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Abstract

We initiate the study of the coefficients of the distinct monomials in the expansion
of the multivariate polynomials x1(x1 + x2) · · · (x1 + x2 + · · ·+ xn), n ∈ N, the number
of which was shown by Shallit to be counted by the Catalan numbers Cn, n ∈ N. In
particular, we obtain an exact formula for the coefficients and reduce the complexity
of the search for their maximum from the order of Cn to the order of the number of
partitions of n with distinct parts.

1 Introduction

Let n ∈ N and let x1, . . . , xn be indeterminates. It is well known that among the multitude of
their combinatorial interpretations, the Catalan numbers also count the distinct monomials
in the expansion of the multivariate polynomials

pn = x1(x1 + x2) · · · (x1 + x2 + · · ·+ xn), n ∈ N,

1The author is a postdoctoral fellow in the Department of Computer Science at the Ben-Gurion University
of the Negev and a teaching fellow in the Department of Computer Science at the Israel Academic College
in Ramat Gan.
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a result that goes back at least to [8]. It seems that despite the naturalness of these poly-
nomials, the coefficients of their distinct monomials have not been studied extensively. In
particular, to the best of our knowledge, a closed formula for their maximum is not known. In
this work, we initiate the study of these coefficients and accomplish the following: upon estab-
lishing several elementary properties including a closed formula for the coefficients (Lemma
4), we show that, for every n ∈ N, a maximal coefficient in the expansion of pn is attained
at a monomial belonging to a certain set Mn that has the same cardinality as the set of
all partitions of n with distinct parts (Theorem 17 and Lemma 18). Finally, we provide an
algorithm (Algorithm 1) that successively (and greedily) generates a sequence of monomials
(rn)n∈N such that rn ∈Mn for every n ∈ N and conjecture that the corresponding coefficients
are actually maximal.

Our interest in the polynomials pn, n ∈ N, was triggered during our work [5] on the
restrictiveness of stochastic orders in which we established a closed formula ([5, Lemma 3.6])
for the probability that a random probability distribution that is uniformly drawn from the
probability n-simplex is greater than a fixed probability distribution, with respect to the
usual stochastic order. The formula involves a sum over all distinct monomials of pn−1.
Thus, the distinct monomials of pn, n ∈ N, have a direct application in probability theory.

2 Main results

This section consists of two parts: in the first, we establish several elementary properties
of the coefficients of pn, n ∈ N, including a closed formula for them and, in the second, we
address the problem of finding the maximal coefficients of pn, n ∈ N. Before we begin, let
us, for completeness, prove the claim stated in the introduction that the distinct monomials
in the expansion of pn, n ∈ N, are counted by the Catalan numbers which have the explicit
formula Cn = 1

n+1

(
2n
n

)
for every n ∈ N0 where N0 = N ∪ {0} (e.g., [9, Theorem 1.4.1]).

To simplify formulations throughout this work, whenever we refer to a monomial of pn, we
mean a monomial in the expansion of pn after combining like terms. In particular, in our
terminology, the monomials of pn are distinct. Likewise, whenever we refer to a coefficient
(of a monomial) of pn, we mean the coefficient (of the monomial) after expanding pn and
combining like terms. Finally, unless stated otherwise, n ∈ N.

Lemma 1. Let Pn denote the set of all monomials of pn. Then |Pn| = Cn.

Proof. The Catalan numbers have several fundamental interpretations. Thus, it suffices
to construct a bijection between Pn and a set consisting of the elements in one of these
interpretations. Following [9], we shall prove that there is a bijection between Pn and the
set Tn of plane trees with n+1 vertices (cf. [9, p. 6 and Theorem 1.5.1]). The bijection goes
through two auxiliary sets An and Bn.

Let us define

An =

{

(a1, . . . , an) ∈ N
n
0 |

n∑

i=1

ai = n and
n∑

i=k+1

ai ≤ n− k for every 1 ≤ k ≤ n− 1

}

.
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We shall show that there are two maps Θ: An → Pn and Φ: Pn → An such that Θ◦Φ = idPn

and Φ ◦Θ = idAn . For (a1, . . . , an) ∈ An, let

Θ((a1, . . . , an)) = xa1
1 · · · xan

n .

The proof that xa1
1 · · · xan

n ∈ Pn relies on the following observation: suppose i1, . . . , in ∈
{1, . . . , n} are such that 1 ≤ ik ≤ k for every 1 ≤ k ≤ n. Then xi1 · · · xin ∈ Pn. We define
i1, . . . , in as follows: first, if an = 1 then we set in = n. Now, suppose we have already defined
in+1−

∑n
i=k ai , . . . , in for some 1 < k ≤ n such that 1 ≤ ir ≤ r for every n+1−∑n

i=k ai ≤ r ≤ n.
Set in+1−

∑n
i=k−1

ai = · · · = in−
∑n

i=k ai = k − 1. Since (a1, . . . , an) ∈ An, we have

n∑

i=k−1

ai ≤ n+ 2− k ⇐⇒ n+ 1−
n∑

i=k−1

ai ≥ k − 1.

It follows that 1 ≤ ir ≤ r for n+ 1−
∑n

i=k−1 ai ≤ r ≤ n.
In the other direction, for xa1

1 · · · xan
n ∈ Pn we let Φ(xa1

1 · · · xan
n ) = (a1, . . . , an). To see

that (a1, . . . , an) ∈ An, first notice that an ≤ 1 = n − (n − 1). Suppose now that we have
already shown that

∑n
i=k+1 ai ≤ n − k for some 1 < k ≤ n − 1. By definition of pn, the

indeterminate xk can appear in at most n − k + 1 places, of which
∑n

i=k+1 ai places are
already taken. Thus,

ak ≤ n− k + 1−
n∑

i=k+1

ai ⇐⇒
n∑

i=k

ai ≤ n− (k − 1).

Now consider the set

Bn =

{

(b1, . . . , bn) ∈ N0 ∪ {−1} |
n∑

i=1

bi = 0 and
k∑

i=1

bi ≥ 0 for every 1 ≤ k ≤ n− 1

}

.

One verifies immediately that the map (a1, . . . , an) 7→ (a1 − 1, . . . , an − 1) gives a bijection
between An and Bn.

It remains to show that there is a bijection between Bn and Tn. By [9, 82 on p. 71], the
following procedure provides such a bijection: perform a depth-first search through a plane
tree with n + 1 vertices and every time a vertex is encountered for the first time, record
one less than its number of children, except that the last vertex is ignored. We prove by
induction on n that the resulting sequence belongs to Bn: for n = 1, the plane tree has 2
vertices and the corresponding sequence is necessarily (0) which obviously belongs to B1.
Suppose that the claim holds for plane trees with n vertices and consider a plane tree T with
n+1 vertices together with the corresponding sequence (b1, . . . , bn). Deleting the last vertex
from T gives a plane tree T ′ with n vertices. Let 1 ≤ l ≤ n be the index of the parent of the
last vertex of T . We distinguish between two cases:

1. Suppose that l = n. Then T must end with a sequence of three vertices that make a
tree of depth two. Thus, bn = 0 and (b1, . . . , bn−1) is the sequence corresponding to T ′.
Using the induction hypothesis and putting back bn = 0, we see that (b1, . . . , bn) ∈ Bn.
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2. Suppose that l < n. Then the nth vertex of T is a leaf and therefore bn = −1. Now,
bl ≥ 0 and (b1, . . . , bl−1, bl−1, bl+1, . . . , bn−1) is the sequence corresponding to T

′, which,
by the induction hypothesis, belongs to Bn−1. Putting back bn = −1 and replacing
bl − 1 with bl, we obtain the original sequence and conclude that it belongs to Bn.

One can show, again by induction, that any (b1, . . . , bn) ∈ Bn induces a unique plane tree
with n+ 1 vertices. We omit the details.

Remark 2. It follows from the proof of Lemma 1 that we may identify Pn with An and we
shall exploit this equivalent representation freely throughout this work. In particular, we
shall refer to the elements of An as ‘monomials’.

2.1 Elementary properties of the coefficients of pn

Our first result is an explicit formula for the coefficients of pn. We shall use the following
notation:

Definition 3. For (a1, . . . , an) ∈ An, we denote by c(a1,...,an) the corresponding coefficient.

Lemma 4. Let (a1, . . . , an) ∈ An. Then

c(a1,...,an) =
n−1∏

k=1

n− k + 1−∑n
i=k+1 ai

ak!
.

Proof. Beginning with an, we notice that xn can be taken solely from the last term of the
product in the definition of pn. Thus, there are

(
1
an

)
possibilities to do that. Proceeding to

an−1, we notice that xn−1 can be taken only from the last two terms of the product, but not
from those that contributed xn. This gives

(
2−an
an−1

)
possibilities. Continuing so until we reach

a1, we conclude that the number of possibilities to obtain (a1, . . . , an) is given by

n−1∏

k=0

(
k + 1−∑n

i=n−k+1 ai

an−k

)

=
n−1∏

k=0

(

k −∑n
i=n−(k−1) ai

)

!
(

k + 1−∑n
i=n−(k−1) ai

)

an−k!
(
k + 1−

∑n
i=n−k ai

)
!

=
n−1∏

k=0

k + 1−∑n
i=n−(k−1) ai

an−k!

=
n−1∏

k=1

n− k + 1−∑n
i=k+1 ai

ak!
.

It is desirable, when writing down the expansion of the different pn, n ∈ N, to maintain
consistency regarding the order of their terms. To this end, we define an ordering on An.
This, of course, induces an ordering of the corresponding coefficients. A reasonable choice is
lexicographic and in decreasing order:
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Definition 5. Let a = (a1, . . . , an), b = (b1, . . . , bn) ∈ An such that a 6= b and let k =
min{1 ≤ i ≤ n | ai 6= bi}. We write a ≺ b if ak > bk.

Example 6. The elements of A3 are ordered as follows:

(3, 0, 0) ≺ (2, 1, 0) ≺ (2, 0, 1) ≺ (1, 2, 0) ≺ (1, 1, 1).

Example 7. In the following “triangle”, we present the coefficients of p1, . . . , p5 ordered
according to Definition 5 (cf. A347917 in the On-Line Encyclopedia of Integer Sequences
(OEIS):

1
1 1
1 2 1 1 1
1 3 2 1 3 4 2 1 1 1 2 1 1 1
1 4 3 2 1 6 9 6 3 3 4 2 1 1 4 9 6 3 6 8 4 2 2 1 2 1 1 1 1 3 2 1 3 4 2 1 1 1 2 1 1 1.

Example 8. Consider c(n,0,...,0) and c(1,...,1) which are, respectively, the first and the last
coefficients of pn. Then

c(n,0,...,0) = c(1,...,1) = 1.

Indeed,

c(n,0,...,0) =
1

n!

n−1∏

k=1

(n− k + 1) = 1 and

c(1,...,1) =
n−1∏

k=1

(n− k + 1− (n− k)) = 1.

Lemma 9. The coefficients of pn+1 contain (at least) two copies of the coefficients of pn.

Proof. Suppose that n ≥ 2 and let (a1, . . . , an−1) ∈ An−1. Clearly,

(1, a1, . . . , an−1), (a1, . . . , an−1, 1) ∈ An.

Now,

c(a1,...,an−1,1) =
n−1∏

k=1

n− 1− k + 1−∑n−1
i=k+1 ai

ak!

=
n−2∏

k=1

n− 1− k + 1−∑n−1
i=k+1 ai

ak!

= c(a1,...,an−1),

where in the second equality we used that an−1! = 1. Similarly,

c(1,a1,...,an−1) =
n− 1 + 1−∑n−1

i=1 ai

1!

n−1∏

k=2

n− k + 1−∑n
i=k+1 ai−1

ak−1!

= (n− (n− 1))
n−2∏

k=1

n− 1− k + 1−∑n−1
i=k+1 ai

ak!

= c(a1,...,an−1).
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The coefficients of pn sum to n!:

Lemma 10. We have
∑

(a1,...,an)∈An
c(a1,...,an) = n!.

Proof. The assertion follows immediately from specializing (x1, . . . , xn) 7→ (1, . . . , 1) in the
definition of pn.

In the following lemma, we calculate the sum of the coefficients of the monomials of pn
that contain xi. It provides additional interpretation to several known sequences (cf. Table
1).

Lemma 11. Let 1 ≤ i ≤ n. Then
∑

(a1,...,an)∈An
ai>0

c(a1,...,an) = (n− i+ 1)(n− 1)!.

Proof. Specializing, fn(xi) := pn(1, . . . , 1, xi, 1, . . . , 1) is a (univariate) polynomial in xi

whose free coefficient r is the sum of the coefficients corresponding to the monomials that
do not contain xi. Thus,

r = fn(0)

= pn(1, . . . , 1, xi, 1, . . . , 1)|xi=0

= pn(1, . . . , 1, 0, 1, . . . , 1)

= 1 · 2 · · · (i− 1)(i− 1)i · · · (n− 1)

= (i− 1)(n− 1)!. (1)

It follows that
∑

(a1,...,an)∈An
ai>0

c(a1,...,an) =
∑

(a1,...,an)∈An

c(a1,...,an) −
∑

(a1,...,an)∈An
ai=0

c(a1,...,an)

= n!− r = (n− i+ 1)(n− 1)!,

where the second and third equalities are due to Lemma 10 and (1).

Sequence OEIS Number
n! A000142

(n− 1)(n− 1)! A001563
(n− 2)(n− 1)! A062119
(n− 3)(n− 1)! A052571

Table 1: Several sequences for which Lemma 11 provides an additional interpretation.

Combining Lemma 1 together with Lemma 10 we immediately obtain the following result.
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Corollary 12. The average of the coefficients of pn is n!
Cn

.

Remark 13. The sequence
(

n!
Cn

)

n∈N
is rational and the sequences of the corresponding numer-

ators and denominators are A144187 and A144186 in the OEIS, respectively. Corollary 12
provides an additional interpretation for these sequences that correspond to the denominator
and numerator in the series expansion of the EGF for the Catalan numbers, respectively.

In the following lemma, we calculate the sum of the coefficients of pn whose corresponding
monomials have xi as a variable with maximal index. This result seems to provides the first
interpretation for A299504 in the OEIS. These monomials were used in the proof of [5,
Lemma 3.6].

Lemma 14. Let 1 ≤ i ≤ n. Then

∑

(a1,...,an)∈An
ai+1=···=an=0

c(a1,...,an) = i!in−i.

Proof. Clearly,

∑

(a1,...,an)∈An
ai+1=···=an=0

= pn(

i times
︷ ︸︸ ︷

1, . . . , 1,

n−i times
︷ ︸︸ ︷

0, . . . , 0) = i!in−i.

2.2 The maximal coefficients of pn, n ∈ N

Let m ∈ N. The multinomial theorem (e.g., [3, Theorem 3.9]) states that

(x1 + · · ·+ xn)
m =

∑
(

m

k1, . . . , kn

)

xk1
1 · · · xkn

n , (2)

where the sum is over all nonnegative integers k1, . . . , kn such that k1 + · · · + kn = m. It
seems to be folklore that the maximal coefficient on the right-hand side of (2) is obtained
whenever r of the k1, . . . , kn are equal to q+1 and the rest are equal to q where m = qn+ r,
q ∈ N0 and 0 ≤ r < n. In this section, we address the analogous problem of finding the
maximal coefficients of pn, n ∈ N, the sequence of which we denote by (mn)n∈N (A349404 in
the OEIS). For example,

(mn)n∈N = 1, 1, 2, 4, 9, 27, 96, 384, 1536, . . .

The quotients of consecutive elements of (mn)n∈N exhibit a nontrivial pattern and the
induced sequence is denoted by (qn)n∈N, i.e., qn = mn+1

mn
, n ∈ N. Table 2 lists (mn)

29
n=1 and

(qn)
28
n=1, which were established by brute force. The last column in the table lists a monomial
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of pn whose coefficient is mn. Notice that such a monomial is, in general, not unique and in
Table 3 we list all other monomials of p1, . . . , p29 whose coefficients are maximal.

The problem of finding a maximal coefficient of pn may be formulated as a combinatorial
optimization problem as follows:

maximize
n−1∏

k=1

n− k + 1−∑n
i=k+1 ai

ak!

subject to (a1, . . . , an) ∈ An.

This problem is intractable already for small values of n since Cn is asymptotically 4n√
πn3/2

(e.g., [2, Problem 12-4]). The following two lemmas reduce the complexity of the problem.
More precisely, in Lemma 15, we show that it suffices to perform the search over elements
of (a1, . . . , an) ∈ An such that a1 ≥ a2 ≥ · · · ≥ an and, in Lemma 16, we show that the
search may be performed over (a1, . . . , an) ∈ An with consecutive differences bounded by 1,
i.e., ai − ai+1 ≤ 1 for every 1 ≤ i ≤ n − 1. In Lemma 18, we show that the subset Mn of
An consisting of elements that have both properties has the same cardinality as the set of
all partitions of n with distinct parts, reducing the complexity of the problem to the order

of 33/4

12n3/4 e
π
√

n/3 (e.g., [4, (50) on p. 48]).

Lemma 15. Let (a1, . . . , an) ∈ An such that ai < ai+1 for some 1 ≤ i ≤ n − 1. For every
1 ≤ k ≤ n we define

a′k =







ak, k 6= i, i+ 1;

ai+1, k = i;

ai, k = i+ 1.

Then (a′1, . . . , a
′
n) ∈ An and c(a′

1
,...,a′n) > c(a1,...,an).

Proof. Clearly,
∏n

k=1 ak! =
∏n

k=1 a
′
k!. Furthermore, for every k ∈ {1, . . . , i− 1, i+ 1, . . . , n},

we have

n− k + 1−
n∑

j=k+1

aj = n− k + 1−
n∑

j=k+1

a′j.

It follows from Lemma 4 that

c(a′
1
,...,a′n) > c(a1,...,an) ⇐⇒ n− i+ 1−

n∑

j=i+1

a′j > n− i+ 1−
n∑

j=i+1

aj

⇐⇒ −a′i+1 −
n∑

j=i+2

a′j > −
n∑

j=i+1

aj

⇐⇒ ai < ai+1.
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Lemma 16. Let (a1, . . . , an) ∈ An such that ai > ai+1 + 1 for some 1 ≤ i ≤ n − 1. For
every 1 ≤ k ≤ n we define

a′k =







ak, k 6= i, i+ 1;

ai − 1, k = i;

ai+1 + 1, k = i+ 1.

Then (a′1, . . . , a
′
n) ∈ An and c(a′

1
,...,a′n) ≥ c(a1,...,An).

Proof. Arguing as in the proof of Lemma 15, we have

c(a′
1
,...,a′n) ≥ c(a1,...,an) ⇐⇒

n− i−
∑n

j=i+1 aj

ai+1 + 1
≥

n− i−
∑n

j=i+1 aj + 1

ai

⇐⇒ n− i−
n∑

j=i+1

aj ≥
ai+1 + 1

ai − (ai+1 + 1)

⇐⇒ n− (i− 1)−
n∑

j=i+1

aj ≥
ai

ai − (ai+1 + 1)
.

Since ai− (ai+1+1) ≥ 1, it suffices to show that n− (i−1)−∑n
j=i+1 aj ≥ ai or, equivalently,

that
∑n

j=i aj ≤ n− (i− 1), which holds true by the definition of An.

Combining Lemma 15 and Lemma 16, we obtain the following theorem.

Theorem 17. A maximal coefficient of pn is attained at a monomial belonging toMn, where

Mn = {(a1, . . . , an) ∈ An | ai+1 ≤ ai ≤ ai+1 + 1 for every 1 ≤ i ≤ n− 1}.

Lemma 18.

1. There is a bijection between the set

{(a1, . . . , an) ∈ An | a1 ≥ a2 ≥ · · · ≥ an}

considered in Lemma 15 and the set of all partitions of n. In particular, Lemma 15

reduces the complexity of the problem to the order of 1
4n

√
3
eπ
√

2n/3.

2. There is a bijection betweenMn and the set of all partitions of n with distinct parts. In

particular, Theorem 17 reduces the complexity of the problem to the order of 33/4

12n3/4 e
π
√

n/3.

Proof. Recall that, by definition (e.g., [1, Definition 1.1]), a partition of n is a nonincreasing
sequence a1 ≥ a2 ≥ · · · ≥ ar of r ∈ N natural numbers such that

∑r
i=1 ai = n. One also

writes (a1, . . . , ar) for such a partition.
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1. Let (a1, . . . , an) ∈ An such that a1 ≥ a2 ≥ · · · ≥ an and let r = max{1 ≤ i ≤
n | ai > 0}. Then (a1, . . . , ar) is a partition of n. Conversely, let a1, . . . , ar ∈ N be
a partition of n with r ∈ N parts. Extend (a1, . . . , ar) with n − r zeros to obtain
(a1, . . . , ar, 0, . . . , 0) ∈ N

n
0 . Let 1 ≤ l ≤ r − 1 and suppose

∑n
i=l+1 ai > n − l. Since

ar ≥ 1, by monotonicity, also a1, . . . , ar−1 ≥ 1. Thus,

n =
n∑

i=1

ai =
l∑

i=1

ai +
n∑

i=l+1

ai > l + n− l = n,

a contradiction. This shows that (a1, . . . , ar, 0, . . . , 0) ∈ An. The claim regarding the
complexity is due to [6, 7, 10].

2. Let (a1, . . . , an) ∈ Mn and let r = max{1 ≤ i ≤ n | ai > 0}. Then (a1, . . . , ar) is a
partition of n such that ai − ai+1 ≤ 1 for every 1 ≤ i ≤ r − 1 and ar = 1. This means
that each of the numbers 1, 2, . . . , a1 =: m appears as a part in (a1, . . . , ar). We claim
that the conjugate (a′1, . . . , a

′
m) of (a1, . . . , ar) (cf. [1, Definition 1.8]) has distinct parts.

To see that, let 1 ≤ i ≤ m and recall that a′i is defined to be the number of parts of
(a1, . . . , ar) that are ≥ i. Suppose a′k = a′k+1 for some 1 ≤ k ≤ m − 1. This means
that for every 1 ≤ i ≤ r, if ai ≥ k, then also ai ≥ k + 1. Thus, k cannot be a part of
(a1, . . . , ar), a contradiction.

Conversely, let (a′1, . . . , a
′
m) be a partition of n with 1 ≤ m ≤ n distinct parts and let

(a1, . . . , ar) be its conjugate, where 1 ≤ r ≤ n. Suppose that ai ≥ ai+1 + 2 for some
1 ≤ i ≤ m− 1. Thus, there are distinct 1 ≤ k, l ≤ m such that i ≤ a′k and a′l < i + 1.
It follows that a′k = i = a′l, a contradiction. It remains to show that ar = 1. Since
the parts of (a′1, . . . , a

′
m) are distinct, a′1 > a′i for every 2 ≤ i ≤ m. Thus, r = a′1 and

ar = 1 since ar is the number of parts of (a′1, . . . , a
′
m) that are ≥ r.

The claim regarding the complexity may be found, for example, in [4, (50) on p. 48].

Remark 19. The idea of the proof of the second statement in Lemma 18 is due to Grahl and
Adams-Watters (see the comments to A000009 in the OEIS).

Despite the complexity reduction described above, the problem remains intractable. We
provide a simple algorithm that for a prescribed l ∈ N successively generates a sequence
of monomials (rn)

l
n=1 such that rn ∈ An for every 1 ≤ n ≤ l. In Lemma 20, we show

that actually rn ∈ Mn. The algorithm also returns a sequence (sn)
l
n=1 of the correspond-

ing coefficients. It uses a method Coefficient(·) that upon receiving a monomial of pn as
input returns its corresponding coefficient, e.g., by using the formula given by Lemma 4.
We applied the algorithm with l = 100 and Table 4 lists the elements of (sn)

100
n=29 returned

by the algorithm (the first 29 elements of (sn)
100
n=1 coincide with (mn)

29
n=1 that were already

listed in Table 2). We consider the correctness of the first 29 numbers returned by the
algorithm and the preservation of the pattern that the elements of (qn)

28
n=1 exhibit (this is
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illustrated in the third column of Table 4) to be a strong indication that the algorithm
actually returns the true sequence (mn)n∈N. Before we present the pseudocode of the algo-
rithm, let us illustrate by an example its idea: assume that the algorithm arrived at, say,
r15 = (3, 3, 2, 2, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0). First, a zero is attached at the end of r15 and the
result is denoted by r′16. Thus, r′16 = (3, 3, 2, 2, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0). Now, beginning
at the end of r′16, we iterate backwards and every time the value is about to increase, we
add 1 at this point (actually, every time is wasteful and we also increase the first entry by
1 if it does not result in a gap of 2 between the first and the second entries). These are the
candidates to pick r16 from. In our example, these are

(3,3,2,2,1,1,1,1,1,1,0,0,0,0,0,0), (3,3,2,2,2,1,1,1,1,0,0,0,0,0,0,0), (3,3,3,2,1,1,1,1,1,0,0,0,0,0,0,0), (4,3,2,2,1,1,1,1,1,0,0,0,0,0,0,0).

For each of the candidates we calculate the corresponding coefficient. Here, we obtain

370594350, 361267200, 321126400, 48168960.

We take r16 to be the monomial with the largest coefficient. In this case,

r16 = (3, 3, 2, 2, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0).

Now, we repeat the procedure described above with r16.

Lemma 20. Let l ∈ N and let (rn)
l
n=1 be the sequence of monomials returned by Algorithm

1. Then rn ∈Mn for every 1 ≤ n ≤ l.

Proof. First notice that for each 2 ≤ n ≤ l the condition in the inner for loop is satisfied at
least once. Indeed, if the first two conditions are not satisfied, then the third must be. Now,
for n = 1 we have r1 = (1) ∈M1. Assume that rn = (a1, . . . , an) ∈Mn. The monomial rn+1

is chosen from the set R and therefore it suffices to show that x ∈Mn+1 for every x ∈ R. By
definition ofMn, we have a1 ≥ · · · ≥ an and ai − ai+1 ≤ 1 for every 1 ≤ i ≤ n− 1. We give
the details only in the case that x ∈ R due to i > 1, ai 6= ai−1 and ai = ai+1, the other two
cases being similar. Let an+1 = 0 and notice that, necessarily, an ∈ {0, 1}. Thus, an ≥ an+1

and an − an+1 ≤ 1. Conclude that x = (a1, . . . , ai−1, ai + 1, ai+1, . . . , an+1) ∈ An+1. By the
assumptions, ai−1 = ai + 1 and ai + 1− ai+1 = 1. Therefore, x ∈Mn+1.

3 Open questions

The following questions remain open and are left for future research:

1. Is there a closed formula for the maximal coefficients (mn)n∈N?

2. Prove or disprove: the sequence (sn)n∈N returned by Algorithm 1 is equal to (mn)n∈N.
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Algorithm 1: Generate a sequence of monomials.

Input: The length l of the desired sequence
Output: A sequence (rn)

l
n=1 of monomials and the sequence (sn)

l
n=1 of their

corresponding coefficients
r1 ← (1)
s1 ← 1
for n← 2 to l do

r′n ← rn−1 ∪ 0
R← {}
S ← {}
for i← n to 1 do

if (i = n and r′n[n] 6= r′n[n− 1]) or
(i > 1 and r′n[i] 6= r′n[i− 1] and r′n[i] = r′n[i+ 1]) or
(i = 1 and r′n[1] = r′n[2]) then

temp← r′n
temp[i]← temp[i] + 1
R← R ∪ temp
S ← S ∪ Coefficient(temp)

k ← argmaxS
rn ← R[k]
sn ← S[k]

return (rn)
l
n=1, (sn)

l
n=1

3. The sequence (qn)n∈N exhibits a nontrivial pattern. In particular, some of its elements
are natural. Can we predict for which n ∈ N this happens? Furthermore, certain natu-
ral numbers seem to be missing from (qn)n∈N. According to the output of Algorithm 1,
for n ≤ 200, these numbers are 15, 51, 54 and 73. Is there a characterization for these
numbers?

4. For n < 30, the maximal coefficient of pn is not uniquely attained only for n =
2, 5, 6, 12, 13, 14 and 15. Are these the only cases when this happens? If not, can we
predict when?
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n mn qn (a1, . . . , an)

1 1 1 (1)

2 1 2 (1, 1)

3 2 2 (2, 1, 0)

4 4 9
4

(2, 1, 1, 0)

5 9 3 (2, 2, 1, 0, 0)

6 27 32
9

(2, 2, 1, 1, 0, 0)

7 96 4 (3, 2, 1, 1, 0, 0, 0)

8 384 4 (3, 2, 1, 1, 1, 0, 0, 0)

9 1536 625
128

(3, 2, 1, 1, 1, 1, 0, 0, 0)

10 7500 5 (3, 2, 2, 1, 1, 1, 0, 0, 0, 0)

11 37500 648
125

(3, 2, 2, 1, 1, 1, 1, 0, 0, 0, 0)

12 194400 6 (3, 2, 2, 2, 1, 1, 1, 0, 0, 0, 0, 0)

13 1166400 16807
2592

(3, 2, 2, 2, 1, 1, 1, 1, 0, 0, 0, 0, 0)

14 7563150 7 (3, 3, 2, 2, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0)

15 52942050 262144
36015

(3, 3, 2, 2, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0)

16 385351680 8 (4, 3, 2, 2, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0)

17 3082813440 531441
65536

(4, 3, 2, 2, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0)

18 24998984640 9 (4, 3, 2, 2, 2, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0)

19 224990861760 9 (4, 3, 2, 2, 2, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0)

20 2024917755840 5000000
531441

(4, 3, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0)

21 19051200000000 10 (4, 3, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0)

22 190512000000000 214358881
21000000

(4, 3, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0)

23 1944663768432000 11 (4, 3, 3, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)

24 21391301452752000 214990848
19487171

(4, 3, 3, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)

25 235998033739776000 12 (4, 3, 3, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)

26 2831976404877312000 12 (4, 3, 3, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)

27 33983716858527744000 10604499373
859963392

(4, 3, 3, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)

28 419064703766444736000 13 (4, 3, 3, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)

29 5447841148963781568000 (4, 3, 3, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)

Table 2: The maximal coefficients of pn and their consecutive quotients. The last column
lists a monomial of pn whose coefficient is equal to mn.

n (a1, . . . , an)

2 (2, 0)

5 (3, 1, 1, 0, 0)

6 (3, 1, 1, 1, 0, 0)

12 (3, 3, 2, 1, 1, 1, 1, 0, 0, 0, 0, 0), (4, 2, 2, 1, 1, 1, 1, 0, 0, 0, 0, 0)

13 (4, 2, 2, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0), (3, 3, 2, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0)

14 (4, 2, 2, 2, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0)

15 (4, 2, 2, 2, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0)

Table 3: Additional monomials of pn whose coefficients are equal to mn for n < 30.
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n sn
sn+1

sn

30 5447841148963781568000 289254654976
22024729467

31 71547458245452693504000 14

32 1001664415436337709056000 14

33 14023301816108727926784000 8649755859375
578509309952

34 209673612792393750000000000 962072674304
64072265625

35 3148339635292233982279680000 16

36 50373434164675743716474880000 16

37 805974946634811899463598080000 582622237229761
35184372088832

38 13346235805315454304418995840000 17

39 226886008690362723175122929280000 46273255257047040
2638936015687741

40 3978404225024620607607354163200000 18

41 71611276050443170936932374937600000 42052983462257059
2313662762852352

42 1301601882440198387257545835699200000 19

43 24730435766363769357893370878284800000 19

44 469878279560911617799974046687411200000 32768000000000000000
1640066355028025301

45 9388017391765133721600000000000000000000 20

46 187760347835302674432000000000000000000000 68122318582951682301
3276800000000000000

47 3903402780908908402684872776385162240000000 21

48 81971458399087076456382328304088407040000000 68440034007706025984
3243919932521508681

49 1729429060270920090607276147799029186560000000 22

50 38047439325960241993360075251578642104320000000 22

51 837043665171125323853921655534730126295040000000 141050039560662968926103
6159603060693542338560

52 19167638064180062036564117435227926126077952000000 23

53 440855675476141426840974701010242300899792896000000 145398897491341278707712
6132610415680998648961

54 10452307389872489948744789613053673200242655232000000 24

55 250855377356939758769874950713288156805823725568000000 582076609134674072265625
24233149581890213117952

56 6025508444195271521816253662109375000000000000000000000 25

57 150637711104881788045406341552734375000000000000000000000 4116767537697256247666432
162981450557708740234375

58 3804975577941702545004131009801025732678899466240000000000 26

59 98929365026484266170107406254826669049651386122240000000000 26

60 2572163490688590920422792562625493395290936039178240000000000 1570042899082081611640534563
58959020400027837728817152

61 68495151317539451014974372699807632703067401288427560000000000 27

62 1849369085573565177404308062894806082982819834787544120000000000 43866262300411718040591269888
1570042899082081611640534563

63 51670504955929472544522433459271401555552182671108997120000000000 28

64 1446774138766025231246628136859599243555461114791051919360000000000 176994576151109753197786640401
6266608900058816862941609984

65 40862798295083655283632061806834793855899184040599487771040000000000 29

66 1185021150557426003225329792398209021821076337177385145360160000000000 29

67 34365613366165354093534563979548061632811213778144169215444640000000000 5230176601500000000000000000000
176994576151109753197786640401

68 1015501326834227574804448936477849769406960000000000000000000000000000000 30

69 30465039805026827244133468094335493082208800000000000000000000000000000000 645590698195138073036733040138561
20920706406000000000000000000000

70 940118652620125224647533652879072642271519651664470795263552602800000000000 31

71 29143678231223881964073543239251251910417109201598594653170130686800000000000 649037107316853453566312041152512
20825506393391550743120420649631

72 908277006976838893495396839720732975992938383907565812097329240473600000000000 32

73 29064864223258844591852698871063455231774028285042105987114535695155200000000000 32

74 930075655144283026939286363874030567416768905121347391587665142244966400000000000 2781855434090103443811378243892171521
85165837925733364110154508149981184

75 30379974863093055499068023870097652840716436890381792175415887077743001600000000000 33

76 1002539170482070831469244787713222543743642417382599141788724273565519052800000000000 2847501839779123940187735784914157568
84298649517881922539738734663399137

77 33864506118722234127534503334495450730573121152148488603345499618079355699200000000000 34

78 1151393208036555960336173113372845324839486119173048612513746987014698093772800000000000 399669593472470313551127910614013671875
11557507467338797168997280538769227776

79 39816271517312974256100509002896515744268277555434859054687500000000000000000000000000000 35

80 1393569503105954098963517815101378051049389714440220066914062500000000000000000000000000000 404140638732382030321569800228268146688
11419131242070580387175083160400390625

81 49320570642735368629992208025957484343031663764994032732691353227472207179939840000000000000 36

82 1775540543138473270679719488934469436349139895539785178376888716188999458477834240000000000000 36

83 63919459552985037744469901601640899708569036239432266421567993782803980505202032640000000000000 59325966985223687799599734398071581327609
1616562554929528121286279200913072586752

84 2345769877936484815469854363747603640274357258394513512999736861193926236361921658880000000000000 37

85 86793485483649938172384611458661334690151218560596999980990263864175270745391101378560000000000000 36807814606597472834439071501847169493876736
970059730434063003209671332725224505491985

86 3293280220294377971347467731349401295685328549014404380417498855020965676295207000211456000000000000 38

87 125144648371186362911203773791277249236042484862547366455864956490796695699217866008035328000000000000 9093778876146525519753713411306280250639479
237357799848111043775597979581466351239168

88 4794608647994409038997330943549548574735166856026307562390437024839722999393985472296755584000000000000 39

89 186989737271781952520895906798432394414671507385025994933227043968749196976365433419573467776000000000000 360287970189639680000000000000000000000000000
9093778876146525519753713411306280250639479

90 7408378167700986380828325883329584618472057265089496740817451089920000000000000000000000000000000000000000 40

91 296335126708039455233133035333183384738882290603579869632698043596800000000000000000000000000000000000000000 40

92 11853405068321578209325321413327335389555291624143194785307921743872000000000000000000000000000000000000000000 58983677299744401560074115672359981890669066761
1441151880758558720000000000000000000000000000

93 485137915571417159462028231314994899343248266747019135549714969297846930802852529386687060879513600000000000000 41

94 19890654538428103537943157483914790873073178936627784557538313741211724162916953704854169496060057600000000000000 11152795537017915251768561543888501580276393855418368
267188865036464121457189393493879454552305181077725

95 830260659007146007772745689466656164663688800918177680838519253171995494099296780078316846245644075008000000000000 42

96 34870947678300132326455318957599558915874929638563462595217808633223810752170464763289307542317051150336000000000000 10093776109231555797740541116805209814919811290249
237279062189656720523796155594134696283911225344

97 1483399063252167028338360029439804956347076714866041438488642548695961414227705961250855012767516543942656000000000000 43

98 63786159719843182218549481265911613122924298739239781855011629593926340811791356333786765549003211389534208000000000000 885182809206724429753029845421970028406525755654144
20422291197747566381475048306094261718558687959341

99 2764744244541327539828782867196968086879145195304124286644923210215005242351869797701380142664027856774889472000000000000 44

100 121648746759818411752466446156666595822682388593381468612376621249460230663482271098860726277217225698095136768000000000000

Table 4: s30, . . . , s100 returned by Algorithm 1 and their consecutive quotients.
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