o Journal of Integer Sequences, Vol. 25 (2022),

0%eo
% g Article 22.9.3
o0

Variance Functions of Asymptotically Exponentially
Increasing Integer Sequences Go Beyond Taylor’s Law

Joel E. Cohen'

The Rockefeller University
1230 York Avenue, Box 20
New York, NY 10065
USA

cohen@rockefeller.edu

Abstract

Fibonacci, Lucas, Catalan, and all asymptotically exponentially increasing positive
sequences have counting functions (number of elements that do not exceed a large
number y) that are asymptotically proportional to the logarithm of y, a slowly varying
function. For all such sequences, the variance of the elements that do not exceed y is
asymptotically proportional to the product of three factors: the logarithm of the largest
sequence element a(n) that does not exceed y; an explicit function of the asymptotic
ratio of successive sequence elements; and the square of the mean of the elements
that do not exceed y. The variance function of an integer sequence has number-
theoretic interest because it distinguishes integer sequences according to the form of
their variance function. The variance function is also important in the analysis of
variance. Number-theoretic examples make it possible to analyze the variance function
of well specified processes observed without error.

1 Introduction

Mathematicians have studied the statistical properties of sequences of natural numbers (pos-
itive integers) for centuries. Based on statistical analyses, Gauss at the end of the eighteenth
century and Legendre at the beginning of the nineteenth century conjectured the prime num-
ber theorem, which was proved almost a century later. Erdés and Kac [11] continued the
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application of statistical methods to number-theoretic problems. Several authors [3, 4, 6, §]
have shown that the variance of the first n elements of some integer sequences is asymptotic,
as n — 00, to a positive power of the mean of the first n elements. This power-law variance
function is often called Taylor’s law (henceforth TL). Here we go beyond TL by showing that,
for sequences that asymptotically grow exponentially, a constant coefficient in TL must be
replaced by a slowly varying function of the nth element of the sequence (Theorem 1). A
measurable function L : (0,00) + (0,00) is defined [15] to be slowly varying (at infinity, a
qualification we drop henceforth) if, for all A > 0, lim,_,o, L(Az)/L(x) = 1.

Let N := {1,2,3,...} be the set of natural numbers. Let A be the collection of all
infinite, eventually strictly increasing sequences of natural numbers selected from N. A
typical sequence is a = (a(1),a(2),a(3),...) subject to a(n) < a(n + 1) for all n > ny > 1,
where ny depends on a. Define the mean m(a,n) and variance v(a,n) of the first n € N
elements of a, n > 2, as

m(a,n) = %Za(j), (1)

n—14% n—1

J=1

o(an) = —— 3" (a(j) — m(a,n))? = (%Zaof—mw,n)?). )

Jj=1

It is easy to prove that, for all a € A, as n — oo, m(a,n) — oo and m(a,n) is monotonic
increasing in n. While v(a,n) — oo also, v(a,n) does not always increase monotonically
with n. For example, if a = (1,10, 11,...), then v(a, 3) =~ 30.33 < v(a, 2) = 40.5.

The variance function of a is the mapping m(a,n) — v(a,n) [17, 18, 19, 1, 2, 7]. The
variance function has number-theoretic interest because it distinguishes integer sequences ac-
cording to the form of their variance function. The variance function is also important in the
analysis of variance (ANOVA) and agricultural and ecological applications of ANOVA be-
cause ANOVA assumes a constant variance. Knowing the variance function sometimes makes
it possible to transform data to achieve or approximate a constant variance. The variance
function is also important in ecological studies of populations because it can reveal environ-
mental heterogeneity, aggregation, and contagion. Infinite increasing integer sequences pro-
vide tractable “laboratory models” for investigating the variance function under scientifically
advantageous circumstances: the process generating the “data” a = (a(1),a(2),a(3),...) is
mathematically well defined and subject to analysis without sampling error.

If f(z) and g(x) are real-valued functions of real x and g(z) > 0 for all x sufficiently
large, define f(z) ~ g(x) to mean that f(x)/g(z) — 1 as x — 0.

A sequence a € A satisfies TL asymptotically if there exist a finite real constant coefficient
¢ > 0 and a finite real constant b such that

lim v(a,n)/m(a,n)’ = c. (3)

n—o0

Thousands of empirical illustrations of TL [16] and theoretical analyses and models [10] of



TL have been published. Because m(a,n) — oo as n — oo, TL (3) implies that
lim (logv(a,n))/(logm(a,n)) = b. (4)
n—oo

In economics, the exponent b would be called the elasticity of the variance with respect to
the mean.

We call a sequence of positive numbers asymptotically exponentially increasing if and
only if successive elements of the sequence asymptotically increase by a fixed ratio greater
than 1: a(n+1)/a(n) ~ z > 1 for large n. Jakimczuk [14] independently gives an equivalent
definition. The variance functions of the Fibonacci (OEIS A000045), Lucas (OEIS A000032),
Catalan (OEIS A000108), and all asymptotically exponentially increasing sequences have
apparently not yet been investigated. The local elasticity b(a,n) of a sequence a is defined
below in (15). We show here that, as n — oo, b(a,n) — 2 but that the ratio v(a,n)/m(a,n)?,
instead of converging to a constant ¢ as in the exact TL and asymptotic TL, are asymptotic
to the product of loga(n) times (z —1)/((z + 1) log 2).

The prime numbers obey TL asymptotically with b = 2, ¢ = 1/3 [3]. The proof in [3]
for prime numbers is a special case of a much more general result [4]: the variance functions
of increasing integer sequences with regularly varying [15] counting functions with positive
index, p > 0, asymptotically obey TL with b =2 and ¢ = (p(p + 2))_1. The prime number
theorem implies that, for the primes, p = 1. Examples of increasing integer sequences with
regularly varying counting functions with positive index include natural numbers raised
to a fixed power, primes, primes in residue classes, the lesser of twin primes (given the
Hardy-Littlewood twin primes conjecture), prime constellations (given a Hardy-Littlewood
conjecture), primes from polynomials (given the Bateman-Horn conjecture), perfect powers,
triangular numbers, squares, pentagonal numbers, and others.

M. P. Cohen [6] (no known relation) gave an alternative proof, not involving regularly
varying functions, that the primes obey TL asymptotically with b =2, ¢ = 1/3. Demers [§]
found numerically, without mathematical support, that 110 of the 113 finite integer sequences
classified as “nice” in the On-Line Encyclopedia of Integer Sequences (OEIS) have means and
variances closely approximated by log(v(a,n)) = 2.040log(m(a,n)) + 0.335 (with coefficient
of determination R?* = 0.99). Here n is the finite length of the sequence, which varied
from 2 to 2,137,453, with a median value of n = 17. The reported 95% confidence interval
around the slope is £0.013. If, in the context of this collection of finite integer sequences,
the methods Demers used to calculate this confidence interval are justified and if there is
a plausible probabilistic interpretation of such a confidence interval, then the hypothesis of
a slope b = 2 for these integer sequences would seem to be rejected at a significance level
p < 0.05. Demers [8] also showed analytically that, asymptotically as n — oo, the n + 1
binomial coefficients (Z), k=0,1, ..., n,obey TL withec=1, b=2.

Cohen, Davis, and Samorodnitsky [5, p. 6, Eq. (3.3)] gave an example in which the ratio
of the sample variance to a constant power (corresponding to b in TL) of the sample mean
of heavy-tailed data converges in distribution to a random variable times a slowly varying
function of the sample size. We are not aware of any other prior example in which a slowly
varying function replaces the constant coefficient ¢ of TL.
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Section 2 establishes the variance functions and the counting functions of asymptotically
exponentially increasing sequences. Sections 3 and 4 calculate directly the variance functions
of Fibonacci and Catalan sequences to verify the general results of Section 2, and apply the
general results of Section 2 to obtain the variance function of the Lucas sequence. Section
5 describes some increasing integer sequences for which the variance functions remain to be
determined.

2 Asymptotically exponentially increasing sequences

Define a sequence of positive real numbers a = (a(1), a(2), ...) to be asymptotically ex-
ponentially increasing if and only if there exist real w > 0, z > 1, such that for n € N,
a(n) ~ wz" as n — oo.

We recall an elementary identity from high school algebra. If —oo < r < oco,r # 1, w > 0,
and a(n) := wr”, n € N, then

n n—1
. ) n_1
]El wr! = wr JEO rl = wrrr — = i 1 (a(n) —w). (5)

If, in addition, > 1, then

Zwrj ~ i 1a(n). (6)

Theorem 1. Suppose a sequence of positive real numbers a = (a(1), a(2), ...) is asymptot-
ically exponentially increasing, i.e., a(n) ~ wz"™ asn — oo forn € N, real w > 0, z > 1.
Then

v(a,n) N (z —1)loga(n)
m(a,n)? (z+1)logz

(7)

Proof. The following limiting or asymptotic statements are as n — oco. We have logw >
—o00, logz > 0, wz" — 00, a(n) — oo, and loga(n) — oco. The assumption a(n) ~ wz"
implies

. loga(n) —logw  loga(n)

(8)

log z log z
Setting r = z > 1, the mean of the first n elements of a is asymptotically

wz(z" — 1)

mla,n) ~ n(z—1)



Setting r = 2% > 1, using (2) in the first step below, and using (8) in the last step below,
the ratio of the variance to the squared mean of the first n elements of a is asymptotically

v(a,n) n (%Zyzl (j)2_1>

m(a,n)?

(10)

- (-1
(22—=1) (2 —1)? ! (12)
(z—1)loga(n)
~ (z+1)logz (13)
This proves (7). O

As we shall show in the following sections, the Fibonacci, Lucas, and Catalan sequences
share the property that the ratio of an element divided by its predecessor approaches a
positive limit greater than 1 as n — oo:

Fn+1 Ln+1 C(n + 1)
— = =4

(14)

where ¢ := (1 ++/5)/2 > 1 is the golden ratio. By contrast, the ratio of successive prime
numbers approaches 1.

The factor on the right side of (7) that is independent of n, namely, (z—1)/((z+1)log z),
depends only on the limiting ratio z. When z = 4, then (2 —1)/((2+1)log z) = 3/(101log 2)
as for the Catalan sequence (32). When z = ¢, then

(z=1)/((z+ Dlogz) = (6 = 1)/((¢ + 1) 10g ¢) = ¢/((¢ +1)*log ¢) = V5 — 2,

as for the Fibonacci sequence (21) and Lucas sequence (30).

For any strictly increasing positive sequence a = (a(1), a(2), ...), define the counting
function N(a,y) of a at y € (0,00) as the (integer) number of elements of a less than or
equal to y. Thus if a(n) < y < a(n + 1), then N(a,y) = n, and conversely. The faster
a increases with n, that is, the sparser the successive elements a(n) are, the more slowly
N(a,y) increases with y. If a is asymptotically exponentially increasing, and also if a € A,
then N(a,y) — oo as y — oo. An asymptotic counting function N(a,y) of a at y is any
non-decreasing function such that N(a,y) ~ N(a,y) as y — co. An asymptotic counting
function is not unique.

Theorem 2. Suppose a sequence of positive real numbers a = (a(1), a(2), ...) is asymptot-
ically exponentially increasing, i.e., a(n) ~ wz" asn — oo forn € N, real w > 0, 2z > 1.
Then a(n + 1)/a(n) — z and an asymptotic counting function N(a,y) of a at large real
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y is N(a,y) = (logy)/logz. Conversely, if an asymptotic counting function N(a,y) of
an increasing sequence of positive real numbers a = (a(1), a(2), ...) at large real y is
N(a,y) = (logy)/logz, z > 1, then a is asymptotically exponentially increasing and
a(n+1)/a(n) — z.

Proof. Assume a(n) ~ wz" as n — oo for all n € N, real w > 0, z > 1. Then for every
y € (a(l),00) there exists n € N such that a(n) < y < a(n + 1). Then N(a,y) = n ~
(loga(n))/log z by (8). Asymptotically, loga(n) < logy < log(a(n) - z) = loga(n) + log z.
Hence (loga(n))/logz < (logy)/logz < (loga(n))/logz +1 ~ (loga(n))/logz. Hence
N(a,y) := (logy)/log z is an asymptotic counting function.

Conversely, suppose N(a,y) := (logy)/logz is an asymptotic counting function of an
increasing sequence of positive real numbers a = (a(1), a(2), ...) at y. Then N(a,yz) =
(log(yz))/logz = N(a,yz) + 1, ie., ie., multiplying y by z increases N(a,yz) by 1, so
asymptotically successive elements of a increase by a factor of z > 1 and a is asymptotically
exponentially increasing. O]

Jakimczuk [14] independently proves the direct half of Theorem 2, that an asymptotically
exponentially increasing sequence has an asymptotic counting function (logy)/log 2.
Define the “local elasticity” of a at a(n) as

logv(a,n+ 1) —logv(a,n)

b(a,n) = (15)

logm(a,n + 1) —logm(a,n)
The local elasticity is the slope of the variance function on log-log coordinates between the
point with abscissa m(a,n) and ordinate v(a,n) and the point with abscissa m(a,n + 1)
and ordinate v(a,n + 1). The sequence a satisfies TL asymptotically with coefficient ¢ and
exponent b > 0 if and only if, as n — oo, b(a,n) — b and v(a,n)/m(a,n)’ — c.

Theorem 3. Suppose a sequence of positive real numbers a = (a(1), a(2), ...) is asymptot-
ically exponentially increasing with a(n) ~ wz"™ asn — oo forn € N, real w > 0, z > 1.
Then the local elasticity b(a,n) (15) converges to b = 2 as n — oo. The converse is false:
b(a,n) — 2 does not require that the sequence a be asymptotically exponentially increasing.

Proof. Using (7) gives
v(a,n) (z —1)loga(n) v(a,n+1) N (z—1)loga(n+1)

~ 1

m(a, n)2 (z+1) logz " m(a,n+1)2 (z+1)logz (16)
v(a,n+1) loga(n+1) _logw + (n+1)logz | (17)

m(a,n+1)2/ m(a 2 loga(n) logw+nlogz ’
v(a,n +1) B an+ man+1 (18)

m(a,n + 1)? m( )2
logw_glogwwbglzo, (19)
v(a,n) m(a,n)
v(a,n+1) m(a,n + 1)

o) =g 5 g M 20



That the converse is false is proved by the example of the prime numbers [3], which
satisfy b(a,n) — 2 but are not asymptotically exponentially increasing. ]

3 Example: Fibonacci and Lucas sequences

We verify the general results in section 2 for the Fibonacci sequence by direct calculation.

Theorem 4. For the Fibonacci sequence F (OELS A000045) with elements Fy = 1, Fy =
1, Fhyo = Fy+Foi1, n €N, the variance v(F, n) is related to the mean m(F, n) asymptotically
as n — oo by

¢

(p+1)2loge

In this asymptotic variance function (21), log(F,)¢/((¢ + 1)?log¢), a slowly varying
function of F),, replaces the constant coefficient ¢ of TL. To prove this theorem, we use a
lemma of independent interest.

v(F,n) ~ log(F,) - m(F,n)% (21)

Lemma 5. For F,, € F, n € N,

N F? F.F,
limZ]_—12:1im e 0 s =V5-2. (22)
Nn—00 (Zn X 2 ) n—00 (Fn+2 — 1) (Qb + 1)
Jj= n
Proof. From Hoggatt [13]:
Y Fu=Fup—1=F,+F—1, (23)
j=1
Y F=F, Fo. (24)
=1

This establishes the first equality in (22).
Let ¢ := —1/¢ = (1 —/5)/2. Then |¢| > 1 > |¢|. Binet’s form for F, is asymptotically
exponentially increasing:
¢t Y ot =y 9"
E, = - ~2 25
o T B VA 2

Hence

F.F, 1 N FoFo N prmtt et ¢ (26)
(Fupz =12 (Fy+ Fop1)? (¢ +0m1)2 0 (1 +9¢)2 (1+¢)%

This establishes the second equality in (22). The third equality in (22) is elementary. O
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Proof of Theorem /4. From (25), n ~ (log F},)/log ¢. Then from (23) and (24) and Lemma

F,—1
n
. Fn : Fn+1 n 2

v(F,n) = 1 —n_lm(IF,n) , (28)
U(Fa n) _ n2 Fn : Fn+1 n IOg Fn ¢ (29)

m(E,n)?  n—1(Fy2—1)2 n—-1 logo (¢+1)*
m

Figure 1 shows that the asymptotic theory has high descriptive value in this example.
Theorem 6. The Lucas sequence I (OEIS A000032) with elements Ly =2, Ly =1, Ly 40 =
Ly, + L,1, n € N is asymptotically exponentially increasing and obeys
¢ 2

(0 +1)2loge

Proof. Lucas [9, p. 395] proved that L, = Fy,/F,, n € N. By (25), L, ~ ¢*"/¢" = ¢".
Hence L is asymptotically exponentially increasing. The variance function (7) for asymptot-
ically exponentially increasing sequences then gives (30). O

4 Example: Catalan sequence

We verify the general results in section 2 for the Catalan sequence by direct calculation.
Theorem 7. For the Catalan sequence C (OELS A000108) with elements

(2n)!

Cln) = nl(n+ 1)

(31)

the variance v(C,n) (2) of the first n elements is asymptotically related to the mean m(C,n)
(1) of the first n elements by

310g(C(n))

v(C,n) ~ 10log 2

m(C,n)>. (32)
Proof. Stirling’s approximation n! ~ v/2rn(n/e)™ implies that

C(n) and log C(n) ~ nlog4. (33)

n
~_
n3/2\/7
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Figure 1: (left) For the first 18 elements of the Fibonacci sequence, the ratio (blue x marker)
(3"5y F2)/ (320, Fu)? of the sum of squared Fibonacci numbers to the square of the sum of
Fibonacci numbers. With n = 18 terms in numerator and denominator, this ratio equals the
asymptotic value v/5 — 2 ~ 0.2361 (horizontal orange line) to four decimal places. (middle)
The exact variance function (m(F,n),v(F,n)) (blue x marker) of the Fibonacci sequence
and an asymptotic approximation (21) (orange triangle marker) to the variance, on log-
log coordinates. The asymptotic approximation is not fitted and has no free parameters.
(right) The local elasticity b(a,n) (15) (blue x marker) converges rapidly to its asymptote
b = 2 (horizontal orange line). In the middle and right panels, the points for n = 1,2 are
omitted because the variance and asymptotic variance are zero and cannot be shown on
log-log coordinates (middle) and render the local elasticity undefined (right).

Therefore
C(n+1) n3/?

Cln) ~~ (n+1)p7
Then with r = 4, (6) implies (as Vaclav Kotesovec (OEIS A014137, Dec 10 2013) stated)
that

~ 4. (34)

22n+2

S, = Z C(n) ~ (4/3)C(n) ~ PRI (35)

Likewise, with r = 16, (6) implies (as Vaclav Kotesovec (OEIS A094639, Jul 1 2016) stated)
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that

Qn -

Therefore, as n — oo,

v(C,n)

n

j=1

log(C(n)) -m(C,n)? ~ n—1 (nlogd)(S,/n)2

) ) 24n+4
> C(n)® ~ (16/15)C(n)* ~ T
n Qn/n—(S,/n)? 1
nlog4(nQn/SZ -1
Qn dnt4 P 3
S2log4  15mn3-2log2 24nt4  10log2’

(36)

Figure 2 shows that the asymptotic theory has high descriptive value in this example.

Catalan sequence
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(left) The variance v(C,n) (blue x marker) as a function of the mean m(C,n) of

the first n Catalan numbers, n = 2, ..., 18, and an asymptotic variance v(C,n) ~ log(C(n))-

_3
10log2

-m(C,n)? (orange triangle marker) for each n. (right) Local elasticity b(a,n) (15)

(blue x marker) of the variance with respect to the mean, and the asymptotic elasticity or
exponent b = 2 (3) (solid orange line). (left and right) The points for n = 1 are omitted
because the variance and asymptotic variance are zero and cannot be shown on log-log
coordinates (left) and render the local elasticity undefined (right).
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5 Open problems

The variance functions of many increasing integer sequences remain to be determined. For
example, Jakimczuk [14] studied integer sequences a such that

a(n) ~ ™ peN,

where Py(n) = apn® + ap_1n*!' 4+ -+ + a¢ is a polynomial of degree k > 1 in n with
real coefficients ay, ag_1,...,a9 and positive leading coefficient a, > 0. Asymptotically
exponentially increasing sequences are the special case where k = 1 and a(n) ~ et =
wz™, with w 1= e, a; > 0, z:= e > 1. Jakimczuk [14, p. 9, Eq. (49)] established many
properties for general k£ > 1, including an asymptotic counting function,

N(a,y) = (10gy)1/k +0(1), (39)

ag

which is a slowly varying function of y. When & = 1, then a; = logz, so N(a,y) =
(logy) /a1 + O(1) in (39) is consistent with N(a,y) = (logy)/log z in Theorem 2.

Greathouse [12] classified the growth of sequences into six phyla: bounded, subpolyno-
mial, polynomial, sub-exponential but superpolynomial, exponential, and superexponential.
Of these, bounded sequences are excluded from the collection A of infinite, eventually strictly
increasing sequences of natural numbers. Cohen [4] identified the variance functions of even-
tually strictly increasing sequences with regularly varying counting functions with positive
index, which include Greathouse’s polynomial phylum. The results of Section 2 apply to the
sequences Greathouse [12] classified as exponential. The variance functions of Greathouse’s
superexponential phylum remain to be determined.
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