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Abstract

We obtain explicit evaluations of the Tornheim-like multiple series involving har-
monic numbers. We give a new relationship between harmonic numbers and ζ(2). We
also present closed-form formulas of some multiple series in terms of zeta values.

1 Introduction

The Riemann zeta function is defined by

ζ(z) =
∞
∑

k=1

1

kz
, (Re z > 1).

For even positive integers, one has the well-known relationship between zeta values and
Bernoulli numbers:

ζ(2n) = (−1)n+1 (2π)
2n

2(2n)!
B2n. (1)

Here

B0 = 1, B2 =
1

6
, B4 = −

1

30
, B6 =

1

42
, . . . .
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This result was proved for the first time by Euler in 1740.
For odd positive integers, no simple expression like (1) is known. Roger Apéry [1] proved

the irrationality of ζ(3), and after that ζ(3) was named Apéry’s constant. Rivoal [17] showed
that infinitely many of the numbers ζ(2n + 1) must be irrational. Zudilin [23] showed that
at least one of the numbers ζ(5), ζ(7), ζ(9) and ζ(11) is irrational.

For a positive integer n and an integer m the nth partial sum of ζ(m) is called the nth

generalized harmonic number of order m, and is denoted by H
(m)
n , i.e.,

H(m)
n =

n
∑

k=1

1

km
.

The special case m = 1 is the classical harmonic number

Hn =
n
∑

k=1

1

k
, H0 = 0.

It is well known that there are deep relationships between Tornheim-like series, harmonic
numbers and zeta values. The Tornheim double series [19] (or the so-called Witten zeta
function [22]) is defined by

S(a, b, c) :=
∞
∑

m,n=1

1

manb(m+ n)c
. (2)

The following equation is a simple and nice example of a connection between Tornheim-like
series, harmonic numbers, and zeta values (see [4, 5, 10, 11, 16]):

∞
∑

n,m=1

1

nm(n+m)
=

∞
∑

m=1

Hm

m2
= 2ζ(3). (3)

Tornheim-like series have attracted increasing attention in recent years and they have proven
to be a powerful tool for finding many interesting relationships between various zeta values
([2, 3, 4, 5, 6, 10, 11, 13, 15, 18, 20]).

Boyadzhiev [7, 8] described a simple method for evaluating double series of the form (2)
in terms of zeta values. Kuba [13] considered the following general sum:

V =
∞
∑

j,k=1

H
(u)
j+k

jrks(j + k)t
.

This sum includes the Tornheim double series (2) as a special case. Kuba [13] proved that
whenever w = r+ s+ t+u is even, for r, s, t, w ∈ N , the series V can be explicitly evaluated
in terms of zeta functions.
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On the other hand, Xu and Li [20] used the Tornheim type series for the evaluation of
non-linear Euler sums. Among other results they obtained

∞
∑

m=1

Hm+k

m(m+ k)
=

H2
k +H

(2)
k

k
, k ∈ N = {1, 2, 3, . . .} . (4)

From (3) and (4) it is easy to see that the value of the series

a(k) =
∞
∑

m=1

Hm+k

m(m+ k)
, k ∈ N∪{0}

is irrational for k = 0 and rational for every k ∈ N. Hence the following questions naturally
arise: for integers s ∈ N∪{0}, are the values of the double series

∞
∑

n,m=1

Hn+m+s

nm(n+m+ s)
,

and more generally, the multiple series

An(s) =
∞
∑

k1=1

· · ·

∞
∑

kn−1=1

Hk1+···+kn−1+s

k1 · · · kn−1(k1 + · · ·+ kn−1 + s)

rational or irrational numbers? This question is studied in the second section. Namely, in
the case when n is odd, we have solved this question exactly. If n is even, we give a partial
solution depending on the odd zeta values.

In the third section, some new relationships between harmonic numbers and ζ(2) are
given and explicit evaluation formulas for some double series via zeta values are established.

2 Explicit evaluations of the Tornheim-like multiple se-

ries involving harmonic numbers

Theorem 1. Consider the double series

A(s) =
∞
∑

n,m=1

Hn+m+s

nm(n+m+ s)
, s ∈ N∪{0} .

For any s ∈ N the value of A(s) is rational but A(0) is irrational. More precisely,

A(s) =

{

6ζ(4), if s = 0;

6
∑s−1

j=0(−1)j
(

s−1
j

)

1
(j+1)4

, if s ≥ 1.
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Proof. Using telescoping series, we have

1 +
1

2
+

1

3
+ · · ·+

1

n+m+ s
=

∞
∑

k=1

(
1

k
−

1

k + n+m+ s
)

= (n+m+ s)
∞
∑

k=1

1

k(k + n+m+ s)
.

It then follows that

A(s) =
∞
∑

n,m=1

1

nm(n+m+ s)
(1 +

1

2
+

1

3
+ · · ·+

1

n+m+ s
)

=
∞
∑

n,m,k=1

1

nmk(n+m+ k + s)

=
∞
∑

n,m,k=1

(
∫ 1

0

xn−1dx

)(
∫ 1

0

ym−1dy

)(
∫ 1

0

zk−1dz

)(
∫ 1

0

tn+m+k+s−1dt

)

=

∫ 1

0

ts+2

[

∫ 1

0

(

∞
∑

n=1

(xt)n−1

)

dx

∫ 1

0

(

∞
∑

m=1

(yt)m−1

)

dy

∫ 1

0

(

∞
∑

k=1

(zt)k−1

)

dz

]

dt

=

∫ 1

0

ts+2

[
∫ 1

0

1

1− xt
dx

∫ 1

0

1

1− yt
dy

∫ 1

0

1

1− zt
dz

]

dt.

Since
∫ 1

0

1

1− ut
du = −

1

t
ln(1− t),

we have

A(s) = −

∫ 1

0

ts−1 ln3(1− t)dt = −

∫ 1

0

(1− t)s−1 ln3 tdt. (5)

Setting s = 0, it follows that

A(0) = −

∫ 1

0

1

1− t
ln3 tdt = −

∞
∑

j=0

∫ 1

0

tj ln3 tdt

= −

∞
∑

j=0

(−
6

(j + 1)4
) = 6ζ(4) =

π4

16
.

On the other hand, if s ≥ 1, then utilizing the formulas

(1− t)s−1 =
s−1
∑

j=0

(−1)j
(

s− 1

j

)

tj
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and
∫ 1

0

tj ln3 tdt = −
3!

(j + 1)4
,

(5) can be computed explicitly as

A(s) = −

∫ 1

0

(1− t)s−1 ln3 tdt

= 3!
s−1
∑

j=0

(−1)j
(

s− 1

j

)

1

(j + 1)4
.

This proves the stated result.

In the same way as in Theorem 1, by making use of the formulas

(1− t)s−1 =
s−1
∑

j=0

(−1)j
(

s− 1

j

)

tj and

∫ 1

0

tj lnk tdt = (−1)k
k!

(j + 1)k+1
,

one can prove the following more general result.

Theorem 2. Let

An(s) =
∞
∑

k1=1

· · ·
∞
∑

kn−1=1

Hk1+···+kn−1+s

k1 · · · kn−1(k1 + · · ·+ kn−1 + s)
, s ∈ N∪{0} , n ≥ 2.

Then

An(s) =

{

n!ζ(n+ 1), if s = 0;

n!
∑s−1

j=0(−1)j
(

s−1
j

)

1
(j+1)n+1 , if s ≥ 1.

(6)

Two special cases of the theorem are as follows:

A2(s) =
∞
∑

k=1

Hk+s

k(k + s)
=

{

2!ζ(3), if s = 0;

2!
∑s−1

j=0(−1)j
(

s−1
j

)

1
(j+1)3

, if s ≥ 1,

and

A4(s) =
∞
∑

k,m,n=1

Hk+m+n+s

kmn(k +m+ n+ s)
=

{

4!ζ(5), if s = 0;

4!
∑s−1

j=0(−1)j
(

s−1
j

)

1
(j+1)5

, if s ≥ 1.

Remark 3. It can be easily seen from (6) that the expression An(s) is a rational number for
all s ≥ 1 and n ≥ 2. However A2(0) = 2!ζ(3) is irrational (Apéry). If n ≥ 4 and even, it
is not known whether the numbers An(0) = n!ζ(n + 1) are irrational or not. On the other
hand, for any odd n ∈ N we have An(0) = n!ζ(n+ 1) = rnπ

n+1 (see (1)), which is irrational
because rn is rational and πn+1 is irrational. Notice that, as is well known, the irrationality
of πn is a consequence of the transcendence of π.
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Remark 4. There is an interesting connection between the multiple series An(s) and the
Bell polynomials bn(x). For a given sequence x = (x1, x2, . . .), the Bell polynomials bn(x) =
bn(x1, x2, . . .) are defined by the generating function (see [9] or [14])

∞
∑

n=0

bn(x)
tn

n!
= exp

{

∞
∑

k=1

xk

tk

k!

}

.

As a result of this definition one has the following explicit expression [9]:

bn(x) =
∑

σ(n)

n!

a1!a2! · · · an!

(x1

1

)a1
(x2

2

)a2

· · ·
(xn

n

)an

,

where the summation ranges over the set σ(n) of all partitions of n. Using this explicit
expression we can give a list of the first few Bell polynomials as

b0(x) = 1, b1(x) = x1, (7)

b2(x) = x2
1 + x2, b3(x) = x3

1 + 3x1x2 + 2x3.

Considering the well-known harmonic number identity (see [21, Eq. (3.56)] or [12, Corollary
2.2])

i!m

(

m+ n

n

) n
∑

k=0

(−1)k
(

n

k

)

1

(m+ k)i+1

= bi(Hm+n −Hm−1, H
(2)
m+n −H

(2)
m−1, . . . , H

(i)
m+n −H

(i)
m−1)

we have

n!s
s−1
∑

j=0

(−1)j
(

s− 1

j

)

1

(j + 1)n+1
= bn(Hs, H

(2)
s , . . . , H(n)

s ), (8)

which corresponds to (6) for s ≥ 1. Hence we can restate An(s) in terms of the Bell
polynomials as

An(s) =

{

n!ζ(n+ 1), if s = 0;
1
s
bn(Hs, H

(2)
s , . . . , H

(n)
s ), if s ≥ 1.

Thanks to this formula, considering (7) we can write An(s) as a finite combination of the
harmonic and generalized harmonic numbers. For instance, for n = 2 we have

A2(s) =

{

2ζ(3), if s = 0;
1
s
((Hs)

2 +H
(2)
s ), if s ≥ 1,

which coincides with (4). For n = 3 we have

A3(s) =

{

6ζ(4), if s = 0;
1
s
((Hs)

3 + 3HsH
(2)
s + 2H

(3)
s ), if s ≥ 1.
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3 Explicit evaluations of some double series in zeta val-

ues

The next theorem gives a new relationship between harmonic numbers and ζ(2).

Theorem 5. Let Om =
∑m

k=1
1

2k−1
= H2m − 1

2
Hm. Then

∞
∑

m=1

Om

2m(2m+ 1)
=

1

4
ζ(2). (9)

Proof. Let

A =
∞
∑

m,n=0

1

(2m+ 1)(2n+ 1)(2m+ 2n+ 1)

and

B =
∞
∑

m,n=1

1

(2m+ 1)(2n+ 1)(2m+ 2n+ 1)
.

From the equation
∞
∑

k=0

1

(2k + 1)2
=

π2

8
,

we have

A =
π2

4
− 1 + B. (10)

Further, using telescoping series, we have

B =
∞
∑

m=1

1

2m+ 1

1

2m

∞
∑

n=1

(
1

2n+ 1
−

1

2n+ 1 + 2m
)

=
∞
∑

m=1

1

2m(2m+ 1)
(
1

3
+

1

5
+ · · ·+

1

2m+ 1
)

=
∞
∑

m=1

Om − 2m
2m+1

2m(2m+ 1)

=
∞
∑

m=1

Om

2m(2m+ 1)
−

∞
∑

m=1

1

(2m+ 1)2

=
∞
∑

m=1

Om

2m(2m+ 1)
−

π2

8
+ 1.

Hence we obtain that

B =
∞
∑

m=1

Om

2m(2m+ 1)
+ 1−

3

4
ζ(2). (11)
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Now let us evaluate A.

A =
∞
∑

m,n=0

(
∫ 1

0

x2mdx

)(
∫ 1

0

y2ndy

)(
∫ 1

0

t2m+2ndt

)

=

∫ 1

0

(

∫ 1

0

∞
∑

m=0

(xt)2mdx

∫ 1

0

∞
∑

n=0

(yt)2ndy

)

dt

=

∫ 1

0

(
∫ 1

0

1

1− (xt)2
dx

∫ 1

0

1

1− (yt)2
dy

)

dt

=
1

4

∫ 1

0

1

t2
ln2

(

1 + t

1− t

)

dt.

The substitution 1+t
1−t

= u immediately leads to the following equality:

A =
1

2

∫

∞

1

1

(1− u)2
ln2 udu.

Integration by parts gives

A =

∫

∞

1

1

u(u− 1)
ln u du =

∫

∞

1

1

1− 1
u

ln u

u2
du

=
∞
∑

k=0

∫

∞

1

u−k−2 ln u du =
∞
∑

k=0

1

(k + 1)2
= ζ(2) =

π2

6
. (12)

Similarly, from (10), (11) and (12) we have

π2

6
=

π2

4
− 1 +

∞
∑

m=1

Om

2m(2m+ 1)
−

3

4
ζ(2) + 1

and as a result
∞
∑

m=1

Om

2m(2m+ 1)
=

1

4
ζ(2).

Remark 6. Considering (11) we have

B =
∞
∑

m=1

H2m+1 − 1− 1
2
Hm

2m(2m+ 1)
. (13)

Now we use (10) and (12) to conclude that

∞
∑

m=1

2H2m+1 −Hm

2m(2m+ 1)
= 2(2− ln 2)− ζ(2). (14)
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In the following theorem we obtain interesting relationships between some special double
series and zeta values ζ(2) and ζ(3).

Theorem 7. We have the following series evaluations:

(a)
∑

∞

m,n=0
1

(m+ 1

2
)(n+ 1

2
)(m+n+ 1

2
)(m+n+1)

= 16ζ(2)− 14ζ(3).

(b)
∑

∞

m,n=0
1

(m+ 1

2
)(n+ 1

2
)(m+n+1)(m+n+ 3

2
)
= 14ζ(3)− 8ζ(2) .

(c)
∑

∞

m,n=0
1

(m+ 1

2
)(n+ 1

2
)(m+n+ 1

2
)(m+n+1)(m+n+ 3

2
)
= 24ζ(2)− 28ζ(3).

Proof. (a) We have

∞
∑

m,n=0

1

(2m+ 1)(2n+ 1)(2m+ 2n+ 2)

=
∞
∑

m,n=0

(
∫ 1

0

x2mdx

)(
∫ 1

0

y2ndy

)(
∫ 1

0

t2m+2n+1dt

)

=

∫ 1

0

(

∫ 1

0

∞
∑

m=0

(xt)2mdx

∫ 1

0

∞
∑

n=0

(yt)2ndy

)

tdt

=
1

4

∫ 1

0

1

t
ln2

(

1 + t

1− t

)

dt.

Here the substitution 1+t
1−t

= u leads to the following equality:

1

4

∫ 1

0

1

t
ln2

(

1 + t

1− t

)

dt =
1

2

∫

∞

1

1

(u2 − 1)
ln2 udu =

1

2

∫

∞

1

1

u2

1

(1− 1
u2 )

ln2 udu

=
1

2

∞
∑

k=0

∫

∞

1

u−2k−2 ln u du.

After integration by parts we get

1

2

∞
∑

k=0

∫

∞

1

u−2k−2 ln u du =
∞
∑

k=0

1

(2k + 1)3
=

7

8
ζ(3).

Hence
∞
∑

m,n=0

1

(2m+ 1)(2n+ 1)(2m+ 2n+ 2)
=

7

8
ζ(3). (15)

On the other hand, according to the formula (12),

A =
∞
∑

m,n=0

1

(2m+ 1)(2n+ 1)(2m+ 2n+ 1)
= ζ(2). (16)
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Now, from (15) and (16) it follows that

ζ(2)−
7

8
ζ(3) =

∞
∑

m,n=0

1

(2m+ 1)(2n+ 1)(2m+ 2n+ 1)

−
∞
∑

m,n=0

1

(2m+ 1)(2n+ 1)(2m+ 2n+ 2)

=
∞
∑

m,n=0

1

(2m+ 1)(2n+ 1)(2m+ 2n+ 1)(2m+ 2n+ 2)

and this proves (a).

(b) By the same method in the proof of (a), we have

∞
∑

m,n=0

1

(2m+ 1)(2n+ 1)(2m+ 2n+ 3)

=
∞
∑

m,n=0

(
∫ 1

0

x2mdx

)(
∫ 1

0

y2ndy

)(
∫ 1

0

t2m+2n+2dt

)

=

∫ 1

0

(
∫ 1

0

1

1− (xt)2
dx

∫ 1

0

1

1− (yt)2
dy

)

t2dt

=
1

4

∫ 1

0

ln2

(

1 + t

1− t

)

dt

=
1

2

∫

∞

1

1

(u+ 1)2
ln2 udu = −

1

2

∫

∞

1

ln2 ud(
1

u+ 1
)

=

∫

∞

1

1

u(u+ 1)
ln u du =

∞
∑

k=2

(−1)k
∫

∞

1

u−k ln u du

=
∞
∑

k=2

(−1)k
1

(k − 1)2
=

π2

12
.

Thus
∞
∑

m,n=0

1

(2m+ 1)(2n+ 1)(2m+ 2n+ 3)
=

π2

12
=

1

2
ζ(2). (17)

Now, from (15) and (17) we have

7

8
ζ(3)−

1

2
ζ(2) =

∞
∑

m,n=0

1

(2m+ 1)(2n+ 1)(2m+ 2n+ 2)(2m+ 2n+ 3)

and this proves (b).
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(c) Finally, formula (c) can be obtained by subtracting the formula (b) from the formula
(a).
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[14] I. Mező, Combinatorics and Number Theory of Counting Sequences, Chapman and
Hall/CRC, 2019.
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