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Abstract

We introduce an extension to the negative indices of a family of generalized Fi-

bonacci sequences of order-k, and for which we establish recurrence relations. We also

give permanental representations of negatively subscripted generalized Fibonacci and

Lucas sequences via Hessenberg matrices.

1 Introduction

A family of k sequences of the generalized order-k Fibonacci numbers was defined and studied
by Er [3], for n > 0 and 1 ≤ i ≤ k, as follows:

g(i)n = c1g
(i)
n−1 + c2g

(i)
n−2 + · · ·+ ckg

(i)
n−k, (1)

where c1, c2, . . . , ck are real constant coefficients, with ck 6= 0, and for 1− k ≤ n ≤ 0,

g(i)n =

{
1, for i = 1− n;

0, otherwise.

Several sequences were derived from (1). Lee and Lee [6] studied the sequence ob-
tained from (1) by setting (c1, c2, . . . , ck) = (1, 1, . . . , 1) and i = 1, which is called in the

present paper order-k Fibonacci sequence (g̃
(k)
n )n. Also, Lee [8] studied order-k Lucas se-

quence denoted (l
(k)
n )n, for k ≥ 2. The sequence (l

(k)
n )n is obtained from (1) by setting

(c1, c2, . . . , ck) = (1, 1, . . . , 1) with initial conditions l
(k)
0 = 2, l

(k)
j = 2j−1, for j = 1, . . . , k− 1,

and l
(k)
k = 2k−1 + 1.

In the present paper, we consider the family of shifted generalized order-k Fibonacci
sequences defined as (1), but with initial conditions, for 0 ≤ n ≤ k − 1,

g(i)n =

{
1, for i = k − n;

0, otherwise.

The permanent of a square matrix A = (aij)n×n is defined as follows:

perA =
∑

σ∈Sn

n∏

i=1

aiσ(i),

where the summation runs over all permutations σ of the symmetric group Sn of order n.
Next, we present the definition of matrix contraction; see for instance [2]. Let A = (aij)

be an m × n real matrix with row vectors α1, α2, . . . , αm. We say that A is contractible on
column (resp., row) k if column (resp., row) k contains exactly two nonzero entries. If A is
contractible on column k with aik 6= 0 6= ajk and i 6= j, then the (m − 1) × (n − 1) matrix

A
(k)
ij , obtained from A by replacing row i by ajkαi + aikαj and deleting row j and column k,

is called the contraction of A on column k relative to rows i and j.
Brualdi and Gibson [2] gave the following lemma.
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Lemma 1. Let A be a nonnegative integral matrix of order n > 1, and let B be a contraction

of A. Then

perA = perB.

Permanental representations of recurrent sequences have been investigated by several
authors. Yilmaz and Bozkurt [11] gave permanental representations of sums of Fibonacci

and Lucas numbers via Hessenberg matrices. Lee et al. [7] obtained g
(k)
n+k−1 as the permanent

of an n× n upper triangular (0, 1)-matrix; that is a matrix whose all entries are either 0 or
1. Lee [8] constructed a (0, 1)-matrix of order n and established that the permanent of that

matrix is the (n− 1)th term l
(k)
n−1 of the order-k Lucas sequence.

The aim of this work is to propose an extension to negative indices of the family of
generalized order-k Fibonacci sequences (g

(i)
n )n, 1 ≤ i ≤ k. For instance, extensions to

negative indices of order-k Fibonacci, order-k Lucas, order-k Pell, and order-k Jacobsthal
are also given. As application, we provide some permanental representations.

The present paper is organized as follows: In Section 2, we give an extension of order-k
Fibonacci, order-k Lucas, and the family of generalized order-k Fibonacci sequences (g

(i)
n )n,

1 ≤ i ≤ k, to negatively subscripted indices. We also provide recurrence formulas for the
nth term of these negatively subscripted sequences. In Section 3, we present negatively
subscripted generalized order-k Fibonacci numbers as the permanent of special Hessenberg
matrix. In Section 4, we give more permanental representations of negatively subscripted
order-k Fibonacci and order-k Lucas sequences. We conclude by Section 5, where we provide
proofs of the results presented in Sections 3 and 4.

2 Extension to negative indices

Extension to negative indices of classical Fibonacci sequence (Fn)n with initial conditions
F0 = 0, F1 = 1 is given for n ≥ 1, by

F−n = F−n+2 − F−n+1 = (−1)n+1Fn. (2)

The extension to negative indices of classical Lucas sequence (Ln)n with initial conditions
L0 = 2, L1 = 1 is given for n ≥ 1, by

L−n = L−n+2 − L−n+1 = (−1)nLn. (3)

Firstly, we propose an extension of order-k Fibonacci sequence (g̃
(k)
n )n to negatively sub-

scripted indices, for n ≥ 1, as follows:

g̃
(k)
−n = −g̃

(k)
−n+1 − g̃

(k)
−n+2 − · · · − g̃

(k)
−n+k−1 + g̃

(k)
−n+k. (4)

For example, for k = 2, (g̃
(2)
n )n∈Z is the classical Fibonacci sequence.

For k = 3, (g̃
(3)
n )n∈Z is the Tribonacci sequence

. . . ,−8, 4, 1,−3, 2, 0,−1, 1, 0, 0, 1, 1, 2, 4, 7, 13, . . .
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For k = 4, (g̃
(4)
n )n∈Z is the Quadrabonacci sequence

. . . , 0, 1,−3, 2, 0, 0,−1, 1, 0, 0, 0, 1, 1, 2, 4, 8, 15, 29, . . .

An extension of order-k Lucas sequence (l
(k)
n )n to negatively subscripted indices, for n ≥ 1,

is given by
l
(k)
−n = −l

(k)
−n+1 − l

(k)
−n+2 − · · · − l

(k)
−n+k−1 + l

(k)
−n+k. (5)

For example, for k = 2, (l
(2)
n )n∈Z is the Lucas sequence.

For k = 3, (l
(3)
n )n∈Z is the Tribonacci-Lucas sequence

. . . , 6,−11, 6, 1,−4, 3, 0,−1, 2, 1, 2, 5, 8, 15, 28, 51, . . .

For k = 4, (l
(4)
n )n∈Z is the Quadrabonacci-Lucas sequence

. . . ,−11, 6, 0, 1,−4, 3, 0, 0,−1, 2, 1, 2, 4, 9, 16, 31, 60, . . .

Secondly, we establish the extension of the family of generalized order-k Fibonacci se-
quences, (g

(i)
n )n, 1 ≤ i ≤ k, to negatively subscripted indices, in the following way:

g
(i)
−n = −

ck−1

ck
g
(i)
−n+1 −

ck−2

ck
g
(i)
−n+2 − · · · −

c1

ck
g
(i)
−n+k−1 +

1

ck
g
(i)
−n+k. (6)

where, cj ∈ R for 1 ≤ j ≤ k and ck 6= 0. And g
(i)
−n is said to be the nth negatively subscripted

generalized order-k Fibonacci number of the sequence number i of the family.
For instance, we give the extension to negative indices of classical order-k sequences. We

start by a family of order-k Fibonacci sequences defined for 1 ≤ i ≤ k and n ≥ k as follows:

f (i)
n = f

(i)
n−1 + f

(i)
n−2 + · · ·+ f

(i)
n−k,

with initial conditions; for 0 ≤ n ≤ k − 1,

f (i)
n =

{
1, for i = k − n;

0, otherwise.

For n ≥ 1, we give the extension of the family of order-k Fibonacci sequences to negative
indices as follows:

f
(i)
−n = −f

(i)
−n+1 − f

(i)
−n+2 − · · · − f

(i)
−n+k−1 + f

(i)
−n+k. (7)

The following table gives the first terms of negatively subscripted order-k Fibonacci sequences
for n ≥ 1,
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k = 2 k = 3 k = 4
i = 1 1,−1, 2,−3, 5,−8, 13,−21, 34,−55 . . . 1,−1, 0, 2,−3, 1, 4,−8, 5, 7 . . . 1,−1, 0, 0, 2,−3, 1, 0, 4,−8 . . .
i = 2 −1, 2,−3, 5,−8, 13,−21, 34,−55, 89 . . . −1, 2,−1,−2, 5,−4,−3, 12,−13,−2 . . . −1, 2,−1, 0,−2, 5,−4, 1,−4, 12 . . .
i = 3 −1, 0, 2,−3, 1, 4,−8, 5, 7,−20 . . . −1, 0, 2,−1,−2, 1, 4,−4,−3, 4 . . .
i = 4 −1, 0, 0, 2,−3, 1, 0, 4,−8, 5 . . .

Table 1: First terms of negatively subscripted order-k Fibonacci sequences

Remark 2. For k = 2, (f
(1)
−n)n is the extension to negative indices of classical Fibonacci

numbers.

Kiliç and Taşci [5] studied a family of k sequences of order-k Pell numbers defined for
n > 0 and 1 ≤ i ≤ k, as follows:

P (i)
n = 2P

(i)
n−1 + P

(i)
n−2 + · · ·+ P

(i)
n−k. (8)

with initial conditions; for 1− k ≤ n ≤ 0,

P (i)
n =

{
1, for n = 1− i;

0, otherwise.

Next, we consider k sequences of shifted order-k Pell numbers (8) for n ≥ k and 1 ≤ i ≤ k,
with initial conditions, for 0 ≤ n ≤ k − 1,

P (i)
n =

{
1, for i = k − n;

0, otherwise.

Then for n ≥ 1, we give extension of these sequences (8) to negative indices as follows:

P
(i)
−n = −P

(i)
−n+1 − · · · − P

(i)
−n+k−2 − 2P

(i)
−n+k−1 + P

(i)
−n+k. (9)

The next table gives the first terms of negatively subscripted order-k Pell sequences for
n ≥ 1,

k = 2 k = 3 k = 4
i = 1 1,−2, 5,−12, 29,−70, 169,−408 . . . 1,−1,−1, 4,−3,−6, 16,−7,−31, 61 . . . 1,−1, 0,−1, 4,−4, 2,−7, 17,−18 . . .
i = 2 −2, 5,−12, 29,−70, 169,−408, 985 . . . −2, 3, 1,−9, 10, 9,−38, 30, 55,−153 . . . −2, 3,−1, 2,−9, 12,−8, 16,−41, 53 . . .
i = 3 −2, 3,−3, 1, 4,−12, 21,−26, 19, 9 . . . −1,−1, 3, 0,−2,−5, 10,−1,−1,−23 . . .
i = 4 −1, 0,−1, 4,−4, 2,−7, 17,−18, 17 . . .

Table 2: First terms of negatively subscripted order-k Pell sequences

Remark 3. Some of the sequences in Table 2 are known in OEIS [9], as for example, A215936,
A276229, and A078021.
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In 2009, Yilmaz and Bozkurt [10] studied a family of k sequences of order-k Jacobsthal
numbers defined for n > 0 and 1 ≤ i ≤ k, as follows:

J (i)
n = J

(i)
n−1 + 2J

(i)
n−2 + · · ·+ J

(i)
n−k, (10)

with initial conditions for 1− k ≤ n ≤ 0,

J (i)
n =

{
1, for n = 1− i;

0, otherwise.

As before, we consider k sequences of shifted order-k Jacobsthal numbers (10) for n ≥ k and
1 ≤ i ≤ k, with initial conditions for 0 ≤ n ≤ k − 1,

J (i)
n =

{
1, for i = k − n;

0, otherwise.

Then, for n ≥ 1, we give the extension of these sequences (10) to negative indices as
follows:

J
(i)
−n = −

1

2
J
(i)
−n+1 +

1

2
J
(i)
−n+2, for k = 2, 1 ≤ i ≤ 2, (11)

J
(i)
−n = −J

(i)
−n+1 − · · · − J

(i)
−n+k−3 − 2J

(i)
−n+k−2 − J

(i)
−n+k−1 + J

(i)
−n+k. for k ≥ 3 (12)

The next table gives the first terms of negatively subscripted order-k Jacobsthal sequences
for n ≥ 1,

k = 2 k = 3 k = 4

i = 1
1

2
,−

1

4
,
3

8
,−

5

16
,
11

32
,−

21

64
,
43

128
,−

85

256
. . . 1,−2, 3,−3, 1, 4,−12, 21,−26, 19 . . . 1,−1,−1, 2, 2,−6,−1, 13,−3 . . .

i = 2 −
1

2
,
3

4
,−

5

8
,
11

16
,−

21

32
,
43

64
,−

85

128
,
171

256
. . . −1, 3,−5, 6,−4,−3, 16,−33, 47 . . . −1, 2, 0,−3, 0, 8,−5,−14, 16, 25 . . .

i = 3 −2, 3,−3, 1, 4,−12, 21,−26, 19, 9 . . . −2, 1, 4,−4,−7, 12, 10,−31,−8 . . .
i = 4 −1,−1, 2, 2,−6,−1, 13,−3,−28 . . .

Table 3: First terms of negatively subscripted order-k Jacobsthal sequences

Remark 4. The sequences of k = 3 are known in the OEIS as A077990, -A078064, and
A077990 respectively.

We now give some results on the nth negatively subscripted generalized order-k Fibonacci
number g

(i)
−n using matrix methods.

Theorem 5. For n ≥ 0 and 2 ≤ i ≤ k, we have

g
(i)
−n−1 = −

ci−1

ck
g
(k)
−n + g

(i−1)
−n , (13)

and for i = 1,

g
(1)
−n−1 =

1

ck
g
(k)
−n. (14)

6

https://oeis.org/A077990
https://oeis.org/-A078064
https://oeis.org/A077990


Proof. For the proof, we use the matrix approach. The matrix approach was used, for
example, by Kalman [4] and Er [3] to study generalized Fibonacci numbers. Let

A :=




− ck−1

ck
− ck−2

ck
− ck−3

ck
· · · − c1

ck

1
ck

1 0 0 · · · 0 0
0 1 0 · · · 0 0
...

...
...

...
...

...
0 0 0 · · · 1 0




.

We have the following n order-k recurrence relations




g
(i)
−n−1

g
(i)
−n
...

g
(i)
−n+k−2


 = A




g
(i)
−n

g
(i)
−n+1
...

g
(i)
−n+k−1


 . (15)

In order to deal with k sequences of negatively subscripted generalized order-k Fibonacci
sequences at the same time, we construct a k × k square matrix G−n as follows:

G−n =




g
(k)
−n g

(k−1)
−n g

(k−2)
−n · · · g

(1)
−n

g
(k)
−n+1 g

(k−1)
−n+1 g

(k−2)
−n+1 · · · g

(1)
−n+1

...
...

...
...

...

g
(k)
−n+k−1 g

(k−1)
−n+k−1 g

(k−2)
−n+k−1 · · · g

(1)
−n


 .

It is clear that, A = G−1.
Next, (15) becomes

G−n−1 = AG−n.

By induction, it is also clear that

G−n−1 = AnA = G−nA.

Finally, we have
G−n−1 = AG−n = G−nA. (16)

Thus, Equations (13) and (14) are deduced from (16).

From Theorem 5, we get the following results:

Corollary 6. Let f
(i)
−n be the nth negatively subscripted order-k Fibonacci number of the

sequence number i. Then

f
(1)
−n−1 = f

(k)
−n ;

f
(i)
−n−1 = −f

(k)
−n + f

(i−1)
−n ; 2 ≤ i ≤ k.
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Corollary 7. Let P
(i)
−n be the nth negatively subscripted order-k Pell number of the sequence

number i. Then

P
(1)
−n−1 = P

(k)
−n ;

P
(2)
−n−1 = −2P

(k)
−n + P

(1)
−n ;

P
(i)
−n−1 = −P

(k)
−n + P

(i−1)
−n ; 3 ≤ i ≤ k.

Corollary 8. Let J
(i)
−n be the nth negatively subscripted generalized order-k Jacobsthal number

of the sequence number i. Then for k ≥ 3,

J
(1)
−n−1 = J

(k)
−n ;

J
(2)
−n−1 = −J

(k)
−n + J

(1)
−n;

J
(3)
−n−1 = −2J

(k)
−n + J

(2)
−n;

J
(i)
−n−1 = −J

(k)
−n + J

(i−1)
−n ; 4 ≤ i ≤ k.

We conclude this section by defining a generalized order-k Fibonacci sequence (Vn)n
with arbitrary initial conditions and we give the extension of the sequence (Vn)n to negative
indices. Then we give the nth negatively subscripted number V−n as the sum of k terms of
negatively subscripted generalized order-k Fibonacci numbers defined in (6).

For n ≥ k, let Vn be as follows:

Vn = c1Vn−1 + c2Vn−2 + · · ·+ ckVn−k,

with integer initial conditions V0, V1, . . . , Vk−1, where c1, c2, . . . , ck ∈ R.
Belbachir and Bencherif [1] gave the explicit formula of the nth term of the sequence

(Vn)n.
Then for n ≥ 1, the value V−n is as follows:

V−n = −
ck−1

ck
V−n+1 −

ck−2

ck
V−n+2 − · · · −

c1

ck
V−n+k−1 +

1

ck
V−n+k. (17)

Note that for (V0, . . . , Vk−i−1, Vk−i, Vk−i+1, . . . , Vk−1) = (0, . . . , 0, 1, 0, . . . , 0), 1 ≤ i ≤ k,

we have Vn = g
(i)
n .

The nth term V−n is given by

Theorem 9. For n ≥ 1,

V−n =
k−1∑

i=0

aig
(k−i)
−n , (18)

where g
(j)
−n is the nth negatively subscripted generalized order-k Fibonacci number of the se-

quence number i (6).
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Proof. By induction on n.
For n = 1, V−1 = − ck−1

ck
V0 − · · · − c1

ck
Vk−2 +

1
ck
Vk−1 = − ck−1

ck
a0 − · · · − c1

ck
ak−2 +

1
ck
ak−1 =∑k−1

i=0 aig
(k−i)
−1 .

Now suppose that (18) is true for 2 ≤ j ≤ n and we prove the formula for n+ 1:

V−n−1 = −
ck−1

ck
V−n −

ck−2

ck
V−n+1 − · · · −

c1

ck
V−n+k−2 +

1

ck
V−n+k−1.

and

V−n−1 = −
ck−1

ck

k−1∑

i=0

aig
(k−i)
−n −

ck−2

ck

k−1∑

i=0

aig
(k−i)
−n+1 − · · · −

c1

ck

k−1∑

i=0

aig
(k−i)
−n+k−2 +

1

ck

k−1∑

i=0

aig
(k−i)
−n+k−1

= a0

(
−
ck−1

ck
g
(k)
−n −

ck−2

ck
g
(k)
−n+1 − · · · −

c1

ck
g
(k)
−n+k−2 +

1

ck
g
(k)
−n+k−1

)

+ a1

(
−
ck−1

ck
g
(k−1)
−n −

ck−2

ck
g
(k−1)
−n+1 − · · · −

c1

ck−1

g
(k−1)
−n+k−2 +

1

ck−1

g
(k−1)
−n+k−1

)

+ · · ·+

+ ak−1

(
−
ck−1

ck
g
(1)
−n −

ck−2

ck
g
(1)
−n+1 − · · · −

c1

ck
g
(1)
−n+k−2 +

1

ck
g
(1)
−n+k−1

)

= a0g
(k)
−n−1 + a1g

(k−1)
−n−1 + · · ·+ ak−1g

(1)
−n−1

=
k−1∑

i=0

aig
(k−i)
−n−1.

Thus (18) is true for all n ≥ 1.

3 Representation of negatively subscripted generalized

order-k Fibonacci numbers

In this section, we give a representation of the family of negatively subscripted generalized
order-k Fibonacci numbers (6) using the permanent of Hessenberg matrices.

We introduce the n × n matrix Wn = (wst) with w1t = 0, for 1 ≤ t ≤ n and for all
1 < i ≤ n,

wst =





1, if s = t+ 1;

−
ck−(t−s)−1

ck
, if 0 ≤ t− s ≤ k − 2;

1
ck
, if s = t− k + 1;

0, elsewhere.

And we construct, for n ≥ 1, the n× n matrix Ai
n, for 1 ≤ i ≤ k, as follows:

Ai
n = Wn +

n∑

t=1

(
δti,k(k)

ck
−

k−1∑

j=1

δti,j(k)
ck−j

ck

)
E1t

9



with δca,b(d) defined for 1 ≤ a, b, c ≤ d as

δca,b(d) =

{
1, if a+ b = c+ d;

0, otherwise.
(19)

And Est denotes the n× n matrix with 1 in position (s, t) and 0 elsewhere.
Then Ai

n is as follows:

Ai
n =




A1 A2 A3 · · · Ak 0 0 · · · 0

1 −
ck−1

ck
−
ck−2

ck
· · · −

c1

ck

1

ck
0 · · · 0

0 1 −
ck−1

ck
· · · −

c2

ck
−
c1

ck

1

ck

. . .
...

. . . 0
...

. . .
1

ck
. . . −

c1

ck
. . .

...

0 · · · · · · 0 1 −
ck−1

ck




, (20)

where At =
δt
i,k

(k)

ck
−
∑k−1

j=1 δ
t
i,j(k)

ck−j

ck
, for 1 ≤ t ≤ k.

We now give the representation of negatively subscripted generalized order-k Fibonacci
numbers.

Theorem 10. For n ≥ 1, let Ai
n be as in (20) and g

(i)
−n be the nth negatively subscripted

generalized order-k Fibonacci number of the sequence number i, then

perAi
n = g

(i)
−n. (21)

For instance, we give the following representations of k sequences of negatively subscripted
order-k Fibonacci, order-k Pell, and order-k Jacobsthal numbers.

Let F i
n be the n× n matrix defined, for 1 ≤ i ≤ k, as follows:

F i
n =




δ1i,k(k)−
∑k−1

j=1 δ
1
i,j(k) δ2i,k(k)−

∑k−1
j=1 δ

2
i,j(k) δ3i,k(k)−

∑k−1
j=1 δ

3
i,j(k) · · · δki,k −

∑k−1
j=1 δ

k
i,j(k) 0 0 · · · 0

1 −1 −1 · · · −1 1 0 · · · 0

0 1 −1 · · · −1 −1 1
. . .

...
. . . 0

...
. . . 1
. . . −1
. . .

...
0 · · · · · · 0 1 −1




. (22)

where δti,k(k) and δti,j(k) is defined as in (19) for all 1 ≤ t ≤ k and 1 ≤ j ≤ k − 1.

10



Corollary 11. For n ≥ 1, let F i
n be as in (22) and f

(i)
−n be the nth negatively subscripted

order-k Fibonacci number of the sequence number i, then

perF i
n = f

(i)
−n. (23)

Let P i
n be the n× n matrix defined for 1 ≤ i ≤ k in the following way:

P i
n =




S1 S2 · · · Sk−1 Sk 0 0 · · · 0
1 −1 · · · −1 −2 1 0 · · · 0

0 1 −1 · · · −1 −2 1
. . .

...
. . . 0

...
. . . 1
. . . −2
. . .

...
0 · · · · · · 0 1 −1




, (24)

where St = δti,k − 2δti,k−1 −
∑k−2

j=1 δ
t
i,j for 1 ≤ t ≤ k and δti,j(k) is defined as in (19).

Corollary 12. For n ≥ 1, let P i
n be as in (24) and P

(i)
−n be the nth negatively subscripted

order-k Pell number of the sequence number i, then

perP i
n = P

(i)
−n. (25)

Let J i
n be the n× n matrix defined for 1 ≤ i ≤ k and k ≥ 3 as follows:

J i
n =




T1 T2 T3 · · · Tk−2 Tk−1 Tk 0 0 · · · 0
1 −1 −1 · · · −1 −2 −1 1 0 · · · 0

0 1 −1 · · · −1 −1 −2 −1 1
. . .

...
. . . 0

...
. . . 1
. . . −1
. . . −2
. . . −1
. . .

...
0 · · · · · · 0 1 −1




, (26)

where Tt = δti,k − 2δti,k−2 − δti,k−1 −
∑k−3

j=1 δ
t
i,j for 1 ≤ t ≤ k and δti,j(k) is defined as in (19).

Corollary 13. For n ≥ 1, let J i
n be as in (26) and J

(i)
−n be the nth negatively subscripted

order-k Jacobsthal number of the sequence number i, then

perJ i
n = J

(i)
−n. (27)

11



4 More permanental representations of negatively sub-

scripted order-k Fibonacci and order-k Lucas num-

bers

In this section, we give numerous types of matrices whose permanent are negatively sub-
scripted order-k Fibonacci and order-k Lucas terms.

We first establish two kinds of permanental representations of the negatively subscripted
order-k Fibonacci sequence (g̃−n)n. We introduce an n × n (0, 1,−1)-matrix B(n,k) defined
by

bij =





1, for j − i = −1 or k − 1;

−1, for 0 ≤ j − i ≤ k − 2;

0, elsewhere.

(⋆)

And we construct for n > k, the n× n (0, 1,−1)-matrices F(n,k) and F̃(n,k) as follows:

F(n,k) = B(n,k) + 2E11 +
k−1∑

j=2

E1j − E1k,

F̃(n,k) = B(n,k) + 2
∑k−1

j=1
E1j,

where Eij denotes the n×n matrix with 1 in position (i, j) and 0 elsewhere. F(n,k) and F̃(n,k)

correspond to

F(n,k) =




1 0 · · · 0 0 0 · · · 0
1 −1 · · · −1 1 0 · · · 0

. . . . . . . . . . . . . . .
...

. . . 0

. . . 1
−1

...
. . . . . .

...
0 1 −1




and

F̃(n,k) =




1 1 · · · 1 0 0 · · · 0
1 −1 · · · −1 1 0 · · · 0

. . . . . . . . . . . . . . .
...

. . . 0

. . . 1
−1

...
. . . . . .

...
0 1 −1




.
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Then we give the two permanental representations of the negatively subscripted order-k
Fibonacci sequence.

Theorem 14. For n > k, we have

perF(n,k) = g̃
(k)
−n (28)

and

per F̃(n,k) = g̃
(k)
−n+k. (29)

Next, using the same approach given in Theorem 14, see next section, we give a repre-
sentation of l

(k)
−n+1.

We use the n× n square matrix B(n,k) = (bij) given by (⋆), and we construct for n > k,
the n× n matrix A(n,k) as follows:

A(n,k) = B(n,k) + 2E11 +
k−1∑

j=2

E1j − E1k + E1,k+1,

where Eij is the n× n matrix with 1 in position (i, j) and 0 elsewhere.
The matrix A(n,k) corresponds to

A(n,k) =




1 0 · · · 0 0 1 0 · · · 0

1 −1 · · · −1 −1 1 0
. . .

...
. . . . . . . . . −1 0

. . . . . . . . . . . .
...
1
−1

. . .
...

. . . . . .
...

0 · · · 0 1 −1




.

Theorem 15. For n > k, we have

perA(n,k) = l
(k)
−n+1.

Proof. The proof is the same as Theorem 14, see next section.

Finally, let Bn be an n× n matrix defined by

Bn = Tn + 2(E11 + E22 + E33 − E43) + E13 − E23 + E24 − E34,

where Tn is the n× n (0, 1,−1)-matrix such that tii = −1, tij = 1 if and only if |j − i| = 1.

13



The matrix Bn corresponds to

Bn =




1 1 1 0 0 · · · 0

1 1 0 1 0
...

0 1 1 0 0
0 0 −1 −1 1 0

0 0 0 1 −1 1
. . .

...
...

. . . . . . . . . 0

. . . . . . . . . 1
0 · · · 0 1 −1




.

Then we obtain the following result.

Theorem 16. For n ≥ 4, we have

perBn = l
(2)
−n+1.

5 Proofs

We start this section by giving the proof of Theorem 10,

Proof. We have

δ1i,k

ck
−

k−1∑

t=1

δ1i,t
ck−t

ck
=

{
1
ck
, for i = 1;

− ci−1

ck
, for 2 ≤ i ≤ k.

On the other hand by Theorem 5, we have

g
(i)
−1 =

{
1
ck
, for i = 1;

− ci−1

ck
, for 2 ≤ i ≤ k.

Thus,

δ1i,k

ck
−

k−1∑

t=1

δ1i,t
ck−t

ck
= g

(i)
−1.

Next for 2 ≤ j ≤ k−1, by the definition of shifted generalized order-k Fibonacci sequences
(1), we have

δ
j
i,k

ck
−

k−1∑

t=1

δ
j
i,t

ck−t

ck
=





0, for 1 ≤ i ≤ j − 1;
1
ck
g
(i)
k−j, for i = j;

− ci−1

ck
g
(i)
k−i, for j + 1 ≤ i ≤ k.

14



Then
δ
j

i,k

ck
−
∑k−1

t=1 δ
j
i,t

ck−t

ck
can be written as

δ
j
i,k

ck
−

k−1∑

t=1

δ
j
i,t

ck−t

ck
=

1

ck
g
(i)
k−j −

k−1∑

t=j

ck−t

ck
g
(i)
t−j.

Finally,

δki,k

ck
−

k−1∑

t=1

δki,t
ck−t

ck
=

{
1
ck
g
(k)
0 , for i = k;

0, otherwise.

Then for 1 ≤ i ≤ k, we have

δki,k

ck
−

k−1∑

t=1

δki,t
ck−t

ck
=

1

ck
g
(i)
0 .

Hence, the matrix Ai
n can be written as follows:

Ai
n =




g
(i)
−1

1

ck
g
(i)
k−2 −

∑k−1
t=2

ck−t

ck
g
(i)
t−2

1

ck
g
(i)
k−3 −

∑k−1
t=3

ck−t

ck
g
(i)
t−3 · · ·

1

ck
g
(i)
0 0 0 · · · 0

1 −
ck−1

ck
−
ck−2

ck
· · · −

c1

ck

1

ck
0 · · · 0

0 1 −
ck−1

ck
· · · −

c2

ck
−
c1

ck

1

ck

. . .
...

. . . 0
...

. . .
1

ck
. . . −

c1

ck
. . .

...

0 · · · · · · 0 1 −
ck−1

ck




.

By Lemma 1, the matrix Ai
n is contractible on column 1 relative to rows 1 and 2. Let

(Ai
n)

1 be the (n−1)× (n−1) contraction matrix, then we have perAi
n = per(Ai

n)
1 and (Ai

n)
1

is as follows:

(Ai
n)

1 =




g
(i)
−2

1

ck
g
(i)
k−3 −

∑k−1
t=2

ck−t

ck
g
(i)
t−3

1

ck
g
(i)
k−4 −

∑k−1
t=3

ck−t

ck
g
(i)
t−4 · · ·

1

ck
g
(i)
−1 0 0 · · · 0

1 −
ck−1

ck
−
ck−2

ck
· · · −

c1

ck

1

ck
0 · · · 0

0 1 −
ck−1

ck
· · · −

c2

ck
−
c1

ck

1

ck

. . .
...

. . . 0
...

. . .
1

ck
. . . −

c1

ck
. . .

...

0 · · · · · · 0 1 −
ck−1

ck




.
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Furthermore, the matrix (Ai
n)

1 is also contractible on column 1 relative to rows 1 and 2.
Continuing the same contraction process we get by Lemma 1,

perAi
n = per(Ai

n)
p

with (Ai
n)

p defined for p ≤ n− k by

(Ai
n)

p =




g
(i)
−p−1

1

ck
g
(i)
−p+k−2 −

∑k−1
t=2

ck−t

ck
g
(i)
−p+t−2 · · ·

1

ck
g
(i)
−p+1 −

c1

ck
g
(i)
−p

1

ck
g
(i)
−p 0 0 · · · 0

1 −
ck−1

ck
· · · −

c2

ck
−
c1

ck

1

ck
0 · · · 0

0 1 · · · −
c3

ck
−
c2

ck
−
c1

ck

1

ck

. . .
...

. . . 0
...

. . .
1

ck
. . . −

c1

ck
. . .

...

0 · · · · · · 0 0 1 −
ck−1

ck




.

And for p ≥ n− k + 1, (Ai
n)

p is defined as follows:

(Ai
n)

p =




g
(i)
−p−1

1
ck
g
(i)
−p+k−2 −

∑k−1
t=2

ck−t

ck
g
(i)
−p+t−2 · · · 1

ck
g
(i)
−n+k+1 −

∑k−1
t=n−p+1

ck−t

ck
g
(i)
−n+t+1

1
ck
g
(i)
−n+k −

∑k−1
t=n−p

ck−t

ck
g
(i)
−n+t

1 −
ck−1

ck
· · · −

ck−n+p+2

ck
−
ck−n+p+1

ck
0 1 · · · −

ck−n+p+3

ck
−
ck−n+p+2

ck
...

...

0 · · · 0 1 −
ck−1

ck




.

Then

(Ai
n)

n−2 =



g
(i)
−n+1

1

ck
g
(i)
−n+k −

∑k−1
t=2

ck−t

ck
g
(i)
−n+t

1 −
ck−1

ck


 .

By Lemma 1, we have

perAi
n = per(Ai

n)
n−2 = −

ck−1

ck
g
(i)
−n+1 +

1

ck
g
(i)
−n+k −

k−1∑

t=2

ck−t

ck
g
(i)
−n+t

=
1

ck
g
(i)
−n+k −

k−1∑

t=1

ck−t

ck
g
(i)
−n+t

= g
(i)
−n.

So perAi
n = g

(i)
−n and the proof is complete.

Secondly, we provide the proof of Theorem 14,
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Proof. Let F p

(n,k) = (f p
ij) be the pth contraction of F(n,k), 1 ≤ p ≤ n− 2.

The matrix F(n,k) = (fij), can be contracted on column 1 relative to rows 1 and 2.
We can easily verify that if p = 1,
f 1
11 = f 1

12 = · · · = f 1
1k−1 = −1, f 1

1k = 1 and f 1
1q = 0, for q ≥ k + 1; and for all

i = 2, . . . , n− 1, 



fi,i−1 = 1,

fij = −1, for 0 ≤ j − i ≤ k − 2;

fij = 1 for j − i = k − 1.

Hence

F 1
(n,k) =




−1 · · · −1 1 0 · · · 0

1 −1 · · · −1 1
. . .

...
. . . . . . 0

. . . 1
... −1

. . . . . .
...

0 · · · 1 −1




and

F 1
(n,k) =




g̃
(k)
−2 g̃

(k)
k−3 −

∑k−4
j=−1 g̃

(k)
j g̃

(k)
k−4 −

∑k−5
j=−1 g̃

(k)
j · · · −g̃

(k)
−1 + g̃

(k)
0 g̃

(k)
−1 0 · · · 0

1 −1 −1 · · · −1 1
. . .

...

0 1 −1 · · · −1
. . . 0
. . . 1

−1
. . . . . .

...
0 · · · 0 1 −1




.

Furthermore, the matrix F 1
(n,k) can be contracted. From Lemma 1 we obtain

perF(n,k) = perF p

(n,k)

with F
p

(n,k) defined for p ≤ n− k by

F
p

(n,k) =




g̃
(k)
−p−1 g̃

(k)
−p+k−2 −

∑k−3
j=0 g̃

(k)
−p+j · · · −g̃

(k)
−p + g̃

(k)
−p+1 g̃

(k)
−p 0 · · · 0

1 −1 · · · · · · −1 1
. . .

...
. . . . . . 0

. . . 1
−1

. . . . . .
...

0 · · · 0 1 −1




.
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And for p ≥ n− k + 1, F p

(n,k) is defined as

F
p

(n,k) =




g̃
(k)
−p−1 g̃

(k)
−p+k−2 −

∑k−3
j=0 g̃

(k)
−p+j · · · g̃

(k)
k−n+1 −

∑k−(n−p)
j=0 g̃

(k)
−p+j g̃

(k)
k−n −

∑k−(n−p+1)
j=0 g̃

(k)
−p+j

1 −1 · · · · · · −1
0 1 · · · −1
.
.

...
0 · · · 1 −1




.

So we have

F n−2
(n,k) =

(
g̃
(k)
−n+1 g̃

(k)
−n+k −

∑k−3
j=0 g̃

(k)
−n+2+j

1 −1

)
.

Lemma 1 gives

perF(n,k) = per

(
g̃
(k)
−n+1 g̃

(k)
−n+k −

∑k−3
j=0 g̃

(k)
−n+2+j

1 −1

)

= −g̃
(k)
−n+1 + g̃

(k)
−n+k −

∑k−3

j=0
g̃
(k)
−n+2+j

= g̃
(k)
−n+k −

(
g̃
(k)
−n+1 + g̃

(k)
−n+2 + · · ·+ g̃

(k)
−n+k−1

)
.

So perF(n,k) = g̃
(k)
−n and the proof of Identity (28) is complete.

By Lemma 1, we can write

per F̃(n,k) = per F̃ 1
(n,k), (30)

where F̃ 1
(n,k) is the first contraction of F̃(n,k).

Then f̃ 1
11 = f̃ 1

12 = · · · = f̃ 1
1k−1 = 0, f̃ 1

1k = 1 and f̃ 1
1q = 0 (q ≥ k+1); and for i = 2, . . . , n−1,

f̃ 1
i,i−1 = 1, f̃ 1

ij = −1 for (0 ≤ j − i ≤ k − 2) and f̃ 1
ij = 1 for (j − i = k − 1).

That is,

per F̃ 1
(n,k) = per




0 0 · · · 1 0 · · · 0

1 −1 · · · −1 1
. . .

...

0 1
. . . . . . 0

. . . 1
−1
...

0 · · · 0 1 −1




n−1

.
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Computing per F̃ 1
(n,k) by the Laplace expansion with respect to the first column, we obtain

per F̃ 1
(n,k) = per




1 0 · · · 0 0 · · · 0

1 −1 · · · −1 1
. . .

...
. . . . . . 0

. . . 1
−1

. . . . . .
...

· · · 1 −1




n−k

.

From identity (28), per F̃ 1
(n,k) = perF(n−k,k) = g̃

(k)
−(n−k), and from (30), we have,

per F̃(n,k) = g̃
(k)
−n+k. The proof is complete.

We conclude this section with the proof of Theorem 16.

Proof. If n = 4,

perB4 = per




1 1 1 0
1 1 0 1
0 1 1 0
0 0 −1 −1


 = −4 = l

(2)
−3.

By induction on n, we assume that perBn = l
(2)
−n+1 and we establish that perBn+1 = l

(2)
−n.

Let

F =




0
...
0
1


 .

Then

Bn+1 =

(
Bn F

F t −1

)
.

Let B
(p)
n be the pth contraction of Bn. Since

B(n−2)
n =

(
l
(2)
−n+2 l

(2)
−n+3

1 −1

)
,

we get

perBn+1 = perB
(n−2)
n+1 = per



l
(2)
−n+2 l

(2)
−n+3 0

1 −1 1
0 1 −1


 = l

(2)
−n+2−l

(2)
−n+3+l

(2)
−n+2 = l

(2)
−n+2−l

(2)
−n+1 = l

(2)
−n.

The proof is completed.
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