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Abstract

We introduce an extension to the negative indices of a family of generalized Fi-
bonacci sequences of order-k, and for which we establish recurrence relations. We also
give permanental representations of negatively subscripted generalized Fibonacci and
Lucas sequences via Hessenberg matrices.

1 Introduction

A family of k sequences of the generalized order-k Fibonacci numbers was defined and studied
by Er [3], for n > 0 and 1 <i < k, as follows:

99 = e1g® 4 g™y + -+ g™, (1)

where ¢y, ¢, ..., ¢ are real constant coefficients, with ¢ # 0, and for 1 — k <n <0,

(@) 1, fori=1-n;
In” = .
0, otherwise.

Several sequences were derived from (1). Lee and Lee [6] studied the sequence ob-
tained from (1) by setting (c1,co,...,cx) = (1,1,...,1) and ¢ = 1, which is called in the
present paper order-k Fibonacci sequence (’g,&’“))n Also, Lee [8] studied order-k Lucas se-
quence denoted (lék))n, for & > 2. The sequence (lff))n is obtained from (1) by setting
(c1,¢9,...,c,) = (1,1,...,1) with initial conditions l[()k) =2, l§k) =27t forj=1,...,k—1,
and [ = 2k=1 41,

In the present paper, we consider the family of shifted generalized order-k Fibonacci
sequences defined as (1), but with initial conditions, for 0 <n <k —1,

@ _ )L fori =k —mn;
0, otherwise.

The permanent of a square matrix A = (a;;)nxy, is defined as follows:

per A = Z Haia(i)a

ceS, i=1

where the summation runs over all permutations o of the symmetric group &,, of order n.

Next, we present the definition of matrix contraction; see for instance [2]. Let A = (a;;)
be an m x n real matrix with row vectors ay, as, ..., a,,. We say that A is contractible on
column (resp., row) k if column (resp., row) k contains exactly two nonzero entries. If A is
contractible on column &k with a;; # 0 # aj; and @ # j, then the (m — 1) x (n — 1) matrix
Ag-f), obtained from A by replacing row i by a;pc; + a;ra; and deleting row j and column £,
is called the contraction of A on column k relative to rows ¢ and j.

Brualdi and Gibson [2] gave the following lemma.
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Lemma 1. Let A be a nonnegative integral matriz of order n > 1, and let B be a contraction
of A. Then
per A = per B.

Permanental representations of recurrent sequences have been investigated by several
authors. Yilmaz and Bozkurt [11] gave permanental representations of sums of Fibonacci
and Lucas numbers via Hessenberg matrices. Lee et al. [7] obtained gfﬁk_l as the permanent
of an n x n upper triangular (0, 1)-matrix; that is a matrix whose all entries are either 0 or
1. Lee [8] constructed a (0, 1)-matrix of order n and established that the permanent of that
matrix is the (n — 1) term lgi)l of the order-k Lucas sequence.

The aim of this work is to propose an extension to negative indices of the family of
generalized order-k£ Fibonacci sequences (gf,(f))n, 1 < ¢ < k. For instance, extensions to
negative indices of order-k£ Fibonacci, order-k£ Lucas, order-k Pell, and order-k Jacobsthal
are also given. As application, we provide some permanental representations.

The present paper is organized as follows: In Section 2, we give an extension of order-k
Fibonacci, order-£k Lucas, and the family of generalized order-k Fibonacci sequences (gﬁf))n,
1 <17 < k, to negatively subscripted indices. We also provide recurrence formulas for the
n'™ term of these negatively subscripted sequences. In Section 3, we present negatively
subscripted generalized order-k Fibonacci numbers as the permanent of special Hessenberg
matrix. In Section 4, we give more permanental representations of negatively subscripted
order-k Fibonacci and order-k Lucas sequences. We conclude by Section 5, where we provide
proofs of the results presented in Sections 3 and 4.

2 Extension to negative indices
Extension to negative indices of classical Fibonacci sequence (F,), with initial conditions
Fy =0, F; =1 is given for n > 1, by

Foo=F ppo—F = (—1)""E,. (2)

The extension to negative indices of classical Lucas sequence (L, ), with initial conditions
Lo =2, Ly =1is given for n > 1, by

L—n - L—n+2 — L_n+1 - (—1>nLn (3)

Firstly, we propose an extension of order-£ Fibonacci sequence (:c]q(@k))n to negatively sub-
scripted indices, for n > 1, as follows:

~(k ~(k ~(k ~(k ~(k
g =g =, - g T (4)

For example, for k = 2, (5,(?))%2 is the classical Fibonacci sequence.
For k = 3, (g,(f”))nez is the Tribonacci sequence

o, —8,4,1,-3,2,0,—1,1,0,0,1,1,2,4,7,13, ...



For k =4, (5,24))”62 is the Quadrabonacci sequence
.,0,1,-3,2,0,0,-1,1,0,0,0,1,1,2,4,8,15,29, . ..

An extension of order-k Lucas sequence (lff))n to negatively subscripted indices, forn > 1,

is given by
l(k) l(k)

k
n+1 l( )

—n4+2 T T l( T)H-k 1 + l(—n—i-k (5)

For example, for k = 2, (lﬁl ))nEZ is the Lucas sequence.
For k = 3, (lf’))nez is the Tribonacci-Lucas sequence

.6,-11,6,1,-4,3,0,—1,2,1,2,5,8,15,28,51, . ..
For k =4, (lﬁf))nez is the Quadrabonacci-Lucas sequence
.,—11,6,0,1,—4,3,0,0,—-1,2,1,2,4,9,16, 31,60, ...

Secondly, we establish the extension of the family of generalized order-k Fibonacci se-
quences, (g,g,Z ))n7 1 <1 < k, to negatively subscripted indices, in the following way:

i Ck—1 (i Ck—2 (i C1 (@ 1
gl = -l - e = 2 + g( ) (6)
C CL Ck

where, ¢; € Rfor 1 < j <k and ¢; # 0. And g(le is said to be the n'" negatively subscripted
generalized order-k Fibonacci number of the sequence number ¢ of the family.

For instance, we give the extension to negative indices of classical order-k sequences. We
start by a family of order-k Fibonacci sequences defined for 1 < i < k and n > k as follows:

FO =D g

with initial conditions; for 0 < n < k — 1,

0 — 1, fori=Fk—mn;
" 0, otherwise.

For n > 1, we give the extension of the family of order-k Fibonacci sequences to negative
indices as follows:

f(T)L = f(zr)z,—f—l f£l7)~0+2 - f@ﬁk—l + fﬁ?ﬂrk' (7)

The following table gives the first terms of negatively subscripted order-k Fibonacci sequences
forn > 1,



k=2 k=3 k=4
i=1]| 1,-1,2,-3,5,—8,13,—21,34,-55... 1,-1,0,2,-3,1,4,-8,5,7... 1,-1,0,0,2,—-3,1,0,4,—8. ..
i=2]|—1,2,-3,5,-8,13,—21,34,-55,80... | —1,2,—1,-2.5,—4,-3,12,-13,-2... | —1,2,—1,0,—2,5,—4,1, 4,12 ..
i=3 ~1,0,2,-3,1,4,—8,5,7,—20. .. ~1,0,2,—1,-2,1,4,—4,-3,4. ..
i=4 ~1,0,0,2,-3,1,0,4,-8,5. ..

Table 1: First terms of negatively subscripted order-k Fibonacci sequences

Remark 2. For k = 2, ( fﬂi)n is the extension to negative indices of classical Fibonacci
numbers.

Kili¢ and Tagci [5] studied a family of k sequences of order-k Pell numbers defined for
n>0and 1 <i <k, as follows:

P =2PY + PV, 4+ + P, (8)

n

with initial conditions; for 1 — k <n <0,

pli) _ {1, forn=1-1;

n .
0, otherwise.

Next, we consider k sequences of shifted order-k Pell numbers (8) for n > k and 1 <i < k,
with initial conditions, for 0 < n < k —1,

o _ )L fori =k —n;
" 0, otherwise.

Then for n > 1, we give extension of these sequences (8) to negative indices as follows:

PO =—p@ ... pY 2P

(@)
—n+k—2 —n+k—1 + P—n+k' (9)

The next table gives the first terms of negatively subscripted order-k Pell sequences for
n>1,

k=2 k=3 k=4
i=1] 1,-2,5 —12,29,—70,169, —408... | 1,—1,—1,4,-3,—6,16,—7,—31,61...| 1,—1,0,—1,4,—4,2,~7,17,—-18...
i=2| —2,5 —12,29, —70,169, —408,985... | —2,3,1,-9,10,9, —38,30,55, —153... | —2,3,—1,2, 9,12, —8,16, —41,53...
i=3 —2,3,-3,1,4,—12,21,-26,19,9... | —1,—1,3,0,-2,—5,10, -1, —1,—23. ..
i=4 1,0, 1,4, 4,2, 7,17, 18,17 . ..

Table 2: First terms of negatively subscripted order-k Pell sequences

Remark 3. Some of the sequences in Table 2 are known in OEIS [9], as for example, A215936,
A276229, and A078021.


https://oeis.org/A215936
https://oeis.org/A276229
https://oeis.org/A078021

In 2009, Yilmaz and Bozkurt [10] studied a family of k sequences of order-k Jacobsthal
numbers defined for n > 0 and 1 <+¢ <k, as follows:

JO = g9 1oy 4 g (10)

n n

with initial conditions for 1 — k& <n <0,

) _ {1, forn=1-—1;

n .
0, otherwise.

As before, we consider k sequences of shifted order-k Jacobsthal numbers (10) for n > k and
1 < < k, with initial conditions for 0 <n < k — 1,

0 _ {1, fori =k —mn;

n .
0, otherwise.

Then, for n > 1, we give the extension of these sequences (10) to negative indices as
follows:

i e ;
JL)L:—§ QLH—F J(n+27 for k=2,1<i<2, (11)
JO = g g gy g g0 ek >3 (12)

The next table gives the first terms of negatively subscripted order-k Jacobsthal sequences
forn > 1,

k=2 k=3 k=4
I 13 5 1l 20 43 &
=1, -2 -2 = = 2 22 11,-2,3,-3,1,4,-12,21,-26,19... | 1,—1,-1,2,2,—6,—1,13,—3...
! 2 4’8 16'32° 64°128° 256 3 =31 6,19 0 33
- I3 5 11 21 43 & 171 , _
i = S 1Rl 3 el 1osong | b3 5:6,-4-3,16,-33.47. . | ~1,2,0,-3,0,8,~5,14,16,25 ..
i=3 —2,3,-3,1,4,—12,21,-26,19,9... | —2,1,4,—4,—7,12,10, —31, -8...
i=4 —1,-1,2,2,-6,—1,13,—3,—28...

Table 3: First terms of negatively subscripted order-k Jacobsthal sequences

Remark 4. The sequences of k = 3 are known in the OEIS as A077990, -A078064, and
A077990 respectively.

We now give some results on the n'" negatively subscripted generalized order-k Fibonacci

number g(le using matrix methods.

Theorem 5. Forn >0 and 2 <1 < k, we have

i Ci—1 (k i—1
gh = g W gy, (13)
Ck
and fori =1,
I &
Ck

D


https://oeis.org/A077990
https://oeis.org/-A078064
https://oeis.org/A077990

Proof. For the proof, we use the matrix approach. The matrix approach was used, for
example, by Kalman [4] and Er [3] to study generalized Fibonacci numbers. Let

Gkt G2 %=3 .. _a 1

Ck Ck Ck Ck Ck

1 0 0 00

A= o 1 0 0 0
0 0 0 10

a0 g
ol =alf (15)
g(_lgﬂ_k_g g(—zzz—i-k—l

In order to deal with k sequences of negatively subscripted generalized order-k Fibonacci
sequences at the same time, we construct a £ x k square matrix G_,, as follows:

k k—1 k-2 1
G
-1 —2 1

G = 9-n+1 9-nt1 9-n+1 SR RS |

k) k=) k- D)

g—n+k—1 g—n—i—k—l g—n+k—1 T 9-n

It is clear that, A = G_;.
Next, (15) becomes
G_n_1=AG_,.

By induction, it is also clear that

G =A"A=G_,A
Finally, we have
G_n1=AG_, =G_,A. (16)
Thus, Equations (13) and (14) are deduced from (16). O

From Theorem 5, we get the following results:

Corollary 6. Let fﬁ’% be the n'* negatively subscripted order-k Fibonacci number of the
sequence number i. Then

f(l) L= f&k)

O =—fW 42 <i<k
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Corollary 7. Let P( be the n'* negatively subscripted order-k Pell number of the sequence
number i. Then

P(l) = P(k)
P = 2#)+PQ,

—n—

PO =—p® 4 pil. 3 <<k

Corollary 8. Let J ) be the n'™ negatively subscripted generalized order-k Jacobsthal number
of the sequence number 1. Then for k > 3,

J(l) = Jgk)

S = —JE’Q ¢ Jiﬂi;

JO = —ag® 4 g

Jo ——ﬂi+i§%4§i§h

We conclude this section by defining a generalized order-k Fibonacci sequence (V},),
with arbitrary initial conditions and we give the extension of the sequence (V},), to negative
indices. Then we give the n'® negatively subscripted number V_,, as the sum of k terms of
negatively subscripted generalized order-k Fibonacci numbers defined in (6).

For n > k, let V,, be as follows:

Vn - C1‘/n—1 + CZVn—Z 4+ CkVn—ka

with integer initial conditions Vg, Vi, ..., Vi_1, where ¢1,¢9,..., ¢ € R.
Belbachir and Bencherif [1] gave the explicit formula of the n'® term of the sequence
(Vi)n-
Then for n > 1, the value V_,, is as follows:
Ck C 1
an:__IVnJrl__2Vn+2_"'__vn+k 1+ — Voot (17)
C, Ck; C; Ck

Note that for (VO,...,Vk,i,l,%,i,w,i+1,...,Vk,l) = (O,...,O,l,O,...,O), 1 < 1 < ]ﬂ,
we have V, = g

The n'® term V_,, is given by

Theorem 9. Forn > 1,

Z:&_ (18)

i=0
where g(_j) is the n'* negatively subscripted generalized order-k Fibonacci number of the se-
quence number i (6).



Proof. By induction on n.
Forn=1,V_ = —CiglVo — = Ve F év;g_1 =

k=1 (k—i)
Zi:(] a;g_1 -
Now suppose that (18) is true for 2 < j < n and we prove the formula for n + 1:

. a 1 =
o Uk—2 T -Qk—1

C C c 1
Vg ==V, 22y = AV — Vo
CL CL Cr Ck
and
o ko o ko okl
k—1 (k—i) k—2 (k—i) 1
Voo 1———2%‘9% _?Zaig—n—l—l_"'_az n+k 2+ Zaz n+k 1
i=0 i=0
Ch—1 1 *)  Ck—2 (k C1 o (k I &
( ) 9£72+1 T _g( z+k 9t _9(—7)L+k—1>
Cl Ck
1 G2 (k-1 1 (k-1 |
m( o s L)
Ck Ck—1 Ck—1
_|._
Ch—1 (1) Ck—2 (1 1 I @
+ ar_1 (——9(—2 - —9£2L+1 - = _9(—2+k 2 T g(—r)z+k 1>
Cp Cr
— @09(_’2 1 +a g(_kn__l% + -+ ak—lg(_T)L_l
= Z aig?,”
Thus (18) is true for all n > 1. O

3 Representation of negatively subscripted generalized
order-k Fibonacci numbers

In this section, we give a representation of the family of negatively subscripted generalized
order-k Fibonacci numbers (6) using the permanent of Hessenberg matrices.

We introduce the n x n matrix W,, = (wg) with wy; = 0, for 1 < ¢ < n and for all
1 <1< n,

1, if s=1t41;

St )<t —s5<k—2
Wst = ck .

i, its=t—k+1;

0, elsewhere.

And we construct, for n > 1, the n x n matrix A’ for 1 <i <k, as follows:

Ly
=m+z< L )%
t=1




with d7 ,(d) defined for 1 < a,b,c < d as

1, ifa+b=c+d;
cod) =19 ’ 19
as(d) {0, otherwise. (19)
And FE; denotes the n x n matrix with 1 in position (s,¢) and 0 elsewhere.
Then A’ is as follows:
A A Ay -+ A, 0 0 0
1 %1 G2 0 _a 1 0 0
Ck Ck Ck  Ck
0 1 B U B SO
CL CL Cr. Cgk
0
A = 1 , (20)
C
€1
Ck
0 (R ———
Ck,

5 (k k—1 _
where A; = L —Z] 155]( ) 'f:kj, <
We now glve the representation of negatively subscripted generalized order-k Fibonacci

numbers.

Theorem 10. For n > 1, let A® be as in (20) and g(_zz1 be the n'™ negatively subscripted
generalized order-k Fibonacci number of the sequence number i, then

per A = ¢ (21)

For instance, we give the following representations of k sequences of negatively subscripted
order-k Fibonacci, order-k Pell, and order-£ Jacobsthal numbers.
Let F! be the n x n matrix defined, for 1 <4 < k, as follows:

(k) = S0m) 0Ly (k) 02 (k) — Y5  02,(k) 03 (k) — YN H o3 (k) e b —YMTieE(k) 0 0 -0
1 —~1 —1 —1 10 - 0
0 1 -1 —1 -1 1 - :
0
Fi = T(22)
—1
0 o 001 —1

where 6 (k) and 0; ;(k) is defined as in (19) forall 1 <t <kand 1 <j <k —1.
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Corollary 11. Forn > 1, let F! be as in (22) and f@L be the n'™ negatively subscripted
order-k Fibonacci number of the sequence number i, then

per F!! = f@l (23)
Let 7372 be the n x n matrix defined for 1 <17 < k in the following way:
S1 Sy Si-1 S, 0 0 --- 0
1 -1 -1 -2 1 0 --- 0
0 1 -1 -1 -2 1 :
. 0
P, = : (24)
-2
0o --- o0 1 -1
where S; = 07, — 20, — Zj:f o for 1 <t <k and 0; ;(k) is defined as in (19).

Corollary 12. For n > 1, let P! be as in (24) and PEZ,)l be the n' negatively subscripted
order-k Pell number of the sequence number v, then

per P! = Pﬁ% (25)
Let J' be the n x n matrix defined for 1 <7 < k and k > 3 as follows:
T, Ty, T; Tio Tpy T, 0 O --- 0
1 -1 -1 -1 -2 -1 1 0 --- 0
0o 1 -1 -1 -1 -2 -1 1 :
0

T = , 26

y (20)
—2
-1
0 0o 1 -1

where T} = 55,6 — 25;,672 — (55,671 - Zk_g (5;5’]» for 1 <t <k and 5%(1{:) is defined as in (19).

Corollary 13. For n > 1, let J! be as in (26) and J@l be the n'™ negatively subscripted
order-k Jacobsthal number of the sequence number i, then

per J¢ = J. (27)

11



4 More permanental representations of negatively sub-
scripted order-k Fibonacci and order-kt Lucas num-
bers

In this section, we give numerous types of matrices whose permanent are negatively sub-
scripted order-k Fibonacci and order-k£ Lucas terms.

We first establish two kinds of permanental representations of the negatively subscripted
order-k Fibonacci sequence (g_,),. We introduce an n x n (0,1, —1)-matrix B, ) defined
by

1, fory—i=—-1lork—1;
bij=4q—1, for0<j—i<k—2 (%)
0, elsewhere.

And we construct for n > k, the n x n (0,1, —1)-matrices Fiy k) and ﬁ(n,k) as follows:

k—1
F(mk) = B(mk) + 2E11 -+ ZEU — E1k7

=2
- k-1
Fig = Bag +2 Zj:1 Eqj,

where E;; denotes the n x n matrix with 1 in position (¢, j) and 0 elsewhere. Fi, ;) and ﬁ(nk)
correspond to

1 0 - 0 0 0 - 0
1 =1 -+« =1 1 0 - 0
0
Fog =
1
—1
0 1 -1
and
11 1 0 0 0
1 -1 -1 1 0 0
~ 0
Fop =
1
—1
0 1 -1

12



Then we give the two permanental representations of the negatively subscripted order-k
Fibonacci sequence.

Theorem 14. For n > k, we have
per Fi ) = 5 (28)

and B
per Fupy = 3504 (29)
Next, using the same approach given in Theorem 14, see next section, we give a repre-
sentation of Z@LH.
We use the n x n square matrix B, ) = (b;;) given by (x), and we construct for n > k,
the n x n matrix A, ) as follows:

k-1
Ay = By +2E1 + ZEU — FEip + E e,

=2

where E;; is the n x n matrix with 1 in position (7, j) and 0 elsewhere.
The matrix A, ) corresponds to

1 0 --- 0 0 1 O --- 0

1 1 -« -1 -1 1 0 :

-1 0

A(n,k)— 1
—1
0 0 11

Theorem 15. Forn > k, we have
per A k) = l@zﬂ-
Proof. The proof is the same as Theorem 14, see next section. m
Finally, let B,, be an n x n matrix defined by
By =T, +2(E1 + By + B33 — Eyg3) + Ei3 — Egz + Eay — Eay,

where T}, is the n x n (0,1, —1)-matrix such that ¢;; = —1, ¢;; = 1 if and only if [j —i| = 1.

13



The matrix B,, corresponds to

1 1 1 0 0 0
1 1 0 1 0 :
01 1 0 0
0 0 -1 -1 1 0
Bi=1o 0 0o 1 -1
: 0
0 - 0 1 -1

Then we obtain the following result.

Theorem 16. For n > 4, we have

2
per B,, = l£%+1-

5 Proofs

We start this section by giving the proof of Theorem 10,

1th 1 for i = 1;
Ci;l, for 2 <i<k.
Ck

On the other hand by Theorem 5, we have

- L for i = 1;
g(l) — ck
|- for2<i<k

Proof. We have

Thus,

51 Cl—t

Next for 2 < j < k—1, by the deﬁmtlon of shifted generalized order-k Fibonacci sequences
(1), we have

0, for 1 <i<j—1;
i C i . )
kt: lg,g)j, for i = j;

—astg . forj+1<i<k

14



&
Then -
Cl

k—1 ¢j cp— .
— N6 %=t can be written as
tfl Z,t Ck

& k—1 k—1
ik 51 Cht _ L @ Ch—t (i)
o Wt C_gk—j - e Ji—j-
ki % i =
Finally,
k k-1 1 (k) L L.
Oi'k B Ch—t _ )9 for i = k;
T it T .
k= "o 0, otherwise.

Then for 1 < i < k, we have

k k—1
(Si,k k Ck—t 1 (7)
_bE ok A

it = —9y -
Ck —1 Ck Ck

Hence, the matrix A’ can be written as follows:

oy 1w =1 Ck—t @) 1 @ k-1 Ck—t (i 1
9< )1 k2 7 2u4=2 . Yt—2 T Y9r-3 T 2u=3 ,7915—)3 9 0 0 0
C Ck Ck Cl Ck 1
1 _ Gkt _Ge2 LA 0 --- 0
Cl Ck Ck Ck
0 1 _ G Lo a2
Cl Cl Cr Ck
Al = 0
n 1
Cl
6]
Cl
0 I

By Lemma 1, the matrix A’ is contractible on column 1 relative to rows 1 and 2. Let
(AP)! be the (n—1) x (n—1) contraction matrix, then we have per A7 = per(A?)* and (A?)*
is as follows:

o 1 G k-1 Ch—t (i 1 k=1 Ch—t (i 1
9(7; *915-23 T 2ut=2 T tQ3 *91224 — 2ut=3 79&4 T fg(,i 0 0 - 0
Cr Ck Ck Ck 1
Ch Ch_ c
1 _ Tkl _ k2 s B 0
Cr Cl Cl Cr 1
0 1 _ G L. e _a
C, Ck Ck  Ck
i\l __ 0
(An) - . 1
Ck
C1
Ck
0 I
Ck,

15



Furthermore, the matrix (A%)! is also contractible on column 1 relative to rows 1 and 2.
Continuing the same contraction process we get by Lemma 1,

per Aﬁl = per(AiL)p

with (A?)P defined for p < n — k by

(i) L @ k—1 Ck—t (i) 1 a @ Low
9—p—1 9 prk—2 — 2ut=2 . 9-ptt—2 " Efg_p+1 E;g_p E;g_p 0
1 Ck—1 Co c 1
Ck Cl Ch Ch
0 1 _G e _a
CL Cl Cl
T\P _
0 0
And for p > n —k+ 1, (A))? is defined as follows:
gi’ﬁ, 1 %9 p+k—2 Ef 21 l’;t p+f 2 n+k+1 Zt n—p+1 {I:ktgg)rﬁ»ﬁ»l (LE,M
1 pk n+p+2
. (’k ¢ Cr
LYP — _ Ck—ntp+3
(An) - 0 1 7(%
0 0 1
Then
g(i) 1 g(i) k—1 Ckftg(i)
. —n+1 Y - o — 9 iy
(Az )n—2 _ n+ Ch n+k t=2 Cr n+
" Ck—1
1 _ 1
Ck
By Lemma 1, we have
‘ 1 k—1 :
i_ i\n—2 _ k—1 (i) (@) k—t
per A, = per(A;)" " = g+ =g~ E Tkt
Ck C,
=2
k—1
_ 1w Ck—t (4)
= Y9 gk — 9—n+t
Ck -1 Ck

-t

So per A = g(_zzl and the proof is complete.

Secondly, we provide the proof of Theorem 14,

16

0 0
0
Ck
0
1
Ck
C1
Ck
Cr—1
0o 1 —=1
Ck
Z Ch—t (l)
t=n—p ¢, J-ntt
Fk n+p+1
Ck
~ Ck—nipt2
Ck
_ Ck—1
Ck
(4)
9—n+t



Proof. Let F(I;,k) = (ff;) be the p' contraction of Fin ), 1 <p <n—2.

The matrix Fi, ) = (fij), can be contracted on column 1 relative to rows 1 and 2.
We can easily verify that if p = 1,

fi=fy=--=flioy =1 fly = Land fi, =0, for ¢ > k+ 1; and for all
1=2,....,n—1,
fiic1 =1,
fij=—1, for0<j—i<k—2
fij=1 forj—1=k—1.
Hence
-1 -1 1 0 0
1 -1 11
0
Flom = 1
-1
0 1 -1
and
TR D) S TR S TRk (7 S SR PRI |
1 1 -1 —1 1 . :
1 0 1 -1 -1 .0
Fin.r '
~1
0 o1

Furthermore, the matrix F(ln ) can be contracted. From Lemma 1 we obtain
per F{,, )y = per F(I:%k)
with F(IZL . defined for p < n — k by

~(k ~(k —3 ~(k ~(k ~(k ~(k
50 5 L e T Do N OB

p=1 J—ptk—2 7 2uj=0 9-p+j - T 9-pt1 G-p 0
1 -1 -1 1
0
/N
F(n,k) - 1
-1
0 0 1 -1

17



And forp>n —k+1, F(Z; ) is defined as

~(k -3 ~(k ~(k c—(n—p) ~(k ~(k —(n— ~(k
~(k) (k) ZRS() (k) Zk(P)() g()—Zk(”H)g()

9—p—1 9—prk—2 — 22j=0 9—p+j Jk—nt1 §=0 —pti k-n §=0 —pti
1 1 . . 1
P _ A —
F(n’ K = 0 1 1
0 e 1 -1

So we have “ 0 b8 ()
Fre2 — <g—n+1 9ntk — ijo g—n+2+j) )
1 —1

Lemma 1 gives

~(k k
AR

k—3 ~(k)
i 9—n+2+j)

per F, ) = per ( h

() ~(k) k=3 (k)
= —Y9n1t 9 — Zj _o J-n+2+;

k k
== (B + 5%+ 3000

So per F, p) = 5(_]2 and the proof of Identity (28) is complete.
By Lemma 1, we can write

per ﬁ(mk) = per ﬁ(ln’k),

where F! (n,b) is the first contraction of F (n,k)-
Then f11 = f12 =

}211 1, —1for(0<j—z<k—2)and 1—1f0r(]—z:k:—1).
Thatls
o0 --- 1 0 --- 0
-1 -1 1 :
B 0 1 0
per F(lnyk) = per 1
-1
0 0o 1 -1

18

_flk . =0, flk_landflq—O(q>k:+1) and fori =2, ...



Computing per F (1n, k) by the Laplace expansion with respect to the first column, we obtain

1 0 --- 0 0 --- 0

1 -1 - -1 1 :

0

per F(ln,k) = per SO |
-1
1 -1

n—Fk

From identity (28), per ﬁ(ln’k) = per Flyp ) = §(7k()n7k), and from (30), we have,

per ﬁ(n,kz) = 592+k The proof is complete. m

We conclude this section with the proof of Theorem 16.

Proof. If n =4,
11 1 0
B 1 1 0 1 2
per B, = per 01 1 ol~ —4=17.
00 —1 —1

By induction on n, we assume that per B, = l(f% 41 and we establish that per B, = l(_Q,)L

Let

Then
B, F
Bn+1 = (Ft _1) .

Let Bflp ) be the p™ contraction of B,,. Since
2 2
Bn=2) _ l(—7)t+2 l(—7)1+3
" 1 -1 )’
we get

l(z)
—n+2 —n+3

per B,, .1 = per Bq(ﬁr_f) = per 1 —1 1] = l(_2,)L+2—l(_2,)L+3+l(_2,l+2 = l(_21)1+2—l(_2%+1 = l(j)l
0 1 -1
The proof is completed. O]
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