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Abstract

We define a type of complex Catalan number and find some its properties. We
also produce a complex Catalan transform and its inverse, together with associated
generating functions and related matrices. These lead to connections with complex
Catalan transforms of the k-Fibonacci numbers and the determinants of their Hankel
matrices. The paper finishes with a conjecture.

1 Introduction and preliminaries

For n > 1, the nth Catalan number C,, is described [13] by

C(")_nil(?)
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with generating function given by

1—+1—4x
c(a:):T.

Barry [13] gave the Catalan transform for a given sequence (a,) and its inverse as follows,

respectively:
. k 2n —k
b, =
ZQn—k(n—k)ak

k=0

and

a, = i (n f k) (—=1)" % by

k=0
For a positive real integer k, the k-Fibonacci sequence (Fj , )nen is defined by the following
homogeneous linear recurrence relation:

Fk,nJrl - ka,n + Fk,nfl (1)

for n > 1, with initial conditions Fio = 0 and Fi; = 0 =1 (cf. [19, 20, 21]). When k =1
and k =2 in (1), the sequence (Fj,)nen reduces to the usual Fibonacci sequence and Pell
sequence, respectively.

Number-theoretic properties such as these obtained from the Catalan transforms of the k-
Fibonacci numbers relevant to this article have been studied by Falcon. Falcon [18] derived
a number of closed-form formulas for the Catalan transform of the k-Fibonacci sequence
(Fk.n)nen by the matrix method as follows:

CFy. 1 0 0 0 00O - Fio
CFs 1 1.0 0000 - Fis
CFs 2 2 1 0000 - Fis
CFoy |=| 5 5 3 1000 - Fioa
CFs 14 14 9 4 100 - Fios
CFe 42 42 28 14 5 1 0 - Fre

where C'Fy, ,, is the nth Catalan transform of the k-Fibonacci numbers. We denote the above
lower-triangular matrix by C'. Note that the first column of the matrix C' is the sequence of
the Catalan numbers. For more information on the matrix C, see [13, 18].
The Hankel matrix H,, associated with a given sequence of real numbers (a,) is defined
as follows:
Qo ap a2
ap Gz as
H,=| a2 a3 a4
as aq4 as



The sequence (Ha, = det(a;+j—2)1<ij<n+1) is called the Hankel matrix transform of the
sequence (a,). Namely, the Hankel determinant of order n of the sequence (a,,) is the upper-
left n x n subdeterminant of the matrix H, (cf. [1, 7, 10, 15, 17]). Falcon [18] gave the
relationship between the Hankel matrix transform of Catalan transform of the k-Fibonacci
sequence and the Fibonacci sequence by

(HCFy,) = (Fopia),

where Fy, ;1 is the (2n + 1)th Fibonacci number.

In the literature, many interesting properties and applications of the Catalan numbers
relevant to this paper have been studied by many authors; for example, [2, 3, 4, 6, 8, 9, 16, 22].
In the first part of the paper, we consider a new generalization of the Catalan sequence that
we call the complex-type Catalan sequence. Then we give some of its properties, such as
the generating matrix, the generating function, the exponential representation, and some
combinatorial representations.

Barry [13] defined the Catalan transform of a sequence and its inverse by the aid of
the Riordan group and then gave many transformed sequences. Since then, the Catalan
transforms of the linear recurrence sequences have been a topic of interest, and some new
sequences have been derived by using these transforms; see [5, 11, 12, 14, 18]. Here we
derive the complex-type Catalan transform and its inverse by the generating matrix of the
complex-type Catalan sequence and then give the generating function of the complex-type
Catalan transform of a given sequence. Finally, we obtain new sequences from the complex-
type Catalan transforms of the k-Fibonacci numbers and the determinants of their Hankel
matrices as applications of the results produced.

2 The main results

Define the complex-type Catalan numbers as shown, for n > 0

- 1 2n
CcW = " 2
0 - () )
where —1 = 1.

From Eq. (2), we can write the following lower-triangular matrix:

?
2

1 1
20 2i? 3
Cc — 5 5i%2 33 i

14i 1442 933 44* P
42i 42i% 281 144* 55 4°




The matrix C® is said to be the complex-type Catalan matrix. Then we can write the
following matrix relation:

i cy
i cy
2 cf)
(23 i s 6 4T 8 ) 5i _ C’éi)
144 Cii)
427 i
oy’
It can be readily established that
—1
1 -1
-1 0 -2 1
) =10 1 =31
0O 0 =3 4 —
Let
i
i i
i iz 3
M=1 2 p @
i 2 3 it 4P

It is clear that C) = C o M, where C o M denotes the Hadamard product C' and M.
Suppose that the terms of the matrices (C?)~" and C~' o M are indicated by (¢”), and
(cto m),;}, respectively. Then, by a simple calculation, we obtain

(CONED = (e om);h

It is easy to see that the generating function of the complex-type Catalan sequence (C’,(f))
1s

1—+v1—4ix

(4) _
¢ (95) 2ix
=1+ir— 22> — 5iz® + 14z* -+ .

Now we give an exponential representation for the complex-type Catalan numbers by the
aid of the generating function with the following Proposition.

4



Proposition 1. The complex-type Catalan sequence (Cff)) has the following exponential
representation:

1
2ix exp (Z L(V1- 4zx)">
n=1
Proof. By a simple calculation, we may write
In(2iz - ¢ (z)) = In(1 — V1 — 4ix )
1 1
= —(V1—diz + 5(\/1 — dix )2+ g(\/l —diz )P +--)
1
=— (Z —(v1—4ix )”) .
n

n=1

D (z) =

So we have the conclusion. O
The following proposition gives an alternative version for the above expression.

Proposition 2. The complez-type Catalan sequence (CS)) has the following combinatorial

representation:
n

, = /on\ =z

(z)( ): ( ) in

Y (x E 7",
“\n n+1

n=

Proof. By the generalized binomial theorem, it is readily seen that
V1—dix = Z 2n x"i"
N 2n — 1) '

Then we have

VTR 1= (- Qi = 3@ - 0 )

2ix 2ix

174 1 /6
— 14 = I 2;2 4 ...
+6<2>x2+10<3)x2 +

N 1 2n n—1,n—1
— Z - "t
22n—1)\ n

n=1

Substituting m for n — 1, in the equation, we may write

, 1 2m + 2
(4) — m m
(@) mzzzoz2m+1)(m+1>xZ
= ( ) m + 1
Thus the proof is complete. O



Now we define a new sequence that we call the complex-type Catalan transform of a
given sequence (a,,) as follows:

A = k 2n —k
(@) — ik
c [an]—g 2n—k‘(n—k‘)lak' (3)

k=0

By Eq. (3), we can easily derive

clay] i a
clay)] i i as
clas) 2i 2% 43 as
Day) | = | 5 5> 33 4 ay
c9[as] 14i 1442 93 44t ° as
¢Dag) 42¢ 4242 28i% 14i* 5 i° ag

From the definition of the matrix (C™)~!, we see that the inverse of the complex-type

Catalan transform is
a, = (n - k’> (—1)kimcD[ay).
k=0

Let ¢(x) be the generating function of the Catalan sequence (C,,) and let g(z) be the
generating function of the sequence (a,). In [13], it is proved that the generating function of
the Catalan transform of the sequence (a,) is g(zc(x)). Since ¢ (z) = c(xi), it can be clearly
seen that g(zcl(z)) is the generating function of the complex-type Catalan transform of the
sequence (ay,).

Now we concentrate on the complex-type Catalan transform of the k-Fibonacci sequence
(Fk.n)nen Using Eq. (3), we define the following sequence:

; ~ j [(2n—7)\
C(){Fk’n]:ZQn_](n_])ZJFk’J

J=1

with ¢ [Fy ] = 0.
Since the generating functions of the k-Fibonacci sequence (Fj,)nen and the complex-
type Catalan sequence (Cff) ) are

T
g(x) = 1 —kx — 22
and
(i) 1 —+1—4ix
c (l‘) = : )



respectively, we can give the generating function of the sequence (cV[F},]) as

() 1 — 11— 4dix
gz (z)) = : : —.
—3+i(2x — k) + (ik + 1)v1 — dix
The complex-type Catalan transform of the first k-Fibonacci numbers, that is, the first
members of the sequence (c(V[Fy,]) are the following polynomials in k:

0 _ZL 2=0\iip,  —i
C [Fk,l] - 2 _] (1 - ]> ijuJ - ?/7
) ] 4 — 7\ .
(i) _ZL IViiF = — ki

3 . .
4 6 — .
A3 )k

H6-J\3—J
4 . .
. 8 i\ .
D [Fyq] = éj (4 - j) 9 F = kS — 3ik? — 3k + 2i,

— 1974k + 22864.

From the coefficients of the complex-type Catalan transform of the k-Fibonacci sequence
(Fk.n)nen we can produce the an infinite triangle, where the following are the first few rows:

cV Fk,1 )

D[Fo] | =1 i

D[Fps] | = =2 i
D[Fea | 1 =30 -3 i

-1 5 10 —13¢ -—17 19:

) 152 24 361 —54 61¢

1 =7 =21 407 67 —114¢ —176 2002

1 8§ =28 —62 115 212 —=376:1 —584 6707
c(i)[Fk,m] -1 O 36 —91: —186 3661 706 —1263¢ —1974 22861

@ [Fy1]
0)[F)
0)[F 4]
<4>[ ]
cO[Fs] | i 4  —6i —6 61
@[ F ]
@[ F]
0)[F 4]
@[ F ]

Table 1: The complex-type Catalan triangle of the k-Fibonacci sequence.



Now we give the following useful results by the aid of the above triangle:

e The first diagonal sequence (i, 1,1, 2i, 6i, 194, 614, 200, 670, 22861, . . .) is the complex-
type Catalan transform of the sequence (1,0,1,0,1,0,1,0,1,0,...).

e The second diagonal sequence (—1, -2, —3, —6, —17, =54, —176, —584, —1974 .. .) is the
complex-type Catalan transform of the sequence (i, 1,1, 1, 24,2, 21,2, 34, .. .), and so on.

It is well-known that the iteration of a function f is denoted by superscript; f™ means
the nth iteration of function f, i.e.,

fr@)=f(f-. fl@)..).
Clearly,

f(z) =z and f*(z) = ["7}(f(2)) for n > 1.

We denote ¢ [(c)"1a,]] by (c)"[a,]. The sequence (c?)"[a,] is said to be the nth
iteration of the complex-type Catalan transform of the sequence (a,,).

The second iteration of the complex-type Catalan transform of the first k-Fibonacci num-
bers, that is, the first members of the sequence ((cV)%[F},]) are the following polynomials
in k:

D2 =S (27 =
(") [Fk,l]—ZQ_j<1_j)Z]C [Frjl = —1,

J
(DY [Frs) = —k* + E3(4i + 4) + K> (=120 — 3) + k(120 + 2) — 61 — 11,

(DY [Frg] = k° + E*(=5i — 5) + k3(20i 4+ 4) + k*(—=29i + 2) + k(264 + 17) + —33i — 44,
(D) [Fyq] = —kS + K°(6i + 6) + k*(—30i — 5) + k3(56i — 12) + k*(—66i — 6)

+ k(1144 4 90) — 1507 — 101.

@)

From the coefficients of the second iteration of the complex-type Catalan transform of the
k-Fibonacci sequence (Fj ,)nen, we can produce an infinite triangle, of which the following
are the first few rows:



(cD2[Fra] | -1

(DP[Fa] | -1 —1—i

(cN2[Fhs) | -1 2+2 —2i—1

(cCONV2[Fra) | 1 —3i—3 6i+2 —3i—2

(CN2[Fys) | -1 4i+4 —120—3 12i4+2 —6i— 11

(cN2[Fhs) | 1 —5i—5 20i+4 —29i+2 26i+17 —33i—44

(cN2[Fr7] | =1 6i+6 —30i—5 56i—12 —66i—6 114i+90 —150i— 101

Table 2: The triangle of the sequence ((c®)2[Fj.,]).

Thus, it can be easily seen that first diagonal sequence (—1,—1 —1i,—2i —1,—3i —
2,—6i — 11,—33¢ — 44, —150i — 101,...) is the complex-type Catalan transform of the
sequence (1,1, 1,21, 67,197,617, 2004, 6707, 22864, . . .), which is first diagonal sequence of the
complex-type Catalan triangle of the k-Fibonacci sequence.

We will now address the Hankel matrix transform of the sequence (¢V[Fj,]). Consider
the following recursively defined sequence:

Tpt2 =1 Tyl + Tp

for n > 0, with initial conditions xqg = 0 and z; = 1.

Let the Hankel determinant of the complex-type Catalan transform of the mth term of
the k-Fibonacci sequence (Fy ,)nen denoted by HcW[Fy,,,]. Then we obtain the early part
of the sequence (x,) as follows:

HcD [Fy o] = det (0) = 0 = ,
0 i

HD [Fpq) = | - l=1=n
[Fia] 1 —k+1 ’
0 1 —k+1
HcW [Fyo) = i —k+i —ik? =2k +i | =1i=u,
—k4+1i —ik® =2k +i k®—3ik®> -3k +2i
0 i —k+i —ik? — 2k + i
(2) _ i —k 4 —ik? — 2k + i k3 — 3ik? — 3k + 2i
He [Fk,3] - —k+1 —ik? — 2k +1i k3 — 3ik? — 3k + 2i ik* + 4k® — 6ik? — 6k + 6i
—ik? —2k 414 k% —3ik? — 3k +2i ik* + 4k® — 6ik? — 6k +6i —k° + 5k*i + 10k5 — 13k%i — 17k + 194
= O = 1‘3’
0 i —k 41
) i k4 —ik? — 2k + i
Hc’[Fk4]: ki —ik? — 2k 4 i k3 — 3ik? — 3k + 2i
? —ik? — 2k + 1 k3 — 3ik? — 3k + 2i ik* + 4k3 — 6ik? — 6k + 64
k% — 3ik? — 3k + 20 ik* + 4k® — 6ik? — 6k + 6i  —k® + 5k*i + 10k3 — 13k%i — 17k + 194

k3 — 3ik? — 3k + 2i
ik* 4+ 4k — 6ik? — 6k + 6i
—k® 4+ 5k%i + 10k% — 13k%i — 17k 4 19
—kSi — 6k® + 15k%i + 24k3 — 36k%i — 54k + 614
k7T — 7ik® — 21k° + 40ik* + 67k® — 114ik? — 176k + 200

—ik? — 2k 41
k3 — 3ik? — 3k + 2i
ik* + 4k® — 6ik? — 6k + 6i
— k5 4 5k*i + 10k% — 13k2%i — 17k + 194
— k% — 6k 4+ 15k%i + 24k5 — 36k%i — 54k + 614

:i:x4.

Thus we get immediately:



Conjecture 3. For n > 0,

3

Hc® [Fin) = Zn.
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