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Abstract

Given a positive integer n, the small divisors of n are defined as the positive divisors

that do not exceed
√
n. Iannucci previously classified all n for which the small divisors

of n form an arithmetic progression. In this paper, we classify all n for which the small

divisors of n form a linear recurrence of order at most two.

1 Introduction

As usual, we say that a nonzero integer m divides another integer n whenever the quotient
n
m

is itself an integer. When this occurs, we use the conventional notation m | n. Moreover,
a nontrivial divisor of a natural number n is a divisor other than 1 and n (if such a divisor
exists).

Consider a positive integer n, and let Sn be the set of small divisors of n, that is,

Sn := {d : 1 ≤ d ≤
√
n ∧ d | n}. (1)

Large divisors, associated with Ln, are defined with the inequality reversed. Iannucci’s work
classified all n for which the ordered elements of Sn form an arithmetic progression. For
brevity, we let s(n) = |Sn|. Moreover, for any tuple (u, v, a, b) ∈ Z4, there is an integral
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linear recurrence of order at most two, (di)
∞
i=1, given by

di =











u, if i = 1;

v, if i = 2;

adi−1 + bdi−2, if i ≥ 3.

(2)

This recurrence is usually abbreviated as U(u, v, a, b). The choice of beginning the index
at 1, rather than 0, is due to the context of working with divisors.

As usual, we let τ(n) denote the number of positive divisors of n, that is,

τ(n) =
∑

d|n

1.

Since there is a “coupling” between small and large divisors of n, linking d and n
d
, we

easily relate τ(n) to s(n) as follows:

τ(n) =

{

2s(n)− 1, if n is a perfect square;

2s(n), otherwise.
(3)

In this paper, we classify all values of n ∈ N such that the ordered elements of Sn form
an integral linear recurrence (di)

s(n)
i=1 of order at most two. A number n that satisfies this

property is called a recurrent number.

Example 1. Notice that 60 is a recurrent number since the elements of S60 = {1, 2, 3, 4, 5, 6}
satisfy the recurrence di = 2di−1−di−2. On the other hand, a simple computation or computer
search would show that the smallest non-recurrent number is 36, as S36 = {1, 2, 3, 4, 6} does
not satisfy a linear recurrence of order at most two.

Since 1 is the smallest divisor of n, we have d1 = 1. To be able to easily determine
whether Sn forms a linear recurrence, we impose the condition that s(n) ≥ 5, although we
revisit the cases s(n) ≤ 4 at the end of the paper. Furthermore, since the smallest nontrivial
divisor of any natural number is prime, we assign d2 = p throughout the paper. We also let
U(1, p, a, b) be the linear recurrence which produces the divisors of some recurrent number
n. Notice that simply knowing p, a, b allows us to determine all elements in Sn whenever n
is recurrent.

d1 1
d2 p
d3 ap+ b
d4 (a2 + b)p+ ab
d5 (a3 + 2ab)p+ b(a2 + b)

(4)

Table 1: First 5 values of (di)
s(n)
i=1 in terms of a, b, p.
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Figure 1: The above tree represents the possible “configurations” of the first four divisors of
a natural number n ≥ 1, where p < q < r are distinct primes. For example, this says that
the first divisor must be 1, the second divisor must be some prime p, and the third divisor
can either be p2 or a second prime q, etc . . . Our proof makes use of this “tree” approach in
determining the divisors di.

2 Preliminary results

Proposition 2. Let a, b, n be positive integers such that a ≤ b. If ab | n, then a ∈ Sn.

Proof. Since ab | n, it follows that a is a divisor of n. Moreover, we get that ab ≤ n. However,
a2 ≤ ab ≤ n, and hence a ≤ √

n.

Theorem 3. Given a recurrent number n associated with U(1, p, a, b), at least one of the
following statements is true:

1. gcd(a, b) = 1.

2. All nontrivial elements of Sn are divisible by p.

3. a = 0.

Proof. Suppose gcd(a, b) 6= 1, so some prime divides both a and b.
If p | gcd(a, b), then we see that all nontrivial elements in Sn are divisible by p, so the

second possibility holds. If p ∤ gcd (a, b), then we obtain that gcd (a, b)|ap + b = d3, so
gcd (a, b) is some prime q according to Figure 1, and d3 = q. Similarly, q | d4 and thus
aq + bp = d4 must be pq. From ap + b = q and aq + bp = bp, we get a(p2 − q) = 0, hence
a = 0.
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Proposition 4. If all nontrivial elements of Sn are divisible by some prime p, then n = pk

or n = pkq for some prime q > pk.

Proof. We proceed by considering two cases.

Case I: If all nontrivial divisors of n are divisible by p, then n = pk for some k ≥ 1.

Case II: Assume that n has a divisor d >
√
n that is not divisible by p.

If d is composite, then one of its prime divisors must be less than or equal to
√
d <

√
n,

and must hence be divisible by p. This contradicts our assumption, and d must thus be some
prime q.

We now prove uniqueness. If there exists another prime r in the interval (
√
n, n) that

divides n, then qr must divide n but qr >
√
n · √n = n, another contradiction.

Hence, q is the sole divisor of n that is not divisible by p, and thus we have n = pkq.

Proposition 5. In a recurrent number n, if Sn satisfies a recurrence U(1, p, 0, b) (i.e. ,
a = 0), then exactly one of the following possibilities holds, where p, q, r are primes and
k ∈ N:

1. n = pk.

2. n = pkq for pk < q.

3. n = pqk for p < q.

4. n = pqkr for p < q < pqk < r.

Proof. If a = 0, then Sn forms a bifurcated series with di = bdi−2, but taking i = 3 re-
quires that d3 = b must be either p2 or q (for a prime q > p). The former gives rise
to Sn = {1, p, p2, . . . , pk}, while the latter implies that Sn = {1, p, q, pq, q2, . . . , pqk} or
{1, p, q, pq, q2, . . . , qk}, depending on parity. Identical to the proof of Proposition 4, there is
at most one prime divisor greater than

√
n that divides n, and hence the possibilities follow

directly.

3 The case gcd(a, b) = 1

We now turn our attention to the major case where gcd(a, b) = 1. We also assume, hence-
forth, that n has at least two distinct small prime factors—otherwise we are simply in the
second and third cases of Theorem 3. In particular, ab 6= 0 since if one of the numbers is
zero, then the other cannot have absolute value 1, as negative numbers do not appear in Sn

and no number appears twice in the sequence of small divisors.

Lemma 6. For all small divisors di of a recurrent number we have gcd(b, di) = 1.
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Proof. Suppose that q | gcd(b, di) for some prime q and some index i. Notice that this i 6= 1.
Similarly, if i = 2, then p | b and inductively, all small divisors are divisible by p which
contradicts the assumption of having two distinct small prime factors.

Suppose i ≥ 3. Since di = adi−1 + bdi−2, we have q | adi−1. The coprimality of a and b
implies that q | di−1. We can inductively show that smaller divisors, including d1 = 1, are
divisible by q, which is absurd. Hence the coprimality follows.

Corollary 7. For all i such that di, di+1 are small divisors of a recurrent number, we have
gcd(di, di+1) = 1.

Proof. We proceed by induction. The base case clearly holds. For the inductive step, observe
that

gcd (di, di+1) = gcd (di, adi + bdi−1) = gcd (di, bdi−1).

The inductive hypothesis implies that gcd (di, di−1) = 1, while Lemma 6 implies that
gcd (di, b) = 1, and hence the coprimality follows.

As a direct consequence of this, we conclude that d3 cannot be p
2 in a recurrent number,

and hence d3 must be prime. Henceforth, we set d3 = q.

Lemma 8. All configurations of the first four nontrivial divisors (d2, d3, d4, d5) except possibly
(p, q, p2, r), (p, q, r, p2), and (p, q, r, s), where p, q, r, s are distinct primes, are impossible in a
recurrent number.

Proof. We have already determined d2, d3. Now, d4 can be p2, q2, pq, or r (where r is another
prime). By Corollary 7, d4 cannot be pq or q2. Hence, we have either d4 = p2 or d4 = r.

If d4 = p2, then we can similarly see that the possibilities for the next divisor d5 are
p3, q2, pq, r for a prime r. However, Corollary 7 once again implies that p3, pq are impossible.
If d5 = q2, then since d5 = ap2 + bq we would get that q | ap2, and so, q | a. Yet, since
q = ap + b, q | a would imply that q | b and thus contradicts Lemma 6. Hence, d5 ought to
be another prime, r.

If d4 = r, then we see that our possibilities for the next divisor d5 are p2, pq, s, for a new
prime s. A reasoning similar to above shows that q ∤ d5, so the only possibilities left are
those of d5 = p2 and d5 = s.

Lemma 9. The only pair (u, x) ∈ N× N≥2 that satisfies

−ux5 + (u+ 3)x4 − 2u+ 3

u
x3 +

3u+ 1

u2
x2 − 2

u2
x+

1

u2
≥ x2 + 1

is (1, 2).

Proof. Define

P (x) := −ux5 + (u+ 3)x4 − 2u+ 3

u
x3 +

3u+ 1

u2
x2 − 2

u2
x+

1

u2
− (x2 + 1).
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Notice that

P ′(x) = −5ux4 + 4(u+ 3)x3 − 3(2u+ 3)

u
x2 +

2(3u+ 1)

u2
x− 2

u2
− 2x

= −5ux4 + 4(u+ 3)x3 − 3(2u+ 3)

u
x2 +

−2u2 + 6u+ 2

u2
x− 2

u2
.

For u ≥ 4 and x ≥ 2 we have

5ux4 ≥ 10ux3 ≥ 4(u+ 3)x3,

and in addition, we have −3(2u+3)
u

x2, −2u2+6u+2
u2 x,− 2

u2 are each negative. Notice that P ′(x)
is negative. Hence, for u ≥ 4, the function P (x) is strictly decreasing in the interval [2,∞).
Moreover, it is easy to check that P (2) < 0. Hence, it suffices to simply consider u ∈ {1, 2, 3}.
One may easily check that the only possible value is u = 1. Another simple computation
reveals that the inequality only holds for x = 2.

Theorem 10. The only recurrent number with configuration (d2, d3, d4, d5) = (p, q, p2, r) is
60.

Proof. In this case, we have

p2 = d4 = aq + bp = a(ap+ b) + bp. (5)

Since p | ab and p ∤ b by Lemma 6, we have p | a. Let a = kp for some integer k. We can
rewrite (5) as

k2p2 + b(k + 1) = p,

which is equivalent to

b =
p(1− k2p)

k + 1
.

However, since we know that p ∤ b, we obtain that p | k + 1. In other words, there exists a
positive integer u such that k + 1 = up. From here, we are able to express a, b in terms of
u, p, and use that to obtain r in terms of u, p only. We end up obtaining

a = up2 − p,

b =
1− p

u
− up3 + 2p2,

and

r = ap2 + bq = −up5 + (u+ 3)p4 − 2u+ 3

u
p3 +

3u+ 1

u2
p2 − 2

u2
p+

1

u2
.

Since r = d5 ≥ d4 + 1 = p2 + 1, Lemma 9 gives that (u, p) = (1, 2) and substituting reveals
a = 2, b = −1. Hence the first five divisors would be 1, 2, 3, 4, 5. This reduces to the case
of an arithmetic sequence with common difference 1, which, using the results of Iannucci [1,
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Lemma 2], implies that s(n) = 5 or s(n) = 6. If s(n) = 5, we have n ≥ lcm(1, 2, 3, 4, 5) = 60,
but 6 is a small divisor that does not appear in Sn, a contradiction. When s(n) = 6, we see
that n is a multiple of 60. However, if n ≥ 180 then 12 ≤ √

n does not appear in the list
of small divisors, contradicting the recurrency. Clearly, n = 120 is not recurrent neither as
8 /∈ {1, 2, 3, 4, 5, 6}. Hence, the only solution is Sn = {1, 2, 3, 4, 5, 6} for when n = 60, which
is indeed recurrent.

Corollary 11. For an initial configuration (p, q, r, p2) in a recurrent number, we have that
p | dj if and only if j ≡ 2 (mod 3).

Proof. Firstly, the statement holds for d2 = p. Since p2 = d5 = (a3 + 2ab)p + b(a2 + b),
Lemma 6 implies that p | (a2 + b). Hence,

di+3 = adi+2 + bdi+1 = a(adi+1 + bdi) + bdi+1 = (a2 + b)di+1 + abdi.

Lemma 6 once again gives us that p | di+3 if and only if p | di, which is the inductive step.

Theorem 12. The configuration of divisors (p, q, r, p2) cannot occur in a recurrent number.

Proof. Assume otherwise, that is, there exists a recurrent number n of this configuration.
We prove, by induction, that s(n) ≥ 3i+ 2 for all i ∈ N, which is absurd.

The base case is already assumed. Assume that s(n) ≥ 3i + 2 for some i ∈ N. By
Corollary 11, p ∤ d3id3i+1 and since gcd(d3i, d3i+1) = 1 by Corollary 7, we have p2d3id3i+1

divides n. By Proposition 2, pd3i is a small divisor. We consider two cases.

Case I: pd3i = d3i+2. Hence, we obtain that d3i | ad3i+1, and by Corollary 7, we obtain that
d3i | a. Observe that the sequence (di mod a) takes values congruent to 1, p, b, bp, b2, . . . , and
thus, d3i divides an element of the form bkp where k ∈ N. However, Corollary 11 and Lemma
6 yield

gcd(p, d3i+1) = 1 = gcd(b, d3i+1),

which is a contradiction.

Case II: pd3i > d3i+2, hence, pd3i ≥ d3i+5 by Corollary 11. Therefore, s(n) ≥ 3i+ 5, and the
induction is complete.

Lemma 13. In a recurrent number of configuration (p, q, r, s), the small divisors di, di+2 are
coprime.

Proof. Assume a prime t divides gcd (di, di+2). Thus t | adi+1. Clearly, t ∤ di+1 by Lemma 7,
and therefore, t | a. As such, the sequence (di mod t) takes values congruent to 1, p, b, bp, b2, . . .
and hence t | bkp for some k ≥ 0. Yet Lemma 6 implies that gcd (b, t) = 1, hence t | p and
so t = p. However, this would imply that t | r = (a2 + b)p + ab, which is a contradiction as
p < r are distinct primes.

Theorem 14. The configuration of divisors (p, q, r, s) cannot occur in a recurrent number.
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Proof. Assume that the configuration does occur in some recurrent number n. Since pq < pr
are both small by Proposition (2), there exist at least three small divisors that are multiples
of p. Let dj = pv be the greatest small divisor that is divisible by p. In particular, v > p.
By Lemma 13, p ∤ dj−2dj−1, and we conclude that dj−2dj−1pv | n, so Proposition 2 implies
that pdj−2 ∈ Sn. Moreover, pdj−2 6= dj by Lemma 13, and so pdj−2 > dj is a small divisor
greater than dj, a contradiction.

4 Concluding remarks

In conclusion, imposing the condition s(n) ≥ 5 returns certain infinite families of recurrent
integers n with at most 3 distinct prime divisors, in addition to the sole “sporadic” case of
60. We now revisit the condition we imposed and relax it to find all recurrent numbers by
relating s(n) to τ(n) using Equation (3).

(i) s(n) = 1. Hence, τ(n) ∈ {1, 2}. That is, n = 1 or n = p for some prime p, and in both
cases, n is vacuously recurrent.

(ii) s(n) = 2. Thus, τ(n) ∈ {3, 4}, and we have the possibilities that n = p2, p3, or pq for
primes p < q. In all cases, n is vacuously recurrent.

(iii) s(n) = 3. This implies τ(n) ∈ {5, 6}, and hence the possibilities are n = p4, n = p5,
n = p2q, or n = pq2 for primes p < q. These are again vacuously recurrent.

(iv) s(n) = 4. Consequently, τ(n) ∈ {7, 8}.

(I) If τ(n) = 7, we get that n = p6 and Sn = {1, p, p2, p3} indeed forms a linear
recurrence of order at most two.

(II) If τ(n) = 8, the possibilities are p7, p3q, pq3, and pqr for primes p < q < r.

i. n = p7: Here n is recurrent by the aforementioned geometric recurrences.

ii. n = p3q: Here Lemma 7 implies that the only possibility is Sn = {1, p, q, p2}.
Setting up a linear system of equations to solve for a, b, we deduce that it is
both necessary and sufficient for q−p

p2−q
to be an integer for primes p < q < p2.

Based on numerical evidence, we conjecture that this occurs for infinitely
many pairs of primes (p, q), but we defer analyzing this conjecture to another
time.

iii. n = pq3 : Clearly, we have Sn = {1, p, q, pq}, but this is not possible by
Lemma 7.

iv. n = pqr : If pq < r, then Sn = {1, p, q, pq} and the same argument above
holds. If pq > r, then Sn = {1, p, q, r}. Setting up a linear system of equa-
tions, we see that it is both necessary and sufficient for pq−r

p2−q
to be an integer.

We summarize our findings in the following result.

8



Theorem 15. All recurrent numbers n fall into one of the following categories.

1. n = pk, for some prime p and a natural number k, hence Sn = {1, p, . . . , p⌊ k

2
⌋}.

2. n = pkq, for some primes p, q and a natural number k, such that q > pk. Hence,
Sn = {1, p, . . . , pk}.

3. n = pqk, for some primes p < q and k an odd (resp. , even) natural number with

Sn = {1, p, q, pq, q2, . . . , pq k−1

2 } (resp. , Sn = {1, p, q, pq, q2, . . . , q k

2 }).

4. n = pqkr, for some primes p, q, r and a natural number k such that p < q and r > pqk.
Hence, Sn = {1, p, q, pq, . . . , pqk}.

5. n = 60, with Sn = {1, 2, 3, 4, 5, 6}.

6. n = p3q for some primes p, q such that p < q < p2 and p2 − q | q − p. Hence,
Sn = {1, p, q, p2}.

7. n = pqr, for some primes p, q, r such that p < q < r and p2 − q | pq − r. Hence,
Sn = {1, p, q, r}.

Notice that Sn may contain an arbitrarily long subset of divisors that form a second-order
linear recurrence, without all of Sn forming such a recurrence. Consider numbers of the form
pqkr2 where p < q < r are primes and k ∈ N such that pqk < r. If r is large enough, we
see that the divisors 1, p, q, pq, q2, . . . may form an arbitrarily long linear recurrence that is
interrupted by r, but n is not itself recurrent.

Finally, we briefly study the analytic distribution of recurrent numbers. Define f(x) to
be the number of recurrent integers in the interval [1, x]. The fact that recurrent numbers
have at most 3 distinct prime divisors implies that they have null density among the natural
numbers. For k ∈ N, let πk(x) be the number of integers in [1, x] having exactly k distinct
prime factors. Hardy and Ramanujan [2, Lemma A, p. 265] showed that there exist constants
A,B such that

πk(x) <
Ax(log log x+ B)k−1

(k − 1)! log x
.

In fact, Landau [3] proved that that

πk(x) ∼
x(log log x)k−1

(k − 1)! log x
.

Since f(x) ≤ π1(x) + π2(x) + π3(x), we obtain that there exists some constant C such
that for all x ≥ 1,

f(x) ≤ C

(

x

log x
+

x log log x

log x
+

x(log log x)2

2 log x

)

.
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Chu previously extended the results of Iannucci by classifying all natural numbers whose
large divisors [4] or nontrivial, small divisors [5] form an arithmetic progression. Based on
our results, the interested reader may naturally ask whether the aforementioned results can
be generalized from the case of arithmetic progressions to that of linear recurrences of order
at most two.
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