Journal of Integer Sequences, Vol. 25 (2022), Article 22.4.6

On The Complex-Type Catalan Transform of the k-Fibonacci Numbers

Ömür Deveci
Department of Mathematics
Faculty of Science and Letters
Kafkas University
36100, Turkey
odeveci36@hotmail.com
Anthony G. Shannon
Honorary Fellows
Warrane College
University of New South Wales
2033, Australia
tshannon38@gmail.com

Abstract

We define a type of complex Catalan number and find some its properties. We also produce a complex Catalan transform and its inverse, together with associated generating functions and related matrices. These lead to connections with complex Catalan transforms of the k-Fibonacci numbers and the determinants of their Hankel matrices. The paper finishes with a conjecture.

1 Introduction and preliminaries

For $n \geq 1$, the nth Catalan number C_{n} is described [13] by

$$
C(n)=\frac{1}{n+1}\binom{2 n}{n}
$$

with generating function given by

$$
c(x)=\frac{1-\sqrt{1-4 x}}{2 x}
$$

Barry [13] gave the Catalan transform for a given sequence $\left(a_{n}\right)$ and its inverse as follows, respectively:

$$
b_{n}=\sum_{k=0}^{n} \frac{k}{2 n-k}\binom{2 n-k}{n-k} a_{k}
$$

and

$$
a_{n}=\sum_{k=0}^{n}\binom{k}{n-k}(-1)^{n-k} b_{k} .
$$

For a positive real integer k, the k-Fibonacci sequence $\left(F_{k, n}\right)_{n \in \mathbb{N}}$ is defined by the following homogeneous linear recurrence relation:

$$
\begin{equation*}
F_{k, n+1}=k F_{k, n}+F_{k, n-1} \tag{1}
\end{equation*}
$$

for $n \geq 1$, with initial conditions $F_{k, 0}=0$ and $F_{k, 1}=0=1$ (cf. [19, 20, 21]). When $k=1$ and $k=2$ in (1), the sequence $\left(F_{k, n}\right)_{n \in \mathbb{N}}$ reduces to the usual Fibonacci sequence and Pell sequence, respectively.

Number-theoretic properties such as these obtained from the Catalan transforms of the k Fibonacci numbers relevant to this article have been studied by Falcon. Falcon [18] derived a number of closed-form formulas for the Catalan transform of the k-Fibonacci sequence $\left(F_{k, n}\right)_{n \in \mathbb{N}}$ by the matrix method as follows:

$$
\left(\begin{array}{c}
C F_{k, 1} \\
C F_{k, 2} \\
C F_{k, 3} \\
C F_{k, 4} \\
C F_{k, 5} \\
C F_{k, 6} \\
\vdots
\end{array}\right)=\left(\begin{array}{cccccccc}
1 & 0 & 0 & 0 & 0 & 0 & 0 & \cdots \\
1 & 1 & 0 & 0 & 0 & 0 & 0 & \cdots \\
2 & 2 & 1 & 0 & 0 & 0 & 0 & \cdots \\
5 & 5 & 3 & 1 & 0 & 0 & 0 & \cdots \\
14 & 14 & 9 & 4 & 1 & 0 & 0 & \cdots \\
42 & 42 & 28 & 14 & 5 & 1 & 0 & \cdots \\
\vdots & \ddots
\end{array}\right)\left(\begin{array}{c}
F_{k, 1} \\
F_{k, 2} \\
F_{k, 3} \\
F_{k, 4} \\
F_{k, 5} \\
F_{k, 6} \\
\vdots
\end{array}\right)
$$

where $C F_{k, n}$ is the nth Catalan transform of the k-Fibonacci numbers. We denote the above lower-triangular matrix by C. Note that the first column of the matrix C is the sequence of the Catalan numbers. For more information on the matrix C, see $[13,18]$.

The Hankel matrix H_{n} associated with a given sequence of real numbers $\left(a_{n}\right)$ is defined as follows:

$$
H_{n}=\left(\begin{array}{cccc}
a_{0} & a_{1} & a_{2} & \cdots \\
a_{1} & a_{2} & a_{3} & \cdots \\
a_{2} & a_{3} & a_{4} & \cdots \\
a_{3} & a_{4} & a_{5} & \cdots \\
\vdots & \vdots & \vdots & \ddots
\end{array}\right)
$$

The sequence $\left(H a_{n}=\operatorname{det}\left(a_{i+j-2}\right)_{1 \leq i, j \leq n+1}\right)$ is called the Hankel matrix transform of the sequence $\left(a_{n}\right)$. Namely, the Hankel determinant of order n of the sequence $\left(a_{n}\right)$ is the upperleft $n \times n$ subdeterminant of the matrix H_{n} (cf. [1, 7, 10, 15, 17]). Falcon [18] gave the relationship between the Hankel matrix transform of Catalan transform of the k-Fibonacci sequence and the Fibonacci sequence by

$$
\left(H C F_{k, n}\right)=\left(F_{2 n+1}\right),
$$

where $F_{2 n+1}$ is the $(2 n+1)$ th Fibonacci number.
In the literature, many interesting properties and applications of the Catalan numbers relevant to this paper have been studied by many authors; for example, [$2,3,4,6,8,9,16,22$]. In the first part of the paper, we consider a new generalization of the Catalan sequence that we call the complex-type Catalan sequence. Then we give some of its properties, such as the generating matrix, the generating function, the exponential representation, and some combinatorial representations.

Barry [13] defined the Catalan transform of a sequence and its inverse by the aid of the Riordan group and then gave many transformed sequences. Since then, the Catalan transforms of the linear recurrence sequences have been a topic of interest, and some new sequences have been derived by using these transforms; see [5, 11, 12, 14, 18]. Here we derive the complex-type Catalan transform and its inverse by the generating matrix of the complex-type Catalan sequence and then give the generating function of the complex-type Catalan transform of a given sequence. Finally, we obtain new sequences from the complextype Catalan transforms of the k-Fibonacci numbers and the determinants of their Hankel matrices as applications of the results produced.

2 The main results

Define the complex-type Catalan numbers as shown, for $n \geq 0$

$$
\begin{equation*}
C_{n}^{(i)}=\frac{1}{n+1}\binom{2 n}{n} i^{n} \tag{2}
\end{equation*}
$$

where $\sqrt{-1}=i$.
From Eq. (2), we can write the following lower-triangular matrix:

$$
C^{(i)}=\left(\begin{array}{ccccccc}
i & & & & & & \\
i & i^{2} & & & & & \\
2 i & 2 i^{2} & i^{3} & & & & \\
5 i & 5 i^{2} & 3 i^{3} & i^{4} & & & \\
14 i & 14 i^{2} & 9 i^{3} & 4 i^{4} & i^{5} & & \\
42 i & 42 i^{2} & 28 i^{3} & 14 i^{4} & 5 i^{5} & i^{6} & \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right)
$$

The matrix $C^{(i)}$ is said to be the complex-type Catalan matrix. Then we can write the following matrix relation:

$$
\left(\begin{array}{lllllll}
i^{3} & i^{4} & i^{5} & i^{6} & i^{7} & i^{8} & \ldots
\end{array}\right)\left(\begin{array}{c}
i \\
i \\
2 i \\
5 i \\
14 i \\
42 i \\
\vdots
\end{array}\right)=\left(\begin{array}{c}
C_{0}^{(i)} \\
C_{1}^{(i)} \\
C_{2}^{(i)} \\
C_{3}^{(i)} \\
C_{4}^{(i)} \\
C_{5}^{(i)} \\
\vdots
\end{array}\right) .
$$

It can be readily established that

$$
\left(C^{(i)}\right)^{-1}=\left(\begin{array}{cccccc}
-i & & & & & \\
1 & -1 & & & & \\
0 & -2 i & i & & & \\
0 & 1 & -3 & 1 & & \\
0 & 0 & -3 i & 4 i & -i & \\
\vdots & \vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right)
$$

Let

$$
M=\left(\begin{array}{cccccc}
i & & & & & \\
i & i^{2} & & & & \\
i & i^{2} & i^{3} & & & \\
i & i^{2} & i^{3} & i^{4} & & \\
i & i^{2} & i^{3} & i^{4} & i^{5} & \\
\vdots & \vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right)
$$

It is clear that $C^{(i)}=C \circ M$, where $C \circ M$ denotes the Hadamard product C and M. Suppose that the terms of the matrices $\left(C^{(i)}\right)^{-1}$ and $C^{-1} \circ M$ are indicated by $\left(c^{(i)}\right)_{k, j}^{-1}$ and $\left(c^{-1} \circ m\right)_{k, j}^{-1}$, respectively. Then, by a simple calculation, we obtain

$$
\left(\left(C^{(i)}\right)_{k, j}^{-1}\right) i^{k+j}=\left(c^{-1} \circ m\right)_{k, j}^{-1} .
$$

It is easy to see that the generating function of the complex-type Catalan sequence $\left(C_{n}^{(i)}\right)$ is

$$
\begin{aligned}
c^{(i)}(x) & =\frac{1-\sqrt{1-4 i x}}{2 i x} \\
& =1+i x-2 x^{2}-5 i x^{3}+14 x^{4} \cdots .
\end{aligned}
$$

Now we give an exponential representation for the complex-type Catalan numbers by the aid of the generating function with the following Proposition.

Proposition 1. The complex-type Catalan sequence $\left(C_{n}^{(i)}\right)$ has the following exponential representation:

$$
c^{(i)}(x)=\frac{1}{2 i x \exp \left(\sum_{n=1}^{\infty} \frac{1}{n}(\sqrt{1-4 i x})^{n}\right)} .
$$

Proof. By a simple calculation, we may write

$$
\begin{aligned}
\ln \left(2 i x \cdot c^{(i)}(x)\right) & =\ln (1-\sqrt{1-4 i x}) \\
& =-\left(\sqrt{1-4 i x}+\frac{1}{2}(\sqrt{1-4 i x})^{2}+\frac{1}{3}(\sqrt{1-4 i x})^{3}+\cdots\right) \\
& =-\left(\sum_{n=1}^{\infty} \frac{1}{n}(\sqrt{1-4 i x})^{n}\right) .
\end{aligned}
$$

So we have the conclusion.
The following proposition gives an alternative version for the above expression.
Proposition 2. The complex-type Catalan sequence $\left(C_{n}^{(i)}\right)$ has the following combinatorial representation:

$$
c^{(i)}(x)=\sum_{n=0}^{\infty}\binom{2 n}{n} \frac{x^{n}}{n+1} i^{n} .
$$

Proof. By the generalized binomial theorem, it is readily seen that

$$
\sqrt{1-4 i x}=\sum_{n=0}^{\infty} \frac{-1}{(2 n-1)}\binom{2 n}{n} x^{n} i^{n} .
$$

Then we have

$$
\begin{aligned}
\frac{1-\sqrt{1-4 i x}}{2 i x} & =\frac{1-\left(1-\binom{2}{1} x i-\frac{1}{3}\binom{4}{2} x^{2} i^{2}-\frac{1}{5}\binom{6}{3} x^{3} i^{3}-\cdots\right)}{2 i x} \\
& =1+\frac{1}{6}\binom{4}{2} x i+\frac{1}{10}\binom{6}{3} x^{2} i^{2}+\cdots \\
& =\sum_{n=1}^{\infty} \frac{1}{2(2 n-1)}\binom{2 n}{n} x^{n-1} i^{n-1} .
\end{aligned}
$$

Substituting m for $n-1$, in the equation, we may write

$$
\begin{aligned}
c^{(i)}(x) & =\sum_{m=0}^{\infty} \frac{1}{2(2 m+1)}\binom{2 m+2}{m+1} x^{m} i^{m} \\
& =\sum_{n=0}^{\infty}\binom{2 m}{m} \frac{x^{m}}{m+1} i^{m}
\end{aligned}
$$

Thus the proof is complete.

Now we define a new sequence that we call the complex-type Catalan transform of a given sequence $\left(a_{n}\right)$ as follows:

$$
\begin{equation*}
c^{(i)}\left[a_{n}\right]=\sum_{k=0}^{n} \frac{k}{2 n-k}\binom{2 n-k}{n-k} i^{k} a_{k} . \tag{3}
\end{equation*}
$$

By Eq. (3), we can easily derive

$$
\left(\begin{array}{c}
c^{(i)}\left[a_{1}\right] \\
c^{(i)}\left[a_{2}\right] \\
c^{(i)}\left[a_{3}\right] \\
c^{(i)}\left[a_{4}\right] \\
c^{(i)}\left[a_{5}\right] \\
c^{(i)}\left[a_{6}\right] \\
\vdots
\end{array}\right)=\left(\begin{array}{ccccccc}
i & & & & & & \\
i & i^{2} & & & & & \\
2 i & 2 i^{2} & i^{3} & & & & \\
5 i & 5 i^{2} & 3 i^{3} & i^{4} & & & \\
14 i & 14 i^{2} & 9 i^{3} & 4 i^{4} & i^{5} & & \\
42 i & 42 i^{2} & 28 i^{3} & 14 i^{4} & 5 i^{5} & i^{6} & \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right)\left(\begin{array}{c}
a_{1} \\
a_{2} \\
a_{3} \\
a_{4} \\
a_{5} \\
a_{6} \\
\vdots
\end{array}\right)
$$

From the definition of the matrix $\left(C^{(i)}\right)^{-1}$, we see that the inverse of the complex-type Catalan transform is

$$
a_{n}=\sum_{k=0}^{n}\binom{k}{n-k}(-1)^{k} i^{n} c^{(i)}\left[a_{k}\right] .
$$

Let $c(x)$ be the generating function of the Catalan sequence $\left(C_{n}\right)$ and let $g(x)$ be the generating function of the sequence $\left(a_{n}\right)$. In [13], it is proved that the generating function of the Catalan transform of the sequence $\left(a_{n}\right)$ is $g(x c(x))$. Since $c^{(i)}(x)=c(x i)$, it can be clearly seen that $g\left(x c^{(i)}(x)\right)$ is the generating function of the complex-type Catalan transform of the sequence $\left(a_{n}\right)$.

Now we concentrate on the complex-type Catalan transform of the k-Fibonacci sequence $\left(F_{k, n}\right)_{n \in \mathbb{N}}$ Using Eq. (3), we define the following sequence:

$$
c^{(i)}\left[F_{k, n}\right]=\sum_{j=1}^{n} \frac{j}{2 n-j}\binom{2 n-j}{n-j} i^{j} F_{k, j}
$$

with $c^{(i)}\left[F_{k, 0}\right]=0$.
Since the generating functions of the k-Fibonacci sequence $\left(F_{k, n}\right)_{n \in \mathbb{N}}$ and the complextype Catalan sequence $\left(C_{n}^{(i)}\right)$ are

$$
g(x)=\frac{x}{1-k x-x^{2}}
$$

and

$$
c^{(i)}(x)=\frac{1-\sqrt{1-4 i x}}{2 i x}
$$

respectively, we can give the generating function of the sequence $\left(c^{(i)}\left[F_{k, n}\right]\right)$ as

$$
g\left(x c^{(i)}(x)\right)=\frac{i-i \sqrt{1-4 i x}}{-3+i(2 x-k)+(i k+1) \sqrt{1-4 i x}} .
$$

The complex-type Catalan transform of the first k-Fibonacci numbers, that is, the first members of the sequence $\left(c^{(i)}\left[F_{k, n}\right]\right)$ are the following polynomials in k :

$$
\begin{aligned}
c^{(i)}\left[F_{k, 1}\right]= & \sum_{j=1}^{1} \frac{j}{2-j}\binom{2-j}{1-j} i^{j} F_{k, j}=i, \\
c^{(i)}\left[F_{k, 2}\right]= & \sum_{j=1}^{2} \frac{j}{4-j}\binom{4-j}{2-j} i^{j} F_{k, j}=-k+i, \\
c^{(i)}\left[F_{k, 3}\right]= & \sum_{j=1}^{3} \frac{j}{6-j}\binom{6-j}{3-j} i^{j} F_{k, j}=-i k^{2}-2 k+i, \\
c^{(i)}\left[F_{k, 4}\right]= & \sum_{j=1}^{4} \frac{j}{8-j}\binom{8-j}{4-j} i^{j} F_{k, j}=k^{3}-3 i k^{2}-3 k+2 i, \\
c^{(i)}\left[F_{k, 5}\right]= & i k^{4}+4 k^{3}-6 i k^{2}-6 k+6 i, \\
c^{(i)}\left[F_{k, 6}\right]= & -k^{5}+5 i k^{4}+10 k^{3}-13 i k^{2}-17 k+19 i, \\
c^{(i)}\left[F_{k, 7}\right]= & -i k^{6}-6 k^{5}+15 i k^{4}+24 k^{3}-36 i k^{2}-54 k+61 i, \\
c^{(i)}\left[F_{k, 8}\right]= & k^{7}-7 i k^{6}-21 k^{5}+40 i k^{4}+67 k^{3}-114 i k^{2}-176 k+200 i, \\
c^{(i)}\left[F_{k, 9}\right]= & i k^{8}+8 k^{7}-28 i k^{6}-62 k^{5}+115 i k^{4}+212 k^{3}-376 i k^{2}-584 k+670 i, \\
c^{(i)}\left[F_{k, 10}\right]= & -k^{9}+9 i k^{8}+36 k^{7}-91 i k^{6}-186 k^{5}+366 i k^{4}+706 k^{3}-1263 i k^{2} \\
& -1974 k+2286 i .
\end{aligned}
$$

From the coefficients of the complex-type Catalan transform of the k-Fibonacci sequence $\left(F_{k, n}\right)_{n \in \mathbb{N}}$ we can produce the an infinite triangle, where the following are the first few rows:

$c^{(i)}\left[F_{k, 1}\right]$										
$c^{(i)}\left[F_{k, 2}\right]$	i									
$c^{(i)}\left[F_{k, 3}\right]$	-1	i								
$c^{(i)}\left[F_{k, 4}\right]$	-2	i								
$c^{(i)}\left[F_{k, 5}\right]$	i	4	-3	$2 i$	$-6 i$	-6	$6 i$			
$c^{(i)}\left[F_{k, 6}\right]$	-1	$5 i$	10	$-13 i$	-17	$19 i$				
$c^{(i)}\left[F_{k, 7}\right]$	$-i$	-6	$15 i$	24	$-36 i$	-54	$61 i$			
$c^{(i)}\left[F_{k, 8}\right]$	1	$-7 i$	-21	$40 i$	67	$-114 i$	-176	$200 i$		
$c^{(i)}\left[F_{k, 9}\right]$	i	8	$-28 i$	-62	$115 i$	212	$-376 i$	-584	$670 i$	
$c^{(i)}\left[F_{k, 10}\right]$	-1	$9 i$	36	$-91 i$	-186	$366 i$	706	$-1263 i$	-1974	$2286 i$

Table 1: The complex-type Catalan triangle of the k-Fibonacci sequence.

Now we give the following useful results by the aid of the above triangle:

- The first diagonal sequence $(i, i, i, 2 i, 6 i, 19 i, 61 i, 200 i, 670 i, 2286 i, \ldots)$ is the complextype Catalan transform of the sequence $(1,0,1,0,1,0,1,0,1,0, \ldots)$.
- The second diagonal sequence $(-1,-2,-3,-6,-17,-54,-176,-584,-1974 \ldots)$ is the complex-type Catalan transform of the sequence ($i, 1, i, 1,2 i, 2,2 i, 2,3 i, \ldots$), and so on.

It is well-known that the iteration of a function f is denoted by superscript; f^{n} means the nth iteration of function f, i.e.,

$$
f^{n}(x)=f(f \ldots f(x) \ldots)
$$

Clearly,

$$
f^{0}(x)=x \text { and } f^{n}(x)=f^{n-1}(f(x)) \text { for } n \geq 1
$$

We denote $c^{(i)}\left[\left(c^{(i)}\right)^{n-1}\left[a_{n}\right]\right]$ by $\left(c^{(i)}\right)^{n}\left[a_{n}\right]$. The sequence $\left(c^{(i)}\right)^{n}\left[a_{n}\right]$ is said to be the nth iteration of the complex-type Catalan transform of the sequence $\left(a_{n}\right)$.

The second iteration of the complex-type Catalan transform of the first k-Fibonacci numbers, that is, the first members of the sequence $\left(\left(c^{(i)}\right)^{2}\left[F_{k, n}\right]\right)$ are the following polynomials in k :

$$
\begin{aligned}
\left(c^{(i)}\right)^{2}\left[F_{k, 1}\right]= & \sum_{j=1}^{1} \frac{j}{2-j}\binom{2-j}{1-j} i^{j} c^{(i)}\left[F_{k, j}\right]=-1, \\
\left(c^{(i)}\right)^{2}\left[F_{k, j}\right]= & \sum_{j=1}^{2} \frac{j}{4-j}\binom{4-j}{2-j} i^{j} c^{(i)}\left[F_{k, j}\right]=k-i-1, \\
\left(c^{(i)}\right)^{2}\left[F_{k, j}\right]= & \sum_{j=1}^{3} \frac{j}{6-j}\binom{6-j}{3-j} i^{j} c^{(i)}\left[F_{k, j}\right]=-k^{2}+k(2+2 i)-2 i-1, \\
\left(c^{(i)}\right)^{2}\left[F_{k, 4}\right]= & \sum_{j=1}^{4} \frac{j}{8-j}\binom{8-j}{4-j} i^{j} c^{(i)}\left[F_{k, j}\right]=k^{3}+k^{2}(-3 i-3)+k(6 i+2)-3 i-2, \\
\left(c^{(i)}\right)^{2}\left[F_{k, 5}\right]= & -k^{4}+k^{3}(4 i+4)+k^{2}(-12 i-3)+k(12 i+2)-6 i-11, \\
\left(c^{(i)}\right)^{2}\left[F_{k, 6}\right]= & k^{5}+k^{4}(-5 i-5)+k^{3}(20 i+4)+k^{2}(-29 i+2)+k(26 i+17)+-33 i-44, \\
\left(c^{(i)}\right)^{2}\left[F_{k, 7}\right]= & -k^{6}+k^{5}(6 i+6)+k^{4}(-30 i-5)+k^{3}(56 i-12)+k^{2}(-66 i-6) \\
& +k(114 i+90)-150 i-101 .
\end{aligned}
$$

From the coefficients of the second iteration of the complex-type Catalan transform of the k-Fibonacci sequence $\left(F_{k, n}\right)_{n \in \mathbb{N}}$, we can produce an infinite triangle, of which the following are the first few rows:

$$
\begin{array}{l|rrrrrrl}
\left(c^{(i)}\right)^{2}\left[F_{k, 1}\right] & -1 & & & & & & \\
\left(c^{(i)}\right)^{2}\left[F_{k, 2}\right] & -1 & -1-i & & & & \\
\left(c^{(i)}\right)^{2}\left[F_{k, 3}\right] & -1 & 2+2 i & -2 i-1 & & & \\
\left(c^{(i)}\right)^{2}\left[F_{k, 4}\right] & 1 & -3 i-3 & 6 i+2 & -3 i-2 & & \\
\left(c^{(i)}\right)^{2}\left[F_{k, 5}\right] & -1 & 4 i+4 & -12 i-3 & 12 i+2 & -6 i-11 & & \\
\left(c^{(i)}\right)^{2}\left[F_{k, 6}\right] & 1 & -5 i-5 & 20 i+4 & -29 i+2 & 26 i+17 & -33 i-44 & \\
\left(c^{(i)}\right)^{2}\left[F_{k, 7}\right] & -1 & 6 i+6 & -30 i-5 & 56 i-12 & -66 i-6 & 114 i+90 & -150 i-101
\end{array}
$$

Table 2: The triangle of the sequence $\left(\left(c^{(i)}\right)^{2}\left[F_{k, n}\right]\right)$.
Thus, it can be easily seen that first diagonal sequence $(-1,-1-i,-2 i-1,-3 i-$ $2,-6 i-11,-33 i-44,-150 i-101, \ldots)$ is the complex-type Catalan transform of the sequence ($i, i, i, 2 i, 6 i, 19 i, 61 i, 200 i, 670 i, 2286 i, \ldots$), which is first diagonal sequence of the complex-type Catalan triangle of the k-Fibonacci sequence.

We will now address the Hankel matrix transform of the sequence $\left(c^{(i)}\left[F_{k, n}\right]\right)$. Consider the following recursively defined sequence:

$$
x_{n+2}=i \cdot x_{n+1}+x_{n}
$$

for $n \geq 0$, with initial conditions $x_{0}=0$ and $x_{1}=1$.
Let the Hankel determinant of the complex-type Catalan transform of the m th term of the k-Fibonacci sequence $\left(F_{k, n}\right)_{n \in \mathbb{N}}$ denoted by $H c^{(i)}\left[F_{k, m}\right]$. Then we obtain the early part of the sequence $\left(x_{n}\right)$ as follows:

$$
\begin{aligned}
& H c^{(i)}\left[F_{k, 0}\right]=\operatorname{det}(0)=0=x_{0}, \\
& H c^{(i)}\left[F_{k, 1}\right]=\left|\begin{array}{cc}
0 & i \\
i & -k+i
\end{array}\right|=1=x_{1}, \\
& H c^{(i)}\left[F_{k, 2}\right]=\left|\begin{array}{ccc}
0 & i & -k+i \\
i & -k+i & -i k^{2}-2 k+i \\
-k+i & -i k^{2}-2 k+i & k^{3}-3 i k^{2}-3 k+2 i
\end{array}\right|=i=x_{2}, \\
& H c^{(i)}\left[F_{k, 3}\right]=\left|\begin{array}{cccc}
0 & i & -k+i & -i k^{2}-2 k+i \\
i & -k+i & -i k^{2}-2 k+i & k^{3}-3 i k^{2}-3 k+2 i \\
-k^{2}+i & -2 k^{2}-2 k+i & k^{3}-3 i k^{2}-3 k+2 i & i k^{4}+4 k^{3}-6 i k^{2}-6 k+6 i \\
-2 k+i & k^{3}-3 i k^{2}-3 k+2 i & i k^{4}+4 k^{3}-6 i k^{2}-6 k+6 i & -k^{5}+5 k^{4} i+10 k^{3}-13 k^{2} i-17 k+19 i
\end{array}\right| \\
& =0=x_{3}, \\
& H c^{i}\left[F_{k, 4}\right]=\left\lvert\, \begin{array}{ccc}
0 & i & -k+i \\
i & -k+i & -i k^{2}-2 k+i \\
-k^{2}+i & -i k^{2}-2 k+i & k^{3}-33 k^{2}-3 k+2 i \\
-i k^{2}-2 k+i & k^{3}-3 i k^{2}-3 k+2 i & i k^{4}+4 k^{3}-6 i k^{2}-6 k+6 i \\
k^{3}-3 i k^{2}-3 k+2 i & i k^{4}+4 k^{3}-6 i k^{2}-6 k+6 i & -k^{5}+5 k^{4} i+10 k^{3}-13 k^{2} i-17 k+19 i
\end{array}\right. \\
& \left.\begin{array}{cc}
-i k^{2}-2 k+i & k^{3}-3 i k^{2}-3 k+2 i \\
k^{3}-3 i k^{2}-3 k+2 i & i k^{4}+4 k^{3}-6 i k^{2}-6 k+6 i \\
i k^{4}+4 k^{3}-6 i k^{2}-6 k+6 i & -k^{5}+5 k^{4} i+10 k^{3}-13 k^{2} i-17 k+19 i \\
-k^{5}+5 k^{4} i+10 k^{3}-13 k^{2} i-17 k+19 i & -k^{6} i-6 k^{5}+15 k^{4} i+24 k^{3}-36 k^{2} i-54 k+61 i \\
-6 k^{5}+15 k^{4} i+24 k^{3}-36 k^{2} i-54 k+61 i & k^{7}-7 i k^{6}-21 k^{5}+40 i k^{4}+67 k^{3}-114 i k^{2}-176 k+200 i
\end{array} \right\rvert\,=i=X_{4} .
\end{aligned}
$$

Thus we get immediately:

Conjecture 3. For $n \geq 0$,

$$
H c^{(i)}\left[F_{k, n}\right]=x_{n}
$$

3 Acknowledgment

We would like to thank the editor and the referee for their valuable comments and suggestions.

References

[1] A. Cvetković, P. Rajković, and M. Ivković, Catalan numbers, the Hankel transform, and Fibonacci numbers, J. Integer Sequences 5 (2002), Article 02.1.3.
[2] F. Qi, X. T. Shi, M. Mahmoud, and F. F. Liu, The Catalan numbers: a generalization, an exponential representation, J. Comput. Anal. Appl. 23 (2017), 937-944.
[3] I. Gordon and S. Griffeth, Catalan numbers for complex reflection groups, Amer. J. Math. 134 (2012), 1491-1502.
[4] J. C. Aval, Multivariate Fuss-Catalan numbers, Discrete Math. 308 (2008), 4660-4669.
[5] J. Cigler, Some relations between generalized Fibonacci and Catalan numbers, Osterreich Akad. Wiss. Math.-Natur. Kl. Sitzungsber. II 211 (2002), 143-154.
[6] J. Fürlinger and J. Hofbauer, q-Catalan numbers, J. Combin. Theory Ser. A 40 (1985), 248-264.
[7] J. W. Layman, The Hankel transform and some of its properties, J. Integer Sequences 4 (2001), Article 01.1.5.
[8] M. Aigner, Catalan and other numbers: a recurrent theme, in H. Crapo and D. Senato, Eds., Algebraic Combinatorics and Computer Science: A Tribute to Gian-Carlo Rota, Springer, 2001, pp. 347-390.
[9] M. Chamberland and C. French, Generalized Catalan numbers and generalized Hankel transformations, J. Integer Sequences 10 (2007), Article 07.1.1.
[10] M. Dougherty, C. French, B. Saderholm, and W. Qian, Hankel transforms of linear combinations of Catalan numbers, J. Integer Sequences 14 (2011), Article 11.5.1.
[11] M. Tastan and E. Ozkan, Catalan transform of the k-Jacobsthal sequence, Electron. J. Math. Anal. Appl. 2 (2020), 70-74.
[12] M. Tastan and E. Ozkan, Catalan transform of the k-Pell, k-Pell-Lucas and modified k-Pell sequence, Notes Number Theory Discrete Math. 27 (2021), 198-207.
[13] P. Barry, A Catalan transform and related transformations of integer sequences, J. Integer Sequences 8 (2005), Article 05.4.5.
[14] P. Barry, Generalized Catalan numbers, Hankel transforms and Somos-4 sequences, J. Integer Sequences 13 (2010), Article 10.7.2.
[15] P. Barry, Notes on the Hankel transform of linear combinations of consecutive pairs of Catalan numbers, preprint (2020). Available at http://arxiv.org/abs/2011.10827.
[16] P. Hilton and J. Pedersen, Catalan numbers, their generalization, and their uses, Math. Intelligencer 13 (1991), 64-75.
[17] P. M. Rajković, M. D. Petković, and P. Barry, The Hankel transform of the sum of consecutive generalized Catalan numbers, Integral Transforms Spec. Funct. 18 (2007), 285-296.
[18] S. Falcon, Catalan transform of the k-Fibonacci sequence, Commun. Korean Math. Soc. 28 (2013), 827-832.
[19] S. Falcon and A. Plaza, The k-Fibonacci hyperbolic functions, Chaos Solitons Fractals 38 (2008), 409-420.
[20] S. Falcon and A. Plaza, On the Fibonacci k-numbers, Chaos Solitons Fractals 32 (2007), 1615-1624.
[21] S. Falcon and A. Plaza, The k-Fibonacci sequence and the Pascal 2-triangle, Chaos Solitons Fractals 33 (2007), 38-49.
[22] T. Davis, Catalan numbers, Unpublished notes, 2006.

2020 Mathematics Subject Classification: Primary 11K31; Secondary 60E10, 39B32, 15A15, 11 C 20.
Keywords: Catalan number, Catalan transform, k-Fibonacci number, Hankel matrix, Hankel determinant.
(Concerned with sequence A000108.)

Received February 21 2022; revised versions received March 10 2022; April 4 2022. Published in Journal of Integer Sequences, April 112022.

Return to Journal of Integer Sequences home page.

