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Abstract

We find various Ramanujan-like series that involve the central binomial coefficients.
In contrast with the traditional hypergeometric function approach, our method uses
Fourier-Legendre series expansions via specialization, inner product, and Parseval’s
identity. Several classical identities are recovered as particular cases.

1 Introduction

A Ramanujan-like series for 1/7 is an identity of the following form:
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where a and b are algebraic numbers, ¢ € N, and s(n) is an integer sequence obeying a
certain recurrence relation. More than 100 years ago, without proof, Ramanujan recorded
17 formulas for 1/7 at the end of his first paper published in England [13]. The first two
formulas (with slight modification), which surprisingly appeared in the Disney movie High
School Musical, are
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where (*") is the central binomial coefficient defined by (2n)!/(n!)?. Except for Chowla’s
proof of (1) in 1928 [7], Ramanujan’s series were forgotten by the mathematical community
until 1987. The Borwein brothers [3] finally succeeded in proving all 17 of Ramanujan’s series
for 1 /7 via modular forms. Moreover, as an application, they used one modified Ramanujan
series to calculate the digits of 7 and were able to obtain roughly 50 digits of m per term.
Since 2002, Guillera et al. [10, 11] have discovered many new Ramanujan-like series for 1/72.
An excellent survey on the work of Ramanujan-like series before 2009 can be found in [2].
Following the ideas of the Borweins and Guillera et al., exploring new classes of Ramanujan-

like series has become an active area of contemporary research. In my previous work [6], the
following Ramanujan-like series

n=0
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where H,, denotes the nth harmonic number, was established by applying a differential oper-
ator to a hypergeometric function o Fi-identity. Along this line, using the Gauss summation
theorem and an extended 3 Fy-series of Watson and Whipple type, Wang and Chu [16] offered
a systematic evaluation of series like

= () Ha = ()Y
; 16p(n) ™ Z; 167p(n) °

where p(n) = n+ A 1+2n— 2\ or (1420 —2))2 for A € N, and H? = S 1/k2. In
particular, they obtained the following interesting Ramanujan-like series:
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The aim of the present paper is to study the Ramanujan-like series involving powers of
central binomial coefficients. In contrast to [4, 16], our approach is based on Fourier-Legendre



series expansions. We will derive a variety of Ramanujan-like series including
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Here I'(x) indicates the gamma function.

The rest of paper is organized as follows. In Section 2, three combinatorial identities
are established via the Wilf-Zeilberger method. These identities are used to derive several
Fourier-Legendre series expansions. By using specialization, inner product, and Parseval’s
identity, those series expansions are used to find various Ramanujan-like series in Section 3.
The paper ends with two remarks. To ensure accuracy, all formulas appearing in this paper
were verified numerically by Mathematica.

2 Some Fourier-Legendre series expansions

Recall the Legendre polynomial [9, pp. 983-985]
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It is well-known that
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where d,,, denotes the Kronecker delta. This implies that (P,(z))s, are orthogonal on
[—1,1]. Now, we define .
P,(x) = P,(2z —1).

Since z — 2x — 1 is an affine transformation that bijectively maps [0,1] to [-1,1], we see
that (P,(x))22, are orthogonal on [0, 1] with
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Moreover, we have
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Let f(z) € L[0,1]. The Fourier-Legendre series is defined by

flz) = anpn(x)a
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where
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The following three lemmas display some features of the coefficients of variant Fourier-
Legendre series.

Lemma 1. Let f(x) € L[0,1]. If f(z) =22, a,Pu(x), then

fL—x) =) (=1)"a,P,(x).

Proof. Let a} be the nth coefficient of the Fourier-Legendre series for f(1 — ). By (7), we
have

ar = (2n+ 1)/ f(1 — )P, () dx
2n—|—1/ f)P,(1—t)dt (uset=1—x)
=(2n+ 1)/0 FO(=D)"P,(t) dt = (—1)"an,

where we have used the fact that P,(1—t) = P,(—(2t—1)) = (—=1)"P,(2t—1) = (=1)"P,(t).

Lemma 2. Let f(z) € L[0,1]. If f(z) = f(1 — ) for x € [0,1] and f(z) =3 >°, a,Pu(z),

then a,, = 0 when n is odd.

Proof. Using (7), we rewrite a,, as

(2n+1 (/ f(x)P,(x) dx + f()~()$>
:(2n+1)</ f(z)P, dx+/ f(1—t)P 1—t)dt> (uset =1—1x)

1/2 3
= (2n + 1)/0 (14 (=1)")f(x)P,(x)dx (use f(t) = f(1—1)).

This leads to a,, = 0 when n is odd. O



Recall Bonnet’s recursion formula [9, Formula 8.914 No.1, p. 985]
(n+1)Pi1(x) = 2n+ D)aP,(z) —nP,_1(z).
This implies that

. 1~ 2 1~
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which yields the following result.
Lemma 3. Let f(x) € L[0,1] and f(z) = 32°, a,P.(2). If

vf(x) = by Pu(x),
n=0
then for alln > 1,
n+1 . 1 n n (8)
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The following two lemmas establish some identities that we will need later to simplify
the coefficients of the Fourier-Legendre series.

Lemma 4. For any non-negative integer n,
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This identity (9) appears as (6.35) in [8], and is credited to E. T. Bell without providing a

proof. For completeness, following Tauraso’s suggestion [14], we demonstrate a proof based
on the Wilf-Zeilberger method (WZ-method).

Proof. Rewrite (9) as
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Using the WZ-method, we find
B 2(4n + 3)k?
G k) = G T Den— ks @m0 k)
Now it suffices to check
Fn+1,k)— F(n,k) =G(n,k+1) —G(n, k). (11)
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Notice that
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Fn+1,k) = F(n, k),

F(n,k+1)=— F(n,k),

Gn,k+1) = F(n,k);

with these (11) becomes the alleged identity

ACn+k+2)C2n+k+ (0 +1)%
2n—k+2)2n—k+1)(2n+ 1)2
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Combining the fractions shows that each side leads to

(4n + 3)(2 + bk + k* + 6n + 12kn + 4n? + 8kn?)
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So (11) does actually hold. Since G is telescoping, we finally obtain
2n
Z F(n, k) = const.
k=0
This constant does not depend on n. Thus (10), and so (9), follows from setting n = 0. [
Similarly, applying the WZ-method, we can establish

Lemma 5. For any non-negative integer n,

2n
ok 2n\ (2n+ k 3'7"-(4k—1)_ 1 <2n>
2n
k(20 (2n+k 5-9.--(4k +1) B 1 on,
kzo( . <k)< k )(2k:+3)(2k~|—1)k!(2k’“) _(4n+3)(1—4n)4n<n>' (13)

Now we are ready to establish some Fourier-Legendre series in explicit form.
Theorem 6. For z € (0,1),

i 4n+1 (2:)2]52”(@‘ (14)
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Proof Let f(z) =1/y/xz(1 —z). Then f(z) = f(1 —z) for all z € (0,1). Using Lemma 2,

= ( for odd n. Moreover,
1
ag, = (4n + 1)/ f(z)Pop(x) dx
0
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Invoking (6) leads to

a9y = (47’L +1 1)

2 on\ [2n + k
= (4n+1 (k)< " )(-1)’“3(1«+1/2,1/2),
where B(z,y) is the Euler Beta function. Using

(2k)!
oy

[(1/2) =7 and T(k+1/2)= VT, (15)

it follows that

Blk+1/2,1/2) =

D(k+1/2T(1/2)  (2k)! = (2K
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This, together with (9), implies

— (4n + 1)ﬂ§: (—1)k(2£) (Qn]: k) (2:) 4 — (‘%%)W (2:)2,
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which proves (14). O

Applying (8) to (14) gives
- (An+1 2n\ " ~
Z 2. 16 <n) Ponl2)
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While applying (8) to (16) yields
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Notice that

ve(l—z)= ’ - ‘
Combining (16) and (17) leads to
Theorem 7. For z € (0,1),

& (4n+ D) on\” -
s(l-2)=g ) 16"(n + 1)(1 — 2n) (n) Ponl). (18)

Applying the above process to (18) yields

Theorem 8. For z € (0,1),

39 O (4n+ 1)m on\ > -
( =1 _3’)> B 2 167(n+ 1)(n + 2)(1 — 2n)(3 — 2n) (n) Ponl2). (19)

n=0

By mathematical induction, we conclude

Theorem 9. Let m be a positive odd integer, and let p = (m +1)/2. Then

( x(1— x))m

(m!1)? & (An+ )7 o\ 2 .

In terms of the Pochhammer symbol, (a), := a(la+ 1)---(a+ k — 1) for k > 1, the above
expression can be rewritten compactly as

(Ve=a)" = (Tf!s? 2 o f%j(?/g ), (2: ) Pon(2). (20)

n=0

Next, let f(z) = [z(1 — x)]~"/*. Using Lemma 2, a,, = 0 for odd n. Moreover, in view of

(6),
Gon = (41 + 1) i (—1)’“(2;) <2”; ’“) /01 AV Z )V gy

k=0
2

= (n+1) kno (2]?) (2”; k) (—1)*B(k + 3/4,3/4). (21)
Using (15) and
(k4 3/4) = 20 -4(]{:41{: =Yy,



we have

_ AT(3/4)3- 7 (4k —
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Substituting this into (21) and then applying (12) yields

Notice that
T

I's/4)r1/4) = ———= =v2m. 22

BT/ = s = Vor (22)
Theorem 10. For z € (0,1),

1 AT N1 (2n
— . 2
4/1.(1_1. F2 1/4 ; 4n ( ) -T) ( 3)
Finally, applying (6), (13) and (22) gives
Theorem 11. For xz € (0,1),
= dn+1 2n\ -~
v/ x(1— Py, (x). 24
z(1-2) 2r23/4 Z4n4n+3 1—4n)(n) on () (24)

n=

3 Some new Ramanujan-like series

The Fourier-Legendre series expansions (14), (18), (19), (20), (23) and (24), along with their
specialization, inner product and Parseval’s identity, will enable us to find many Ramanujan-
like series involving powers of central binomial coefficients.

First, replacing 22 — 1 by ¢ in (14), (16) and (18),

Theorem 12. For |t| < 1,

1 1 & (4n+ D (207
-y = Pon(1);
VI—12 2Z 167 <n> on (1)
t

n=0
1 & (4n+3)(2n+ )7 [(2n)?
= — P .
Vi 4% 167(n + 1) p ) Do)

— 1 = (An+ 1)m on\ >
I=#=3 2 16"(n+ 1)(1/2 — n) (n) Pon()



These recover Formulas 8.922 No. 3-5 in [9, p. 988], for which I am unable to find
references to their proofs. It is interesting to compare these identities with the well-known
generating function of the central binomial coefficients:

1 =1 (2n
=) — 2",
A )

_ Furthermore, let - = cos*(6/2) in (14), (18)—(20), respectively. Then 2z — 1 = cos, and
Py, (z) = Py,(cosb).

Theorem 13. For 6 € (0,7),

In+1 (2n 2
P. 0) 2
—~ 16" (n) on (€08 " rsind (25)
- 4n+ 1 2n _ 8sind
Py, (cos 0) : 26
Z 16" (n+1)(1/2 —n) (n) on (c08 T (26)
n=0
- dn + 1 2 _ 325 30
Z n+ ( n) Py (cos6) sin | (27)
= 64"(n+1)(n+2)(1/2=n)(3/2—n) \ n 9
- 4n + 1 2n 167 sin™
Py, (cosl) = —————, 28
“— 64"(n+1),(1/2 —n) (n) on (€08 2m(ml!)2m (28)

where m is a positive odd integer and p = (m + 1) /2.

Identity (26) appeared in [9, p. 989] as Formula 8.925 No. 2. Next, let = cos®(6/2) in
(23) and (24), respectively.

Theorem 14. For 0 € (0,7),
1 /2 2T%(1/4
— < n> Py, (cos ) = —\/_ 1/ ), (29)
— 4\ n 4+/sin Om3/2

. dn + 1 2 V2sin6T%(3/4
Z nt " Py, (cos ) = sin 6 T°(3/ ) (30)
4n(4n+3)(1 —4n) \ n m3/2

n=0

Based on Theorems 13 and 14, via specialization, we find some Ramanujan-like series as
follows.
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Example 1. Recall that P,,(0) = (—1)" (2”) /4™. Letting # = 7/2 in Theorem 13 yields

i "(4n +1) (Qn) B

o 64" n

i (=1)"(4n+ 1) on\° B

— 6"n+1 (1/2—n)\n/)

i": (=1)"(4n + 1) 2\ 32 (33)

= 64n(n+1)(n+2)(1/2=n)(3/2—n) \n ) 91’

> (=1)"(4n +1) on\® 167
64n(n+1),(1/2—n), \n / — 2m(m!)2x’

, (31)

Nloo |

: (32)

Me =

(34)

n=0
where m is a positive odd integer and p = (m + 1)/2. (31) reveals Bailey’s classical formula
(See [1], or [3, Formula 5.5.24, p. 184]), which was originally obtained via hypergeometric

functions.
Example 2. Let § = 7/2 in Theorem 14. Then

2 (1) 207 V202(1/4)

; 16" <n> A (35)
- dn+1)  (2n\®  V2I?(3/4)
216"4714—3(1—471)(71) T oo (36)

n=0
We also obtain some interesting series following in another direction:
Example 3. Since P,(1) =1 for all n > 0, letting # = 0 in (30), (26)—(28), respectively,
then splitting the n = 0 term, we find

> oD (n) < F @

g 167 (n jﬁ)zl/Q —n) <2:>2 =2 (38)

ni"; 16" (n + 1)( n+427;(—i1_/12—n)(3/2—n) (2:)2 - _é’ (39)
; (n +4f JE11/2 —n), (2:>2 B _m7 (40)

where p € N. 3 )
Next, let f(z) =Y 0" a,Pa(z) and g(z) = > b, Py (x). If f(z)g(x) € L?[0,1], then
the inner product of f and ¢ leads to

;(ﬁ%) < V2n 11 ) /f )
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The inner products of (14) with (18), (14) with (19), (18) with (19) and (14) with (20) lead
to the following

Theorem 15. Let m be a positive odd integer and p = (m +1)/2. Then

[e.o]

dn +1 2n
42
20256”(n—l— (1/2 —n) (n) 7T27 (42)
i 4n+1 (2n) (43)
= 256"(n+1)(n +2)(1/2=n)(3/2—n) \ n 277r2

i 4n+1 2n 2048 (44)

= 256"(n +1)*(n+2)(1/2=n)*(3/2—n) \ n ~ 13572’
= (4n+1) 2n\" _ 16”[(p — DY? (15)

< 256" (n + 1),(1/2 = n), \ n m” 2mln?

n—=

Similarly, the inner products of (14) with (23), (14) with (24), (18) with (23), (18) with

(24), (19) with (23), and (19) with (24) lead to
Theorem 16.

RO T

ni;o 64"(4n4—|T—L 3+)(11 — 4n) (2: )3 a %’ (47)

nio% 64" (n + 11(1/2 —n) (2:)3 -- 2’%4)’ (48)

; 647 (n + 1)(1/2(4—717&14)%3)(1 “ i) (2:)3 - % (49)

g 64"(n+1)(n+2)(11/2—n)(3/2—n) (2:)3: % (50)

> 647 (n 1 1)(n + 2)(1/2 (—47;)?31/)2 ~ ) (dn + 3)(1 — dn) (27:7)3 - % (51)

n=0

Furthermore, the inner product of (23) and (24) leads to a simple Ramanujan-like series:

%. (52)

:M8

2n
< 16" 4n+3 )(1—4n) \ n
In general, taking the inner product (20) with (23) and (24), respectively, yields
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Theorem 17. Let m be a positive odd integer and p = (m + 1)/2. Then

> 2n\®  167(1-5- (4p — 3))%(2p)!T(1/4)
nz: 647 (n + 1) (1/2—n)p (n) B 4(m!)?(4p)!m3

(53)
- dn + 1 2n\® 1677137 (dp — 1))%(2p + 1)IT4(3/4
Z ( _ P P
= 647 (n + 1),(1/2 = n)p(4n + 3)(1 — 4n) B 2(m!1)2(4p + 2)!73 '
(54)
Finally, recall Parseval’s identity: If f(z) € L?[0,1], then
> n fx (55)
n=0 |: 271 _'_ :| /
Applying (55) to (23), (24) and (18)—(20), respectively, yields
Theorem 18. Let m be a positive odd integer and p = (m + 1)/2. Then
OO 2n /4)
o6
16”4n+1 (n) 167r2 ’ (56)
i dn+1 2n\" _ T*(3/4) (57)
= 16"(4n +3)*(1 —4n)? \ n 2m2
= dn +1 2n
58
;0256”71—1—1 )2(1/2 — n)? (n) 37r2’ (58)
i dn + 1 2n 16384 (50)
= 256"(n + 1)%(n +2)%(1/2 —n)*(3/2 —n)? \ n ~ 283572
= (4n + 1) 2n 2567 (m!)? (60)
— 256"(n + 1)2 1/2—n n (mIh4(2m + 1)!x?

3
o

4 Remarks

We now conclude this paper with two remarks.

1. Recall the complete elliptical integral of the first kind defined by

_/7r do
0 \/1—kzsin20'
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Invoking the generating function of the central binomial coefficients

o0

— T = r |\T
4\ n V1 —a?

n=0
/2 )
. 2n o T n
/(; sin“" 0 df = % (n ),

o0

T 1 /2n\°
_ 2n
K(k)_5216”<n)k '

n=0

and Wallis’ formula

we have

Moreover, Watson’s elliptic function identity [3, p. 188] claims

%22 . <2:>3 — K2(1V3).

Thus, together with (46), we obtain another proof of the classical result [3, Theorem

(1)1

. The neat forms of Fourier-Legendre series in Section 3 rely on the combinatorial iden-
tities (9), (12) and (13). Similar to (9), by the WZ-method, Tauraso [15, Lemma 4.2]

proved
2n 2
Z 2n\ (2n+ k\ [ 2k _ 2n
k=0

This enables us to find Ramanujan-like series and other well-known constants involving
the product of the central binomial coefficients and the harmonic numbers like

> 1 on\ > In2—2
Pp—— Ll AL
16"(2n — 1)\ n s

n=1

and
o0

1 n 4
- H —
2 167(2n 4 1) (n) (3 it o ) 8G,

n=0 + 1
where G is the Catalan constant defined by > >~ (—1)"/(2n + 1)?>. The interested
reader is encouraged to pursue results in this direction.

Addendum. After this paper was submitted for publication, the referee brought my attention
to the papers [12] and [5]. The identities (33), (34), and (58)—(60) are found in [12], in which
Levrie used a different approach to derive the Fourier-Legendre series (20). The identities
(58)—(60) were also rediscovered by Cantarini and D’Aurizio [5].
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