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Abstract

We show that a collection of convolution formulas involving the Fibonacci, Tri-
bonacci, Pell, Jacobsthal, Narayana, and other number sequences can all be derived
from a single elegant formula so long as the sequences follow certain mild requirements.
We give many examples, both old and new.

1 Introduction

Let us dive right into some interesting convolution formulas. From Szakács [12, Corollary 2.4]
and two years later in Koshy and Griffiths [10, equation (2.2)] we have this lovely convolution
formula that connects the Fibonacci numbers Fn (A000045 in the On-Line Encyclopedia of
Integer Sequences [7]) with the seemingly-unrelated Jacobsthal numbers Jn (A001045),

n∑
i=0

FiJn−i = Jn+1 − Fn+1. (1)
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This formula can also be found at A094687.
From Frontczak [5, Theorem 2.1] we have another lovely formula, this one with the

Fibonacci numbers and the Tribonacci numbers Tn (A000073) except that our Tribonacci
numbers start with T0 = 0, T1 = 1, T2 = 1,

n∑
i=0

FiTn−i = Tn+2 − Fn+2. (2)

The terms Tn+2 − Fn+2 appear at sequence A000100.
Dresden and Wang [4] noted the similarity between formulas 1 and 2, and asked if there

were other convolution formulas of this type. A bit of investigation reveals quite a few more,
such as this next little gem that involves just the Fibonacci numbers,

n∑
i=0

F3iFn−i =
1

3
(F3n − 2Fn) . (3)

The above formula can be found at A049674.
Here is an adorable equation that connects the Narayana numbers Nn (A000930) and the

triangular numbers tn (A000217),

n∑
i=1

N3i−1tn−i = N3n−1 − tn. (4)

We believe this formula is new; we added it to the OEIS at A350498.
This next one gives us another surprising connection (first proved by Szakács [12, Corol-

lary 2.7]), this time between the Jacobsthal numbers and Pell numbers (A000129),

n∑
i=0

JiPn−i =
1

2
(Pn+1 + Pn − Jn+2) . (5)

Here are some formulas with Fibonacci numbers and with powers that all seem rather similar:

n∑
i=0

Fi 1n−i = Fn+2 − 1 · 1n+1 (6)

n∑
i=0

F2i 3n−i = 1 · 3n+1 − F2(n+2) (7)

n∑
i=0

F3i 4n−i = F3(n+2) − 2 · 4n+1. (8)

The general rule is

n∑
i=0

Fki (Lk)n−i = (−1)k
(
Fk · (Lk)n+1 − Fk(n+2)

)
. (9)
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It should not come as a surprise that we can play a similar game with the Pell numbers:

n∑
i=0

Pi 2n−i = Pn+2 − 1 · 2n+1 (10)

n∑
i=0

P2i 6n−i = 2 · 6n+1 − P2(n+2) (11)

n∑
i=0

P3i 14n−i = P3(n+2) − 5 · 14n+1. (12)

The general rule for these is

n∑
i=0

Pki (Qk)n−i = (−1)k
(
Pk · (Qk)n+1 − Pk(n+2)

)
, (13)

where the Qn’s are the Pell-Lucas numbers A002203. For k odd, these Fibonacci and Pell
formulas can also be derived from a combinatorial formula by Benjamin and Quinn [2,
Identity 99].

At this point, it is probably not surprising that we can also find convolution formulas for
Fibonacci numbers and Pell numbers together, such as the well-known formula

n∑
i=0

FiPn−i = Pn − Fn (14)

and the less familiar formula

n∑
i=0

F3iPn−i = F3n/2− Pn. (15)

With not much effort, we can prove a general formula for the Fibonacci and Pell numbers
involving the Lucas numbers Ln (A000032) and the Pell-Lucas numbers Qn,

n∑
i=0

FkiPm(n−i) =
1

Lk −Qm

(FknPm − FkPmn) , for k,m same parity. (16)

(It takes a bit more effort to show that Lk = Qm only for k = 0 and m = 0, 1; this follows from
a procedure of Alekseyev [1, eq. (10)] which gives us the Diophantine system x2 − 5y2 = ±4
and x2 − 8z2 = ±4 which by a bit of algebra and the method of infinite descent gives only
(x, y, z) = (2, 0, 0) as the single non-negative solution and hence Lk = Qm only when both
equal 2.)
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Along the lines of equation (16), we have another general convolution formula, this one
just involving the Fibonacci numbers which is a nice generalization of equation (3) from
earlier:

n∑
i=0

FkiFm(n−i) =
1

Lk − Lm

(FknFm − FkFmn) , for k 6= m but of same parity. (17)

It should not come as a surprise to learn that we have a version of equation (17) but for the
Pell numbers in place of the Fibonacci numbers,

n∑
i=0

PkiPm(n−i) =
1

Qk −Qm

(PknPm − PkPmn) , for k 6= m but of same parity. (18)

We note that for k,m both odd, then equations (16), (17), and (18) can all be derived from
a theorem of Bramham and Griffiths [3, Theorem 3.1], but we believe the extension to when
k,m are both even is original to this paper.

Finally, here is a rather complicated formula that does not seem related to the others
(but as we will reveal later it is indeed in the same family),

2n∑
i=0

(−1)iFiFi+1F2n−i−1 =
2

3

n∑
i=0

F2i−1F4(n−i) =
1

2
(F4n+1 − F2n−1) . (19)

This formula is completely new, and it illustrates how our approach can produce novel results.
The right-hand sides of all these equations (1) through (19) exhibit a striking pattern.

Is there a single theorem that will allow us to derive all these formulas? Of course there is,
and we give two proofs of this theorem, one using generating functions and the other using
a tiling argument. Our work follows closely the tiling techniques studied by Benjamin and
Quinn [2] and elaborated by Bramham and Griffiths [3], and also the generating function
techniques illustrated by Wilf [13].

We should note that in general, most convolution formulas are not as elegant as the
ones seen above. For example, the convolution of Fn with itself is the rather unpleasant
((n−1)Fn+2nFn−1)/5, and for the convolution of (Fn)2 with F3n we have the quite unsavory
equation

n∑
i=0

(Fi)
2F3(n−i) =

1

11

(
F3n + L3n+1 − 5(Fn)2 − (Fn+1)

2 − 3FnFn+1

)
.

By comparison, our convolution formulas (1) through (19) are delightfully simple and grace-
ful, with all but equation (5) involving just two terms. Furthermore, they all derive from a
single theorem, as we now explain.
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2 Definitions and the main theorem

To begin, we suppose that (an)n≥0 is a linear recurrence sequence with initial values an = 0
for n ≤ 0 and a1 = 1, and with recurrence formula

an = c1an−1 + c2an−2 + · · ·+ cLan−L (20)

for n > 1, with not all ci equal to zero. We say that this sequence has signature {c1, c2, . . . , cL}
and has order L. It is not hard to show that this sequence (an) has generating function A(x),
where

A(x) =
∞∑
n=0

anx
n =

x

1− c1x− c2x2 − · · · − cLxL
. (21)

As an example, the Fibonacci sequence (Fn)n≥0 has signature {1, 1}, order 2, and generating
function x/(1− x− x2).

Next, we suppose that (bn) is another linear recurrence sequence with the same initial
values as (an) and whose signature is {c1, c2, . . . , (cj+dj), . . . , cL}, differing from the signature
for (an) only in position j by a non-zero amount dj. It is convenient but not necessary to
assume that dj > 0. The sequence (bn) has generating function B(x), where

B(x) =
∞∑
n=0

bnx
n =

x

1− c1x− c2x2 − · · · − (cj + dj)xj − · · · − cLxL
. (22)

With all this in mind, we have the following theorem.

Theorem 1. For any two sequences (an) and (bn) as defined above with initial values of 0
for n ≤ 0 and 1 for n = 1 and whose recurrence signatures differ in only the jth term by an
amount dj, we have the convolution formula

n∑
i=0

aibn−i =
n∑

i=0

bian−i =
1

dj

(
bn+j−1 − an+j−1

)
. (23)

We note that Szakács [12, Theorem 2.1] covers our Theorem 1 but only for second-order
linear recurrences. In the next two sections, we present two separate proofs of our theorem.

3 Proving the convolution theorem using generating

functions

Recall that we have

A(x) =
∞∑
n=0

anx
n =

x

1− c1x− c2x2 − · · · − cLxL
,

B(x) =
∞∑
n=0

bnx
n =

x

1− c1x− c2x2 − · · · − (cj + dj)xj − · · · − cLxL
.
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A bit of algebra (and a common denominator) reveals that

B(x)− A(x) = djx
j−1A(x)B(x),

which we simplify to

A(x)B(x) =
1

dj

(
B(x)

xj−1
− A(x)

xj−1

)
. (24)

Here we make two crucial observations. First, we note that A(x)B(x) is the generating
function for the convolution sequence (

∑n
i=0 aibn−i)n≥0 which if we replace i with n− i gives

us the identical expression (
∑n

i=0 bian−i)n≥0, and second, we note that dividing a generating
function by a power of x shifts the index in the positive direction by that same power. In
other words,

A(x)

xj−1
=

∞∑
n=−(j−1)

an+(j−1)x
n,

with a similar statement for B(x)/xj−1. Hence, equation (24) can be rewritten in terms of
coefficients as

n∑
i=0

aibn−i =
1

dj

(
bn+j−1 − an+j−1

)
for all n ≥ 0.

Therefore, we have proved Theorem 1.

4 Proving the convolution theorem using tilings

Note that tiling proofs for convolution formulas are quite common. Equation (6) is the
very first identity in Benjamin and Quinn’s book [2]. Versions of Theorem 1 for degree-two
recurrence sequences can be found in that same book [2, Identities 99, 100] and also in an
article by Bramham and Griffiths [3, Theorems 3.1, 3.2], and a limited version for degree
three also appears in Benjamin and Quinn [2, p. 47, Ex. 4].

To begin our tiling proof, we turn once more to Benjamin and Quinn [2, Section 3.1],
where we find the following theorem:

Theorem 2 (Benjamin, Quinn). Let c1, c2, . . . cL be nonnegative integers, and let a0, a1, . . .
be the sequence of numbers defined by the recurrence

an = c1an−1 + c2an−2 + · · ·+ cLan−L

with “ideal” initial conditions a1 = 1 and an = 0 for n ≤ 0. Then for all n ≥ 1, an counts
the colored tilings of a board of length n − 1, using tiles of length at most L, where for
1 ≤ i ≤ L each tile of length i is assigned one of ci colors.
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With this in mind, we can now prove Theorem 1 for two sequences (an) and (bn) in the
case that all their associated constants are non-negative integers. (Benjamin and Quinn [2,
Section 3.5] also discussed how to extend tiling proofs to deal with complex coefficients, but
we will leave that as an exercise for the reader.)

From Theorem 2 and our definitions of (an) and (bn) we know that an measures the
number of ways to tile a board of length n − 1 and that bn measures the same except that
the tiles of length j (henceforth called j-minos) have an additional dj colors.

We now consider a board of length n + j − 2 and we ask, how many ways are there to
tile this board with our colored tiles of length 1 through L, and using at least one of the
“additional” dj colors for the j-mino?

On the one hand, by Theorem 2 there are bn+j−1 ways using all cj+dj colors for the j-mino
and an+j−1 ways that do not use the additional dj colors, so their difference bn+j−1− an+j−1
gives us the desired count.

On the other hand, we can condition on the location of the last j-mino that uses one of
the additional dj colors (we are given that there must be at least one such j-mino). We can
think of this j-mino as stretching from position i to position i+ j− 1 on our board of length
n+ j − 2 as i ranges from 1 to n− 1; see Figure 1.

Figure 1: Conditioning on the location of the last j-mino.

At each position of the j-mino, there would be bi possible tilings for the board of length
i − 1 to the left of the j-mino (these tilings could use one of these “additional” dj colors)
and an−i possible tilings for the board of length n − i − 1 to the right (these tilings would
not use one of the additional colors), and of course the j-mino itself has dj possible colors.
This gives us bi · dj · an−i tilings for this configuration, and summing over i from 1 to n− 1
gives

dj ·
n−1∑
i=1

bian−i,

and since a0 = b0 = 0 by our initial conditions, we can extend the sum from 0 to n without
changing its value, giving us

dj ·
n∑

i=0

bian−i

total number of tilings. Comparing this with our expression bn+j−1−an+j−1 from earlier will
give us our desired statement.

5 Examples

We now show how all our equations (1) through (19) follow from Theorem 1.
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For our first equation (1), we recall that the generating functions for the Fibonacci
numbers and Jacobsthal numbers are

∞∑
n=0

Fnx
n =

x

1− x− x2
∞∑
n=0

Jnx
n =

x

1− x− 2x2
,

and so they have signatures {1, 1} and {1, 2} respectively. We can now apply Theorem 1
with an = Fn, bn = Jn, j = 2, and dj = 1 to obtain

n∑
i=0

FiJn−i = Jn+1 − Fn+1,

which is our equation (1).
Moving on to equation (2) with the Fibonacci numbers and Tribonacci numbers, we recall

that our definition of the Tribonacci numbers has them starting with T0 = 0 and T1 = T2 = 1
so as to match the requirements for initial conditions in Theorem 1. These two sequences
have signature {1, 1} and {1, 1, 1} respectively, and so we use an = Fn and bn = Tn, which
means j = 3 and dj = 1 and so equation (23) of Theorem 1 gives us

n∑
i=0

TiFn−i = Tn+2 − Fn+2,

which is a perfect match for our equation (2).
For equation (3) on two Fibonacci sequences, the sequence (F3n)n≥0 presents a bit of a

problem since its generating function is

∞∑
n=0

F3nx
n =

2x

1− 4x− x2

and the numerator does not match the numerators in equations (21) and (22). We simply
divide by 2 to obtain

∞∑
n=0

(F3n/2)xn =
x

1− 4x− x2
,

and so we now use an = Fn, bn = F3n/2, j = 1, and dj = 3 and so Theorem 1 gives us

n∑
i=0

(F3i/2)Fn−i =
1

3
((F3n/2)− Fn) ,
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and we simply multiply through by 2 to obtain equation (3). We will use this technique
again in what follows, and in particular when we prove the general Fibonacci convolution
formula (17).

To derive equation (4) involving the triangular numbers and Narayana’s numbers, we
begin with two generating functions,

x

(1− x)3
=

x

1− 3x+ 3x2 − x3
and

x

1− 4x+ 3x2 − x3
. (25)

The first generating function gives us the triangular numbers 0, 1, 3, 6, 10, 15, . . . from A000217.
The second gives us the sequence 0, 1, 4, 13, 41, 129 which (aside from the first term) is a tri-
section of Narayana’s numbers as seen at A052529. To be precise, if we let an and bn represent
these two sequences then an = tn for all n, and bn = N3n−1 for n > 0 (with b0 = 0). We can
now apply Theorem 1 with j = 1 and dj = 1, dropping the first term b0an from the sum, to
obtain

n∑
i=1

bian−i = bn − an, (26)

and we replace an and bn with tn and N3n−1 to obtain our equation (4).
To obtain equation (5) with the Jacobsthal and the Pell sequences, we begin with the

Lichtenberg numbers (`n)n≥0 (A000975) as discussed by Hinz [6]. These have generating
function

∞∑
n=0

`nx
n =

x

1− 2x− x2 + 2x3
(27)

and so when we look at
n∑

i=0

`iPn−i

we see that we can apply Theorem 1 if we let an = `n, bn = Pn, j = 3, and dj = 2, giving us

n∑
i=0

`iPn−i =
1

2
(Pn+2 − `n+2) . (28)

From A000975 we learn that `n = Jn+1 − πn+1 where πn is n mod 2, the parity of n. We
substitute this into equation (28) to obtain

n∑
i=0

(Ji+1 − πi+1)Pn−i =
1

2
(Pn+2 − Jn+3 + πn+3) . (29)

If we separate the sum on the left, the above equation becomes

n∑
i=0

Ji+1Pn−i − (Pn + Pn−2 + Pn−4 + · · · ) =
1

2
(Pn+2 − Jn+3 + πn+3) . (30)
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From an article by Koshy and Pell [8, Section 10.2] we learn that (Pn + Pn−2 + Pn−4 + · · · )
equals (Pn+1 − πn+1)/2, and so moving this over to the right of equation (30) gives us

n∑
i=0

Ji+1Pn−i =
1

2
(Pn+2 − Jn+3 + πn+3 + Pn+1 − πn+1) , (31)

and since πn+3 = πn+1 then all this simplifies to

n∑
i=0

Ji+1Pn−i =
1

2
(Pn+2 + Pn+1 − Jn+3) . (32)

The expression on the left is J1Pn + J2Pn−1 + · · ·+ Jn+1P0. Since J0 = 0 we can add J0Pn+1

in front without changing the value, giving us
∑n+1

i=0 JiPn+1−i on the left of equation (32).
We now replace all n’s with n− 1’s in (32) to obtain

n∑
i=0

JiPn−i =
1

2
(Pn+1 + Pn − Jn+2) , (33)

which is equation (5).
Moving on to equations (6) through (9) on the convolution of powers and Fibonacci

numbers, we need the identity

Fk(n+2) = LkFk(n+1) − (−1)kFkn

which Koshy [9, p. 112] credits to Ruggles [11]. This identity, along with the initial values
of Fk0 = 0 and Fk1 = Fk, tells us that the generating function for (Fkn)n≥0 is

∞∑
n=0

Fknx
n =

Fkx

1− Lkx+ (−1)kx2
. (34)

As for the sequence 0, 1, Lk, (Lk)2, (Lk)3, . . . , this has generating function x/(1−Lkx), which
means to apply Theorem 1 we would have to use b0 = 0 and bn = (Lk)n−1 to have

∑∞
n=0 bnx

n

match the coefficients of x/(1− Lkx). For an we let an = Fkn/Fk, and then we assign j = 2
and dj = (−1)k to obtain from Theorem 1 the intermediate step

n∑
i=0

(Fki/Fk)bn−i =
1

(−1)k
(
bn+1 − (Fk(n+1)/Fk)

)
. (35)

Since b0 = 0 and bn = (Lk)n−1 for n > 0, the sum on the left of equation (35) doesn’t have
an nth term and so we really have

n−1∑
i=0

(Fki/Fk)(Lk)n−1−i =
1

(−1)k
(
(Lk)n − (Fk(n+1)/Fk)

)
. (36)
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We now replace n with n+ 1, multiply both sides by Fk, and rewrite 1/(−1)k as just (−1)k,
to obtain

n∑
i=0

Fki (Lk)n−i = (−1)k
(
Fk · (Lk)n+1 − Fk(n+2)

)
which is our desired equation (9), and this covers (6) through (8) by replacing k with 1, 2,
and 3 respectively.

As for equations (10) through (13) on powers and Pell numbers, we need the identity

Pk(n+2) = QkPk(n+1) − (−1)kPkn

which can be obtained from Koshy’s book on Pell numbers [8, (7.20)] although Koshy’s
definition of Qn is slightly different from ours. This identity, along with the initial values of
Pk0 = 0 and Pk1 = Pk, tells us that the generating function for (Pkn)n≥0 is

∞∑
n=0

Pknx
n =

Pkx

1−Qkx+ (−1)kx2
. (37)

From here, the procedure is identical to the one before, except that here we use Pkn/Pk

instead of Fkn/Fk and we use Qk in place of Lk. This gives us equation (13), which covers
(10) through (12) by replacing k with 1, 2, and 3 respectively.

At this point, we have already done most of the work to establish equation (16) on
the convolution of Fibonacci numbers and Pell numbers. Thanks to equations (34) and
(37), we know that the signature for (Fkn/Fk)n≥0 is {Lk,−(−1)k} and for (Pmn/Pm)n≥0 is
{Qm,−(−1)m}. So long as k and m have the same parity, we can apply Theorem 1 with
an = Pmn/Pm, bn = Fkn/Fk, j = 1, and dj = Lk − Qm. After multiplying both sides by
Fk · Qm, we have our formula (16), which will then give us (14) and (15) with appropriate
choices for k and m.

Moving on, let us discuss equation (17) on the convolution of two Fibonacci sequences.
From our discussion earlier, we know that the signature for (Fkn/Fk)n≥0 is {Lk,−(−1)k} and
likewise for (Fmn/Fm)n≥0 it is {Lm,−(−1)m}. So long as k 6= m have the same parity, we
can use Theorem 1 with j = 1, an = Fmn/Fm, bn = Fkn/Fk, and dj = Lk − Lm to obtain
equation (17). The identical technique applies to equation (18) with the convolution of two
Pell sequences and so we will not elaborate further on that.

Finally, we will derive equation (19), which we repeat here:

2n∑
i=0

(−1)iFiFi+1F2n−i−1 =
2

3

n∑
i=0

F2i−1F4(n−i) =
1

2
(F4n+1 − F2n−1) . (38)

We begin with the sum on the far left. We note that if we let an = (−1)n−1Fn−1 + 1
and bn = FnFn+1 then the two sequences have generating functions x/(1 − 2x2 + x3) and
x/(1 − 2x − 2x2 + x3) respectively, so we can apply Theorem 1 with j = 1 and dj = 2 to
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obtain
n∑

i=0

FiFi+1

(
(−1)n−i−1Fn−i−1 + 1

)
=

1

2

(
FnFn+1 − ((−1)n−1Fn−1 + 1)

)
. (39)

We split up the sum on the left, and replace all n’s with 2n’s, to get

2n∑
i=0

(−1)i+1FiFi+1F2n−i−1 +
2n∑
i=0

FiFi+1 =
1

2
(F2nF2n+1 + F2n−1 − 1) . (40)

Next, from Koshy [9, p. 109] we learn that
∑2n

i=0 FiFi+1 equals F 2
2n+1 − 1, so moving that

over to the right we have

2n∑
i=0

(−1)i+1FiFi+1F2n−i−1 =
1

2

(
F2nF2n+1 + F2n−1 − 1− 2F 2

2n+1 + 2
)
, (41)

and after some tedious calculations the right-hand side simplifies to (F2n−1 − F4n+1) /2, and
so after multiplying everything by −1 we obtain our desired formula.

For the sum in the middle of equation (38), we note that F2i−1 = F2(i+1) − 2F2i so we
cam split up this middle sum as

2

3

n∑
i=0

F2i−1F4(n−i) =
2

3

n∑
i=0

F2(i+1)F4(n−i) −
4

3

n∑
i=0

F2iF4(n−i). (42)

The second sum on the right matches perfectly with equation (17), allowing us to rewrite
the above equation as

2

3

n∑
i=0

F2i−1F4(n−i) =
2

3

n∑
i=0

F2(i+1)F4(n−i) −
1

3
(F4n − 3F2n) , (43)

and for the first sum on the right, we first re-index the sum (replacing i with i − 1) to get
(2/3)

∑n+1
i=1 F2iF4(n+1−i) and then since F2·0 = 0 we can change the starting value from i = 1

to i = 0 giving us (2/3)
∑n+1

i=0 F2iF4(n+1−i) and this matches again with equation (17) but
using n+ 1 instead of n, giving us (1/6)

(
F4(n+1) − 3F2(n+1)

)
. Thus, equation (43) becomes

2

3

n∑
i=0

F2i−1F4(n−i) =
1

6

(
F4(n+1) − 3F2(n+1)

)
− 1

3
(F4n − 3F2n) , (44)

and after combining terms we have

2

3

n∑
i=0

F2i−1F4(n−i) =
1

6

(
(F4n+4 − 2F4n)− 3 (F2n+2 − 2F2n)

)
. (45)

Since F4n+4 − 2F4n = 3F4n+1 and F2n+2 − 2F2n = F2n−1, we get

2

3

n∑
i=0

F2i−1F4(n−i) =
1

6

(
3F4n+1 − 3F2n−1

)
=

1

2
(F4n+1 − F2n−1) , (46)

which gives us the second part of equation (38), as desired.
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6 Conclusion

What other “universal convolution” formulas can we find? As we noted earlier, Szakács has
a version of our Theorem 1 that applies to order-two recurrences with completely different
signatures; the formulas are rather complicated when done in such generality. Dresden and
Wang [4] have a surprisingly simple universal convolution formula that applies to Fibonacci-
type and Lucas-type sequences with the same signatures but different initial values, as fol-
lows:

Theorem 3 (Dresden, Wang). For a given Fibonacci-type sequence (F (k)
n )n≥0 and companion

Lucas-type sequence (L(k)
n )n≥0 which count the number of ways to tile a strip and a bracelet

respectively with the same collection of single-color tiles of lengths 1 through k, we have

n−1∑
i=0

F (k)
i L

(k)
n−i = (n− 1)F (k)

n .

Going back to our Theorem 1, there are plenty of additional convolutions that we could
write down. For example, the Tripell nuumbers (A077939), the Tribonacci numbers, the
Padovan numbers (A000931), and the sum of every other Tribonacci number (A113300)
have signatures {2, 1, 1}, {1, 1, 1}, {0, 1, 1} and {3, 1, 1} respectively, and so it would be
easy to write down convolution formulas for these numbers. Likewise, the Tribonacci num-
bers and the Tetranacci numbers (A000078) have signatures {1, 1, 1} and {1, 1, 1, 1} and so
they too would have an elegant convolution formula. We also mention the Lucas-Lehmer
sequence A107920 with signature {1,−2} that can be matched to the Fibonacci numbers
(signature {1, 1}), the Jacobsthal numbers (signature {1, 2}), and the Mersenne numbers
2n − 1 (signature {3,−2}).

We finish with one last example along these lines. If we define an as Fn/2Fn/2+1 for n
even, and (F(n+1)/2)

2 for n odd, then (an)n≥0 is A006498 with indexing offset by 1. We then
define Un to be the Tetranacci numbers with indexing offset by 2, so that Un = 0 for n ≤ 0
and U1 = 1. These two sequences have signatures {1, 0, 1, 1} and {1, 1, 1, 1} respectively.
Then, Theorem 1 with 2n+ 1 in place of n tells us that

2n+1∑
i=0

aiU2n+1−i = U2n+2 − a2n+2. (47)

Using our definition of an, and splitting up the sum on the left into two sums over even indices
and odd indices respectively that we then re-index, we obtain this fascinating relationship
between the Fibonacci numbers and the Tetranacci numbers,

n∑
i=0

FiFi+1U2n−2i+1 +
n∑

i=0

(Fi+1)
2U2n−2i = U2n+2 − Fn+1Fn+2. (48)

We can only imagine that there are many other interesting convolution formulas just
waiting to be found.
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