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Similarly,

S
(1,1)
2 (1; (L2

2n−1)
∞
n=1) = 2

∞
∑

n=1

m(−1)m−1L∗
m(q),

where

L∗
m(q) =

∞
∑

n=1

q(2n−1)m

(1− q2n−1)2m
.

For example,

L∗
1(q) =

∞
∑

n=1

nqn

1− q2n
=

ϑ′′
4(0, q)

8ϑ4(0, q)
,

where

ϑ4(z, q) = 1 + 2
∞
∑

n=1

(−1)nqn
2

cos 2nz.

The second term can be expressed via L∗
1(q), namely

L∗
2(q) =

∞
∑

n=1

q4n−2

∞
∑

k=0

(

k + 3

3

)

q(2n−1)k

=
∞
∑

k=0

(

k + 3

3

)

qk+2

1− q2k+4
=

1

6

∞
∑

n=1

(n3 − n)qn

1− q2n

=
1

6

∞
∑

n=1

n3qn

1− q2n
− 1

6
L∗
1(q) = − 1

192

d3

dz3
ϑ′
4(z, q)

ϑ4(z, q)

∣

∣

∣

z=0
− 1

48

ϑ′′
4(0, q)

ϑ4(0, q)
.

In the last step, we evaluated the third derivative of the identity (see p. 489 in [23])

∞
∑

n=1

4 sin(2nz)qn

1− q2n
=

ϑ′
4(z, q)

ϑ4(z, q)

at zero.

Ling [14, 15, 16] used Weierstrassian elliptic functions to obtain closed forms for Lm(q),
L̃m(q), L̂m(q), and L∗

m(q).

4 Integral representations of reciprocal Fibonacci se-

ries and Mathieu-Fibonacci series

We begin this section with some integral representations of series of reciprocal Fibonacci
numbers and their alternating variants. We need the following lemma [12, 19, 21].
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Lemma 3. If (an)
∞
n=1 is a monotone sequence increasing to infinity, then

∞
∑

k=1

e−aks = s

∫ ∞

0

e−stA(t)dt

and ∞
∑

k=1

(−1)k−1e−aks = s

∫ ∞

0

e−stÃ(t)dt,

where the counting functions A(t) and Ã(t) are defined by

A(t) =
∑

k
ak≤t

1 = ⌊a−1(t)⌋,

the notation ⌊λ⌋ denotes the integer part of a real number λ, and

Ã(t) =
∑

k
ak≤t

(−1)k−1 =
1− (−1)⌊a

−1(t)⌋

2
= sin2

(π

2
⌊a−1(t)⌋

)

.

Let us find all natural numbers k for which logF2k ≤ t. From 1√
5
(ϕ2k − 1

ϕ2k ) ≤ et we

have ϕ4k − et
√
5ϕ2k − 1 ≤ 0. The quadratic equation associated with this inequality has two

solutions ϕ2k =
√
5±

√
5e2t+4
2

. The first one
√
5−

√
5e2t+4
2

is negative, so

3 +
√
5

2
≤ ϕ2k ≤

√
5 +

√
5e2t + 4

2
:= u(t).

Hence, the possible values of k are all natural numbers of the segment [1, ⌊logϕ
√

u(t)⌋].
Since logF2k is monotone increasing to infinity and

e−s logF2k =
1

F s
2k

,

we get

A(t) =
∑

k
logF2k≤t

1 =

⌊logϕ
√

u(t)⌋
∑

k=1

1 = ⌊logϕ
√

u(t)⌋

and

Ã(t) =
∑

k
logF2k≤t

(−1)k−1 =

⌊logϕ
√

u(t)⌋
∑

k=1

(−1)k−1 = sin2
(π

2
⌊logϕ

√

u(t)⌋
)

.

Then, Lemma 3 yields
∞
∑

k=1

1

F s
2k

= s

∫ ∞

0

e−st⌊logϕ
√

u(t)⌋dt (10)
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and ∞
∑

k=1

(−1)k−1

F s
2k

= s

∫ ∞

0

e−st sin2
(π

2
⌊logϕ

√

u(t)⌋
)

dt.

The natural numbers k satisfying logF2k−1 ≤ t are those of the segment
[

1, ⌊ logϕ v(t)+1

2
⌋
]

,

where v(t) =
√
5et+

√
5e2t−4

2
. Hence, again by Lemma 3,

∞
∑

k=1

1

F 2s
2k−1

= 2s

∫ ∞

0

e−2st

⌊

logϕ v(t) + 1

2

⌋

dt

and ∞
∑

k=1

(−1)k−1

F 2s
2k−1

= 2s

∫ ∞

0

e−2st sin2

(

π

2

⌊

logϕ v(t) + 1

2

⌋)

dt.

Analogous integral representations for series of reciprocal Lucas numbers can be obtained in
a similar way. We can now derive further integral representations for generalized Mathieu
series. From (6) and (10), we obtain

S(α,β)
µ (r; (F2n)

∞
n=1) = 2

∫ ∞

0

e−(µα−β)t⌊logϕ
√

u(t)⌋Σ(t)dt,

where

Σ(t) =
∞
∑

m=0

[(µ+m)α− β]

(

µ+m− 1

m

)

(−r2e−αt)
m

= (µα− β)
∞
∑

m=0

(

µ+m− 1

m

)

(−r2e−αt)
m
+ α

∞
∑

m=0

m

(

µ+m− 1

m

)

(−r2e−αt)
m

=
µα− β

(1 + r2e−αt)µ
+ αµ(−r2e−αt)

∞
∑

m=1

(

µ+m− 1

m− 1

)

(−r2e−αt)
m−1

=
µα− β

(1 + r2e−αt)µ
− µαr2e−αt

(1 + r2e−αt)µ+1
=

µα− β(1 + r2e−αt)

(1 + r2e−αt)µ+1
.

Hence,

S(α,β)
µ (r; (F2n)

∞
n=1) = 2

∫ ∞

0

e−(µα−β)tµα− β(1 + r2e−αt)

(1 + r2e−αt)µ+1
⌊logϕ

√

u(t)⌋dt

(r, α, β, µ > 0, µα− β > 0).

Analogously, under the same conditions on the parameters, we get the following integral
representations:

S̃(α,β)
µ (r; (F2n)

∞
n=1) = 2

∫ ∞

0

e−(µα−β)tµα− β(1 + r2e−αt)

(1 + r2e−αt)µ+1
sin2

(π

2
⌊logϕ

√

u(t)⌋
)

dt,

S(α,β)
µ (r; (F 2

2n−1)
∞
n=1) = 2

∫ ∞

0

e−(µα−β)tµα− β(1 + r2e−αt)

(1 + r2e−αt)µ+1

⌊

logϕ v(t) + 1

2

⌋

dt,

8



and

S̃(α,β)
µ (r; (F 2

2n−1)
∞
n=1) = 2

∫ ∞

0

e−(µα−β)tµα− β(1 + r2e−αt)

(1 + r2e−αt)µ+1
sin2

(

π

2

⌊

logϕ v(t) + 1

2

⌋)

dt.

5 Asymptotic expansions

We consider here the generalized Mathieu series (1), with αµ > β, 0 < α ≤ 3, and a the
sequence of Fibonacci numbers (Fn). We focus on this choice of a, because the associated
Dirichlet series

DFib(s) :=
∞
∑

n=1

F−s
n , (11)

which occurs in the Mellin transform of this Mathieu-Fibonacci series, has been studied
before. Several related generalized Mathieu series, involving F2n or Lucas numbers, can
be treated very similarly. Egami [6] and Navas [17] both proved, independently, that the
series (11), which converges for Re(s) > 0, has a meromorphic continuation to the whole
complex plane, with a lattice of simple poles

− 2k +
(2n+ k)πi

logϕ
, k ∈ N0, n ∈ Z. (12)

This follows from applying the binomial series to (4), which yields the expression

DFib(s) = 5s/2
∞
∑

k=0

(−s

k

)

1

ϕs+2k + (−1)k+1
.

We will use this continuation to obtain asymptotics of S
(α,β)
µ (r; (Fn)

∞
n=1) as r → ∞ by the

Mellin transform method. This method has been applied to other generalized Mathieu series
in several detailed studies [9, 10, 18], and so we present here only the gist of the approach
and the main estimate specific to our problem, without spelling out all the laborious case
distinctions for various parameter ranges. In Example 5, we give more details for a special
set of parameters, and explain why oscillating factors with very small amplitude appear in
the expansions. It is straightforward that the Mellin transform of the Mathieu series under
consideration equals [9, (2.10)]

M(s) :=

∫ ∞

0

rs−1S(α,β)
µ (r; (Fn)

∞
n=1)dr

= Γ(µ)−1Γ
(

µ− s

2

)

Γ
(s

2

)

DFib

(

αµ− β − αs

2

)

, 0 < Re(s) < σ, (13)

where
σ := min

(

2(αµ−β)
α

, 2µ
)

.

9



Now S
(α,β)
µ can be expressed by the Mellin inversion formula, and an expansion is found

by integrating (13) over an appropriate rectangle and collecting residues. This is explained
on a similar problem in Flajolet et al. [7, Example 12], to which we refer for details. The
estimate for M that is needed to let the height of the rectangle tend to infinity is provided
by Lemma 4 below. The outcome is that

S(α,β)
µ (r; (Fn)

∞
n=1) = −

∑

σ≤Re(ξ)<σ̃

Ress=ξ

[

M(s)r−s
]

+O(r−σ̃), (14)

where σ̃ > σ is arbitrary. This easily yields an expansion in powers of r, possibly with
logarithmic factors stemming from double poles. Terms resulting from poles of DFib feature
oscillating factors, due to the vertically aligned poles with equal real part (see (12)). See
Example 5 for more on this.

Lemma 4. For m ∈ N, we have the estimate

∞
∑

k=m

∣

∣

∣

∣

(−s

k

)

1

ϕs+2k + (−1)k+1

∣

∣

∣

∣

= O(exp(1.04|Im(s)|)) (15)

as |s| → ∞ in the strip 1− 2m ≤ Re(s) ≤ 1
2
.

Proof. W.l.o.g., it suffices to consider s with Im(s) > 0. We write c for various positive
constants, which may depend on m. Since Re(s) + 2k ≥ 1, we have

|ϕs+2k + (−1)k+1| = ϕRe(s)+2k
∣

∣1 + (−1)k+1ϕ−s−2k
∣

∣

≥ ϕRe(s)+2k
(

1− ϕ−Re(s)−2k
)

≥ ϕ1−2m+2k(1− 1/ϕ),

and so
1

|ϕs+2k + (−1)k+1| ≤ cϕ−2k, k ≥ 0. (16)

It is well-known that, using the reflection formula of the gamma function, we can rewrite
the binomial coefficient as

(−s

k

)

=
Γ(1− s)

Γ(k + 1)Γ(−s− k + 1)

= Γ(1− s)
sin π(s+ k)

π

Γ(k + s)

Γ(k + 1)

= (−1)kΓ(1− s)
sin πs

π

Γ(k + s)

k!
.

We use Stirling’s formula in the form

|Γ(z)| ∼
√
2πe−Re(z)−Im(z) arg(z)|z|Re(z)−1/2, |z| → ∞,

10



where | arg(z)| is bounded away from π. Writing s = u + iv, with u ≤ 1
2
bounded and

v → ∞, we obtain

|Γ(k + s)| ≤ ce−(k+u)−v arg(k+s)
(

(k + u)2 + v2
)

k+u
2

− 1
4

≤ ce−k−v arg(k+s)
(

(k + u)2 + v2
)

k+u
2

− 1
4 . (17)

Now we split the sum in (15) into k ≤ v and k > v. If k ≤ v, then

arg(k + s) = arctan
v

u+ k
≥ arctan

v

u+ v
≥ π

4
− ε,

where ε > 0 is arbitrary. Together with (17), this implies

|Γ(k + s)| ≤ ce−k−v(π/4−ε)
(

(v + u)2 + v2
)

k+u
2

− 1
4

≤ cvke−k−v(π/4−ε)3k/2,

hence
∑

m≤k≤v

∣

∣

∣

∣

(−s

k

)

1

ϕs+2k + (−1)k+1

∣

∣

∣

∣

≤ c|Γ(1− s) sin πs|
∑

m≤k≤v

|Γ(k + s)|
k!ϕ2k

≤ c|Γ(1− s) sin πs|e−v(π/4−ε)

∞
∑

k=0

1

k!

(v
√
3

eϕ2

)k

= c|Γ(1− s) sin πs| exp
(

−v(π/4− ε) +
v
√
3

eϕ2

)

≤ c|Γ(1− s) sin πs|e−0.54v, (18)

for ε small enough. We will see below that this last expression dominates our estimate for
∑

k>v, which we now develop. By (17), for k > v and any ε > 0,

|Γ(k + s)| ≤ ce−k
(

(k + u)2 + k2
)

k+u
2

− 1
4

≤ ce−kkk+u−1/2(2 + ε)k/2.

This part of our sum thus satisfies, by using Stirling’s formula for k! in the third line,

∑

k>v

∣

∣

∣

∣

(−s

k

)

1

ϕs+2k + (−1)k+1

∣

∣

∣

∣

≤ c|Γ(1− s) sin πs|
∑

k>v

|Γ(k + s)|
k!ϕ2k

≤ c|Γ(1− s) sin πs|
∑

k>v

e−kkk+u−1/2(2 + ε)k/2

k!ϕ2k

≤ c|Γ(1− s) sin πs|
∑

k>v

e−kkk+u−1/2(2 + ε)k/2

k1/2(k/e)kϕ2k

= c|Γ(1− s) sin πs|
∑

k>v

ku−1

(
√
2 + ε

ϕ2

)k

.

11



It is easy to see that the last sum satisfies, for arbitrary ε, δ > 0 and v large enough,

∑

k>v

ku−1

(
√
2 + ε

ϕ2

)k

≤
∑

k>v

(1 + δ)k
(
√
2 + ε

ϕ2

)k

≤ c exp
(

v log

√
2 + ε(1 + δ)

ϕ2

)

.

This implies
∑

k>v

ku−1

(
√
2 + ε

ϕ2

)k

= O(e−0.6v),

for ε > 0 small enough, which is negligible compared to the last factor in (18). By Stirling’s
formula,

Γ(1− s) = O
(

exp
(

−(π
2
− ε)|Im(s)|

))

. (19)

The result follows from (18), (19) and

sin πs = O
(

exp
(

π|Im(s)|
))

,

since
−π

2
+ π − 0.54 < 1.04.

By this lemma, (13), Stirling’s formula (cf. (19)), and our assumption that 0 < α ≤ 3,
the Mellin transform (13) decays exponentially along vertical lines, uniformly for Re(s)
bounded. This implies (14); again, see Flajolet et al. [7] for details. The constraint α ≤ 3
can presumably be removed by improving the estimates in Lemma 4.

Example 5. We derive first order asymptotics for r → ∞ of the Mathieu-Fibonacci series

S
(1,1)
2 (r; (Fn)

∞
n=1) =

∞
∑

n=1

2Fn

(Fn + r2)2
,

i.e., α = 1, β = 1, µ = 2. Numerical evaluations suggest that it is of order O(r−2), which

is true, and that r2 S
(1,1)
2 (r; (Fn)) converges to 2/ logϕ. The latter is wrong, however; we

will see that there is an oscillating factor with very small fluctuations. By (13), the Mellin
transform is

M(s) = Γ
(

2− s

2

)

Γ
(s

2

)

DFib

(

1− s

2

)

, 0 < Re(s) < 2. (20)

The factor Γ(2 − s/2) has poles at s = 4, 6, 8, . . . , while Γ(s/2) has no poles in the right
half-plane. By (12), the poles of the third factor are located at

4k + 2− 2(2n+ k)πi

logϕ
, k ∈ N0, n ∈ Z. (21)

12



We just present first order asymptotics here, resulting from the simple poles of DFib(1−s/2)
with Re(s) = 2, i.e., k = 0 in (21). It is straightforward to push the expansion further, if
desired. There are double poles, the first one at s = 10, which induce logarithmic factors for
some of the higher order terms. From (14) and (20), we find

S
(1,1)
2 (r; (Fn)) = −

∑

n∈Z
Ress=2− 4nπi

logϕ

[

M(s)r−s
]

+O(r−4)

= −
∑

n∈Z
r−2+ 4nπi

logϕΓ
(

1 +
2nπi

logϕ

)

Γ
(

1− 2nπi

logϕ

)

× Ress=2− 4nπi
logϕ

DFib

(

1− s

2

)

+O(r−4). (22)

The explicit formula [17, Proposition 1] for the residues of DFib yields

Ress=2− 4nπi
logϕ

DFib

(

1− s

2

)

= −2Resz= 2nπi
logϕ

DFib(z) = −2 · 5nπi/ logϕ
logϕ

.

Inserting this into (22) gives the desired result:

S
(1,1)
2 (r; (Fn)) =

2H
(

log r + 1
4
log 5

)

r2 logϕ
+O(r−4), r → ∞,

where the periodic function H is defined by

H(x) := 1 +
2

logϕ

∞
∑

n=1

∣

∣

∣
Γ
(

1 +
2nπi

logϕ

)∣

∣

∣

2

cos
(4nπx

logϕ

)

, x ∈ R.

Due to the exponential decrease of the gamma function along vertical lines, the coefficients
of this Fourier series are extremely small: of order 10−16 for n = 1, and 10−34 for n = 2.
This explains why, numerically, our Mathieu series seems to behave like 2/(r2 logϕ). The
phenomenon is not restricted to this concrete example, as it is due to the gamma factors
in (13). This kind of “fake asymptotics”, stemming from very small Fourier coefficients, has
been observed before in other asymptotic problems [4, 8].
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