Journal of Integer Sequences, Vol. 25 (2022), Article 22.5.5

Tornheim-Like Series, Harmonic Numbers, and Zeta Values

Ilham A. Aliev and Ayhan Dil
Department of Mathematics
Akdeniz University
07070 Antalya
Turkey
ialiev@akdeniz.edu.tr
adil@akdeniz.edu.tr

Abstract

We obtain explicit evaluations of the Tornheim-like multiple series involving harmonic numbers. We give a new relationship between harmonic numbers and $\zeta(2)$. We also present closed-form formulas of some multiple series in terms of zeta values.

1 Introduction

The Riemann zeta function is defined by

$$
\zeta(z)=\sum_{k=1}^{\infty} \frac{1}{k^{z}}, \quad(\operatorname{Re} z>1) .
$$

For even positive integers, one has the well-known relationship between zeta values and Bernoulli numbers:

$$
\begin{equation*}
\zeta(2 n)=(-1)^{n+1} \frac{(2 \pi)^{2 n}}{2(2 n)!} B_{2 n} . \tag{1}
\end{equation*}
$$

Here

$$
B_{0}=1, \quad B_{2}=\frac{1}{6}, \quad B_{4}=-\frac{1}{30}, \quad B_{6}=\frac{1}{42}, \ldots .
$$

This result was proved for the first time by Euler in 1740.
For odd positive integers, no simple expression like (1) is known. Roger Apéry [1] proved the irrationality of $\zeta(3)$, and after that $\zeta(3)$ was named Apéry's constant. Rivoal [17] showed that infinitely many of the numbers $\zeta(2 n+1)$ must be irrational. Zudilin [23] showed that at least one of the numbers $\zeta(5), \zeta(7), \zeta(9)$ and $\zeta(11)$ is irrational.

For a positive integer n and an integer m the nth partial sum of $\zeta(m)$ is called the nth generalized harmonic number of order m, and is denoted by $H_{n}^{(m)}$, i.e.,

$$
H_{n}^{(m)}=\sum_{k=1}^{n} \frac{1}{k^{m}} .
$$

The special case $m=1$ is the classical harmonic number

$$
H_{n}=\sum_{k=1}^{n} \frac{1}{k}, H_{0}=0
$$

It is well known that there are deep relationships between Tornheim-like series, harmonic numbers and zeta values. The Tornheim double series [19] (or the so-called Witten zeta function [22]) is defined by

$$
\begin{equation*}
S(a, b, c):=\sum_{m, n=1}^{\infty} \frac{1}{m^{a} n^{b}(m+n)^{c}} . \tag{2}
\end{equation*}
$$

The following equation is a simple and nice example of a connection between Tornheim-like series, harmonic numbers, and zeta values (see $[4,5,10,11,16]$):

$$
\begin{equation*}
\sum_{n, m=1}^{\infty} \frac{1}{n m(n+m)}=\sum_{m=1}^{\infty} \frac{H_{m}}{m^{2}}=2 \zeta(3) . \tag{3}
\end{equation*}
$$

Tornheim-like series have attracted increasing attention in recent years and they have proven to be a powerful tool for finding many interesting relationships between various zeta values ($[2,3,4,5,6,10,11,13,15,18,20]$).

Boyadzhiev [7, 8] described a simple method for evaluating double series of the form (2) in terms of zeta values. Kuba [13] considered the following general sum:

$$
V=\sum_{j, k=1}^{\infty} \frac{H_{j+k}^{(u)}}{j^{r} k^{s}(j+k)^{t}} .
$$

This sum includes the Tornheim double series (2) as a special case. Kuba [13] proved that whenever $w=r+s+t+u$ is even, for $r, s, t, w \in \mathbb{N}$, the series V can be explicitly evaluated in terms of zeta functions.

On the other hand, Xu and Li [20] used the Tornheim type series for the evaluation of non-linear Euler sums. Among other results they obtained

$$
\begin{equation*}
\sum_{m=1}^{\infty} \frac{H_{m+k}}{m(m+k)}=\frac{H_{k}^{2}+H_{k}^{(2)}}{k}, k \in \mathbb{N}=\{1,2,3, \ldots\} \tag{4}
\end{equation*}
$$

From (3) and (4) it is easy to see that the value of the series

$$
a(k)=\sum_{m=1}^{\infty} \frac{H_{m+k}}{m(m+k)}, k \in \mathbb{N} \cup\{0\}
$$

is irrational for $k=0$ and rational for every $k \in \mathbb{N}$. Hence the following questions naturally arise: for integers $s \in \mathbb{N} \cup\{0\}$, are the values of the double series

$$
\sum_{n, m=1}^{\infty} \frac{H_{n+m+s}}{n m(n+m+s)},
$$

and more generally, the multiple series

$$
A_{n}(s)=\sum_{k_{1}=1}^{\infty} \cdots \sum_{k_{n-1}=1}^{\infty} \frac{H_{k_{1}+\cdots+k_{n-1}+s}}{k_{1} \cdots k_{n-1}\left(k_{1}+\cdots+k_{n-1}+s\right)}
$$

rational or irrational numbers? This question is studied in the second section. Namely, in the case when n is odd, we have solved this question exactly. If n is even, we give a partial solution depending on the odd zeta values.

In the third section, some new relationships between harmonic numbers and $\zeta(2)$ are given and explicit evaluation formulas for some double series via zeta values are established.

2 Explicit evaluations of the Tornheim-like multiple series involving harmonic numbers

Theorem 1. Consider the double series

$$
A(s)=\sum_{n, m=1}^{\infty} \frac{H_{n+m+s}}{n m(n+m+s)}, \quad s \in \mathbb{N} \cup\{0\}
$$

For any $s \in \mathbb{N}$ the value of $A(s)$ is rational but $A(0)$ is irrational. More precisely,

$$
A(s)= \begin{cases}6 \zeta(4), & \text { if } s=0 \\ 6 \sum_{j=0}^{s-1}(-1)^{j}\binom{s-1}{j} \frac{1}{(j+1)^{4}}, & \text { if } s \geq 1\end{cases}
$$

Proof. Using telescoping series, we have

$$
\begin{aligned}
1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n+m+s} & =\sum_{k=1}^{\infty}\left(\frac{1}{k}-\frac{1}{k+n+m+s}\right) \\
& =(n+m+s) \sum_{k=1}^{\infty} \frac{1}{k(k+n+m+s)}
\end{aligned}
$$

It then follows that

$$
\begin{aligned}
A(s) & =\sum_{n, m=1}^{\infty} \frac{1}{n m(n+m+s)}\left(1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n+m+s}\right) \\
& =\sum_{n, m, k=1}^{\infty} \frac{1}{n m k(n+m+k+s)} \\
& =\sum_{n, m, k=1}^{\infty}\left(\int_{0}^{1} x^{n-1} d x\right)\left(\int_{0}^{1} y^{m-1} d y\right)\left(\int_{0}^{1} z^{k-1} d z\right)\left(\int_{0}^{1} t^{n+m+k+s-1} d t\right) \\
& =\int_{0}^{1} t^{s+2}\left[\int_{0}^{1}\left(\sum_{n=1}^{\infty}(x t)^{n-1}\right) d x \int_{0}^{1}\left(\sum_{m=1}^{\infty}(y t)^{m-1}\right) d y \int_{0}^{1}\left(\sum_{k=1}^{\infty}(z t)^{k-1}\right) d z\right] d t \\
& =\int_{0}^{1} t^{s+2}\left[\int_{0}^{1} \frac{1}{1-x t} d x \int_{0}^{1} \frac{1}{1-y t} d y \int_{0}^{1} \frac{1}{1-z t} d z\right] d t .
\end{aligned}
$$

Since

$$
\int_{0}^{1} \frac{1}{1-u t} d u=-\frac{1}{t} \ln (1-t)
$$

we have

$$
\begin{equation*}
A(s)=-\int_{0}^{1} t^{s-1} \ln ^{3}(1-t) d t=-\int_{0}^{1}(1-t)^{s-1} \ln ^{3} t d t \tag{5}
\end{equation*}
$$

Setting $s=0$, it follows that

$$
\begin{aligned}
A(0) & =-\int_{0}^{1} \frac{1}{1-t} \ln ^{3} t d t=-\sum_{j=0}^{\infty} \int_{0}^{1} t^{j} \ln ^{3} t d t \\
& =-\sum_{j=0}^{\infty}\left(-\frac{6}{(j+1)^{4}}\right)=6 \zeta(4)=\frac{\pi^{4}}{16} .
\end{aligned}
$$

On the other hand, if $s \geq 1$, then utilizing the formulas

$$
(1-t)^{s-1}=\sum_{j=0}^{s-1}(-1)^{j}\binom{s-1}{j} t^{j}
$$

and

$$
\int_{0}^{1} t^{j} \ln ^{3} t d t=-\frac{3!}{(j+1)^{4}},
$$

(5) can be computed explicitly as

$$
\begin{aligned}
A(s) & =-\int_{0}^{1}(1-t)^{s-1} \ln ^{3} t d t \\
& =3!\sum_{j=0}^{s-1}(-1)^{j}\binom{s-1}{j} \frac{1}{(j+1)^{4}} .
\end{aligned}
$$

This proves the stated result.
In the same way as in Theorem 1, by making use of the formulas

$$
(1-t)^{s-1}=\sum_{j=0}^{s-1}(-1)^{j}\binom{s-1}{j} t^{j} \text { and } \int_{0}^{1} t^{j} \ln ^{k} t d t=(-1)^{k} \frac{k!}{(j+1)^{k+1}},
$$

one can prove the following more general result.
Theorem 2. Let

$$
A_{n}(s)=\sum_{k_{1}=1}^{\infty} \cdots \sum_{k_{n-1}=1}^{\infty} \frac{H_{k_{1}+\cdots+k_{n-1}+s}}{k_{1} \cdots k_{n-1}\left(k_{1}+\cdots+k_{n-1}+s\right)}, s \in \mathbb{N} \cup\{0\}, n \geq 2
$$

Then

$$
A_{n}(s)= \begin{cases}n!\zeta(n+1), & \text { if } s=0 \tag{6}\\ n!\sum_{j=0}^{s-1}(-1)^{j}\binom{s-1}{j} \frac{1}{(j+1)^{n+1}}, & \text { if } s \geq 1\end{cases}
$$

Two special cases of the theorem are as follows:

$$
A_{2}(s)=\sum_{k=1}^{\infty} \frac{H_{k+s}}{k(k+s)}= \begin{cases}2!\zeta(3), & \text { if } s=0 \\ 2!\sum_{j=0}^{s-1}(-1)^{j}\binom{s-1}{j} \frac{1}{(j+1)^{3}}, & \text { if } s \geq 1\end{cases}
$$

and

$$
A_{4}(s)=\sum_{k, m, n=1}^{\infty} \frac{H_{k+m+n+s}}{k m n(k+m+n+s)}= \begin{cases}4!\zeta(5), & \text { if } s=0 \\ 4!\sum_{j=0}^{s-1}(-1)^{j}\binom{s-1}{j} \frac{1}{(j+1)^{5}}, & \text { if } s \geq 1\end{cases}
$$

Remark 3. It can be easily seen from (6) that the expression $A_{n}(s)$ is a rational number for all $s \geq 1$ and $n \geq 2$. However $A_{2}(0)=2!\zeta(3)$ is irrational (Apéry). If $n \geq 4$ and even, it is not known whether the numbers $A_{n}(0)=n!\zeta(n+1)$ are irrational or not. On the other hand, for any odd $n \in \mathbb{N}$ we have $A_{n}(0)=n!\zeta(n+1)=r_{n} \pi^{n+1}$ (see (1)), which is irrational because r_{n} is rational and π^{n+1} is irrational. Notice that, as is well known, the irrationality of π^{n} is a consequence of the transcendence of π.

Remark 4. There is an interesting connection between the multiple series $A_{n}(s)$ and the Bell polynomials $b_{n}(x)$. For a given sequence $x=\left(x_{1}, x_{2}, \ldots\right)$, the Bell polynomials $b_{n}(x)=$ $b_{n}\left(x_{1}, x_{2}, \ldots\right)$ are defined by the generating function (see [9] or [14])

$$
\sum_{n=0}^{\infty} b_{n}(x) \frac{t^{n}}{n!}=\exp \left\{\sum_{k=1}^{\infty} x_{k} \frac{t^{k}}{k!}\right\}
$$

As a result of this definition one has the following explicit expression [9]:

$$
b_{n}(x)=\sum_{\sigma(n)} \frac{n!}{a_{1}!a_{2}!\cdots a_{n}!}\left(\frac{x_{1}}{1}\right)^{a_{1}}\left(\frac{x_{2}}{2}\right)^{a_{2}} \cdots\left(\frac{x_{n}}{n}\right)^{a_{n}}
$$

where the summation ranges over the set $\sigma(n)$ of all partitions of n. Using this explicit expression we can give a list of the first few Bell polynomials as

$$
\begin{array}{ll}
b_{0}(x)=1, & b_{1}(x)=x_{1}, \tag{7}\\
b_{2}(x)=x_{1}^{2}+x_{2}, & b_{3}(x)=x_{1}^{3}+3 x_{1} x_{2}+2 x_{3} .
\end{array}
$$

Considering the well-known harmonic number identity (see [21, Eq. (3.56)] or [12, Corollary 2.2])

$$
\begin{aligned}
& i!m\binom{m+n}{n} \sum_{k=0}^{n}(-1)^{k}\binom{n}{k} \frac{1}{(m+k)^{i+1}} \\
& =b_{i}\left(H_{m+n}-H_{m-1}, H_{m+n}^{(2)}-H_{m-1}^{(2)}, \ldots, H_{m+n}^{(i)}-H_{m-1}^{(i)}\right)
\end{aligned}
$$

we have

$$
\begin{equation*}
n!s \sum_{j=0}^{s-1}(-1)^{j}\binom{s-1}{j} \frac{1}{(j+1)^{n+1}}=b_{n}\left(H_{s}, H_{s}^{(2)}, \ldots, H_{s}^{(n)}\right) \tag{8}
\end{equation*}
$$

which corresponds to (6) for $s \geq 1$. Hence we can restate $A_{n}(s)$ in terms of the Bell polynomials as

$$
A_{n}(s)= \begin{cases}n!\zeta(n+1), & \text { if } s=0 \\ \frac{1}{s} b_{n}\left(H_{s}, H_{s}^{(2)}, \ldots, H_{s}^{(n)}\right), & \text { if } s \geq 1\end{cases}
$$

Thanks to this formula, considering (7) we can write $A_{n}(s)$ as a finite combination of the harmonic and generalized harmonic numbers. For instance, for $n=2$ we have

$$
A_{2}(s)= \begin{cases}2 \zeta(3), & \text { if } s=0 \\ \frac{1}{s}\left(\left(H_{s}\right)^{2}+H_{s}^{(2)}\right), & \text { if } s \geq 1\end{cases}
$$

which coincides with (4). For $n=3$ we have

$$
A_{3}(s)= \begin{cases}6 \zeta(4), & \text { if } s=0 \\ \frac{1}{s}\left(\left(H_{s}\right)^{3}+3 H_{s} H_{s}^{(2)}+2 H_{s}^{(3)}\right), & \text { if } s \geq 1\end{cases}
$$

3 Explicit evaluations of some double series in zeta values

The next theorem gives a new relationship between harmonic numbers and $\zeta(2)$.
Theorem 5. Let $O_{m}=\sum_{k=1}^{m} \frac{1}{2 k-1}=H_{2 m}-\frac{1}{2} H_{m}$. Then

$$
\begin{equation*}
\sum_{m=1}^{\infty} \frac{O_{m}}{2 m(2 m+1)}=\frac{1}{4} \zeta(2) . \tag{9}
\end{equation*}
$$

Proof. Let

$$
A=\sum_{m, n=0}^{\infty} \frac{1}{(2 m+1)(2 n+1)(2 m+2 n+1)}
$$

and

$$
B=\sum_{m, n=1}^{\infty} \frac{1}{(2 m+1)(2 n+1)(2 m+2 n+1)} .
$$

From the equation

$$
\sum_{k=0}^{\infty} \frac{1}{(2 k+1)^{2}}=\frac{\pi^{2}}{8}
$$

we have

$$
\begin{equation*}
A=\frac{\pi^{2}}{4}-1+B \tag{10}
\end{equation*}
$$

Further, using telescoping series, we have

$$
\begin{aligned}
B & =\sum_{m=1}^{\infty} \frac{1}{2 m+1} \frac{1}{2 m} \sum_{n=1}^{\infty}\left(\frac{1}{2 n+1}-\frac{1}{2 n+1+2 m}\right) \\
& =\sum_{m=1}^{\infty} \frac{1}{2 m(2 m+1)}\left(\frac{1}{3}+\frac{1}{5}+\cdots+\frac{1}{2 m+1}\right) \\
& =\sum_{m=1}^{\infty} \frac{O_{m}-\frac{2 m}{2 m+1}}{2 m(2 m+1)} \\
& =\sum_{m=1}^{\infty} \frac{O_{m}}{2 m(2 m+1)}-\sum_{m=1}^{\infty} \frac{1}{(2 m+1)^{2}} \\
& =\sum_{m=1}^{\infty} \frac{O_{m}}{2 m(2 m+1)}-\frac{\pi^{2}}{8}+1 .
\end{aligned}
$$

Hence we obtain that

$$
\begin{equation*}
B=\sum_{m=1}^{\infty} \frac{O_{m}}{2 m(2 m+1)}+1-\frac{3}{4} \zeta(2) . \tag{11}
\end{equation*}
$$

Now let us evaluate A.

$$
\begin{aligned}
A & =\sum_{m, n=0}^{\infty}\left(\int_{0}^{1} x^{2 m} d x\right)\left(\int_{0}^{1} y^{2 n} d y\right)\left(\int_{0}^{1} t^{2 m+2 n} d t\right) \\
& =\int_{0}^{1}\left(\int_{0}^{1} \sum_{m=0}^{\infty}(x t)^{2 m} d x \int_{0}^{1} \sum_{n=0}^{\infty}(y t)^{2 n} d y\right) d t \\
& =\int_{0}^{1}\left(\int_{0}^{1} \frac{1}{1-(x t)^{2}} d x \int_{0}^{1} \frac{1}{1-(y t)^{2}} d y\right) d t \\
& =\frac{1}{4} \int_{0}^{1} \frac{1}{t^{2}} \ln ^{2}\left(\frac{1+t}{1-t}\right) d t .
\end{aligned}
$$

The substitution $\frac{1+t}{1-t}=u$ immediately leads to the following equality:

$$
A=\frac{1}{2} \int_{1}^{\infty} \frac{1}{(1-u)^{2}} \ln ^{2} u d u
$$

Integration by parts gives

$$
\begin{align*}
A & =\int_{1}^{\infty} \frac{1}{u(u-1)} \ln u d u=\int_{1}^{\infty} \frac{1}{1-\frac{1}{u}} \frac{\ln u}{u^{2}} d u \\
& =\sum_{k=0}^{\infty} \int_{1}^{\infty} u^{-k-2} \ln u d u=\sum_{k=0}^{\infty} \frac{1}{(k+1)^{2}}=\zeta(2)=\frac{\pi^{2}}{6} \tag{12}
\end{align*}
$$

Similarly, from (10), (11) and (12) we have

$$
\frac{\pi^{2}}{6}=\frac{\pi^{2}}{4}-1+\sum_{m=1}^{\infty} \frac{O_{m}}{2 m(2 m+1)}-\frac{3}{4} \zeta(2)+1
$$

and as a result

$$
\sum_{m=1}^{\infty} \frac{O_{m}}{2 m(2 m+1)}=\frac{1}{4} \zeta(2) .
$$

Remark 6. Considering (11) we have

$$
\begin{equation*}
B=\sum_{m=1}^{\infty} \frac{H_{2 m+1}-1-\frac{1}{2} H_{m}}{2 m(2 m+1)} \tag{13}
\end{equation*}
$$

Now we use (10) and (12) to conclude that

$$
\begin{equation*}
\sum_{m=1}^{\infty} \frac{2 H_{2 m+1}-H_{m}}{2 m(2 m+1)}=2(2-\ln 2)-\zeta(2) \tag{14}
\end{equation*}
$$

In the following theorem we obtain interesting relationships between some special double series and zeta values $\zeta(2)$ and $\zeta(3)$.

Theorem 7. We have the following series evaluations:
(a) $\sum_{m, n=0}^{\infty} \frac{1}{\left(m+\frac{1}{2}\right)\left(n+\frac{1}{2}\right)\left(m+n+\frac{1}{2}\right)(m+n+1)}=16 \zeta(2)-14 \zeta(3)$.
(b) $\sum_{m, n=0}^{\infty} \frac{1}{\left(m+\frac{1}{2}\right)\left(n+\frac{1}{2}\right)(m+n+1)\left(m+n+\frac{3}{2}\right)}=14 \zeta(3)-8 \zeta(2)$.
(c) $\sum_{m, n=0}^{\infty} \frac{1}{\left(m+\frac{1}{2}\right)\left(n+\frac{1}{2}\right)\left(m+n+\frac{1}{2}\right)(m+n+1)\left(m+n+\frac{3}{2}\right)}=24 \zeta(2)-28 \zeta(3)$.

Proof. (a) We have

$$
\begin{aligned}
& \sum_{m, n=0}^{\infty} \frac{1}{(2 m+1)(2 n+1)(2 m+2 n+2)} \\
& =\sum_{m, n=0}^{\infty}\left(\int_{0}^{1} x^{2 m} d x\right)\left(\int_{0}^{1} y^{2 n} d y\right)\left(\int_{0}^{1} t^{2 m+2 n+1} d t\right) \\
& =\int_{0}^{1}\left(\int_{0}^{1} \sum_{m=0}^{\infty}(x t)^{2 m} d x \int_{0}^{1} \sum_{n=0}^{\infty}(y t)^{2 n} d y\right) t d t \\
& =\frac{1}{4} \int_{0}^{1} \frac{1}{t} \ln ^{2}\left(\frac{1+t}{1-t}\right) d t
\end{aligned}
$$

Here the substitution $\frac{1+t}{1-t}=u$ leads to the following equality:

$$
\begin{aligned}
\frac{1}{4} \int_{0}^{1} \frac{1}{t} \ln ^{2}\left(\frac{1+t}{1-t}\right) d t & =\frac{1}{2} \int_{1}^{\infty} \frac{1}{\left(u^{2}-1\right)} \ln ^{2} u d u=\frac{1}{2} \int_{1}^{\infty} \frac{1}{u^{2}} \frac{1}{\left(1-\frac{1}{u^{2}}\right)} \ln ^{2} u d u \\
& =\frac{1}{2} \sum_{k=0}^{\infty} \int_{1}^{\infty} u^{-2 k-2} \ln u d u
\end{aligned}
$$

After integration by parts we get

$$
\frac{1}{2} \sum_{k=0}^{\infty} \int_{1}^{\infty} u^{-2 k-2} \ln u d u=\sum_{k=0}^{\infty} \frac{1}{(2 k+1)^{3}}=\frac{7}{8} \zeta(3) .
$$

Hence

$$
\begin{equation*}
\sum_{m, n=0}^{\infty} \frac{1}{(2 m+1)(2 n+1)(2 m+2 n+2)}=\frac{7}{8} \zeta(3) \tag{15}
\end{equation*}
$$

On the other hand, according to the formula (12),

$$
\begin{equation*}
A=\sum_{m, n=0}^{\infty} \frac{1}{(2 m+1)(2 n+1)(2 m+2 n+1)}=\zeta(2) . \tag{16}
\end{equation*}
$$

Now, from (15) and (16) it follows that

$$
\begin{aligned}
\zeta(2)-\frac{7}{8} \zeta(3) & =\sum_{m, n=0}^{\infty} \frac{1}{(2 m+1)(2 n+1)(2 m+2 n+1)} \\
& -\sum_{m, n=0}^{\infty} \frac{1}{(2 m+1)(2 n+1)(2 m+2 n+2)} \\
& =\sum_{m, n=0}^{\infty} \frac{1}{(2 m+1)(2 n+1)(2 m+2 n+1)(2 m+2 n+2)}
\end{aligned}
$$

and this proves (a).
(b) By the same method in the proof of (a), we have

$$
\begin{aligned}
& \sum_{m, n=0}^{\infty} \frac{1}{(2 m+1)(2 n+1)(2 m+2 n+3)} \\
& =\sum_{m, n=0}^{\infty}\left(\int_{0}^{1} x^{2 m} d x\right)\left(\int_{0}^{1} y^{2 n} d y\right)\left(\int_{0}^{1} t^{2 m+2 n+2} d t\right) \\
& =\int_{0}^{1}\left(\int_{0}^{1} \frac{1}{1-(x t)^{2}} d x \int_{0}^{1} \frac{1}{1-(y t)^{2}} d y\right) t^{2} d t \\
& =\frac{1}{4} \int_{0}^{1} \ln ^{2}\left(\frac{1+t}{1-t}\right) d t \\
& =\frac{1}{2} \int_{1}^{\infty} \frac{1}{(u+1)^{2}} \ln ^{2} u d u=-\frac{1}{2} \int_{1}^{\infty} \ln ^{2} u d\left(\frac{1}{u+1}\right) \\
& =\int_{1}^{\infty} \frac{1}{u(u+1)} \ln u d u=\sum_{k=2}^{\infty}(-1)^{k} \int_{1}^{\infty} u^{-k} \ln u d u \\
& =\sum_{k=2}^{\infty}(-1)^{k} \frac{1}{(k-1)^{2}}=\frac{\pi^{2}}{12} .
\end{aligned}
$$

Thus

$$
\begin{equation*}
\sum_{m, n=0}^{\infty} \frac{1}{(2 m+1)(2 n+1)(2 m+2 n+3)}=\frac{\pi^{2}}{12}=\frac{1}{2} \zeta(2) \tag{17}
\end{equation*}
$$

Now, from (15) and (17) we have

$$
\frac{7}{8} \zeta(3)-\frac{1}{2} \zeta(2)=\sum_{m, n=0}^{\infty} \frac{1}{(2 m+1)(2 n+1)(2 m+2 n+2)(2 m+2 n+3)}
$$

and this proves (b).
(c) Finally, formula (c) can be obtained by subtracting the formula (b) from the formula (a).

4 Acknowledgments

The authors gratefully acknowledge the many helpful suggestions of the anonymous referee.

References

[1] R. Apéry, Irrationalité de $\zeta(2)$ et $\zeta(3)$, Astérisque 61 (1979), 11-13.
[2] D. H. Bailey and J. M. Borwein, Computation and experimental evaluation of Mordell-Tornheim-Witten sum derivatives, Exp. Math. 27 (2018), 370-376.
[3] A. Basu, On the evaluation of Tornheim sums and allied double sums, Ramanujan J. 26 (2011), 193-207.
[4] J. M. Borwein, Hilbert's inequality and Witten's zeta-function, Amer. Math. Monthly 115 (2) (2008), 125-137.
[5] D. Borwein and J. M. Borwein, On an intriguing integral and some series related to $\zeta(4)$, Proc. Amer. Math. Soc. 123 (1995), 1191-1198.
[6] J. M. Borwein and K. Dilcher, Derivatives and fast evaluation of the Tornheim zeta function, Ramanujan J. 45 (2018), 413-432.
[7] K. N. Boyadzhiev, Evaluation of Euler-Zagier sums, Int. J. Math. Math. Sci. 27 (2001), 407-412.
[8] K. N. Boyadzhiev, Consecutive evaluation of Euler sums, Int. J. Math. Math. Sci. 29 (2002), 555-561.
[9] L. Comtet, Advanced Combinatorics, Reidel, 1974.
[10] O. Espinosa and H. M. Victor, The evaluation of Tornheim double sums, Part 1, J. Number Theory 116 (2006), 200-229.
[11] O. Espinosa and H. M. Victor, The evaluation of Tornheim double sums, Part 2, Ramanujan J. 22 (2010), 55-99.
[12] P. Kirschenhofer and P. J. Larcombe, On a class of recursive-based binomial coefficient identities involving harmonic numbers, Util. Math. 73 (2007), 105-115.
[13] M. Kuba, On evaluations of infinite double sums and Tornheim's double series, Sém. Lothar. Combin. 58 (2008), B58d-11.
[14] I. Mező, Combinatorics and Number Theory of Counting Sequences, Chapman and Hall/CRC, 2019.
[15] I. Mező, Log-sine-polylog integrals and alternating Euler sums, Acta Math. Hungar. 160 (2020), 45-57.
[16] N. Nielsen, Die Gammafunktion, Chelsea, 1965.
[17] T. Rivoal, La fonction zêta de Riemann prend une infinité de valeurs irrationnelles aux entiers impairs, C. R. Math. Acad. Sci. Paris Sér. I Math. 331 (2000), 267-270.
[18] A. Sofo, Integrals of inverse trigonometric and polylogarithmic functions, Ramanujan J. 54 (2021), 291-307.
[19] L. Tornheim, Harmonic double series, Amer. J. Math. 72 (1950), 303-314.
[20] C. Xu and L. Zhonghua, Tornheim type series and nonlinear Euler sums, J. Number Theory 174 (2017), 40-67.
[21] W. Wang and C. Jia, Harmonic number identities via the Newton-Andrews method, Ramanujan J 35 (2014), 263-285.
[22] D. Zagier, Values of zeta functions and their applications, First European Congress of Mathematics, Birkhäuser, 1994, pp. 497-512.
[23] W. V. Zudilin, One of the numbers $\zeta(5) ; \zeta(7) ; \zeta(9) ; \zeta(11)$ is irrational, Uspekhi Mat. Nauk, [Russian Math. Surveys] 56 (2001), 149-150.

2010 Mathematics Subject Classification: Primary 11M32; Secondary 40B05.
Keywords: Tornheim series, harmonic number, Riemann zeta value.
(Concerned with sequences $\underline{\text { A000110, }} \underline{\text { A001008, and A263633.) }}$

Received December 6 2021; revised versions received December 9 2021; April 5 2022; April 6 2022. Published in Journal of Integer Sequences, June 202022.

Return to Journal of Integer Sequences home page.

