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Abstract

We find various Ramanujan-like series that involve the central binomial coefficients.
In contrast with the traditional hypergeometric function approach, our method uses
Fourier-Legendre series expansions via specialization, inner product, and Parseval’s
identity. Several classical identities are recovered as particular cases.

1 Introduction

A Ramanujan-like series for 1/π is an identity of the following form:

∞
∑

n=0

an+ b

cn
s(n) =

1

π
,

where a and b are algebraic numbers, c ∈ N, and s(n) is an integer sequence obeying a
certain recurrence relation. More than 100 years ago, without proof, Ramanujan recorded
17 formulas for 1/π at the end of his first paper published in England [13]. The first two
formulas (with slight modification), which surprisingly appeared in the Disney movie High

School Musical, are
∞
∑

n=0

6n+ 1

162n

(

2n

n

)3

=
4

π
(1)
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and
∞
∑

n=0

42n+ 5

642n

(

2n

n

)3

=
16

π
, (2)

where
(

2n
n

)

is the central binomial coefficient defined by (2n)!/(n!)2. Except for Chowla’s
proof of (1) in 1928 [7], Ramanujan’s series were forgotten by the mathematical community
until 1987. The Borwein brothers [3] finally succeeded in proving all 17 of Ramanujan’s series
for 1/π via modular forms. Moreover, as an application, they used one modified Ramanujan
series to calculate the digits of π and were able to obtain roughly 50 digits of π per term.
Since 2002, Guillera et al. [10, 11] have discovered many new Ramanujan-like series for 1/π2.
An excellent survey on the work of Ramanujan-like series before 2009 can be found in [2].

Following the ideas of the Borweins and Guillera et al., exploring new classes of Ramanujan-
like series has become an active area of contemporary research. In my previous work [6], the
following Ramanujan-like series

∞
∑

n=1

(

2n
n

)2
Hn

16n(2n− 1)2
=

12− 16 ln 2

π
,

where Hn denotes the nth harmonic number, was established by applying a differential oper-
ator to a hypergeometric function 2F1-identity. Along this line, using the Gauss summation
theorem and an extended 3F2-series of Watson and Whipple type, Wang and Chu [16] offered
a systematic evaluation of series like

∞
∑

n=1

(

2n
n

)2
Hn

16np(n)
and

∞
∑

n=1

(

2n
n

)2
H

(2)
n

16np(n)
,

where p(n) = n + λ, 1 + 2n − 2λ or (1 + 2n − 2λ)2 for λ ∈ N, and H
(2)
n =

∑n
k=1 1/k

2. In
particular, they obtained the following interesting Ramanujan-like series:

∞
∑

n=1

(

2n
n

)2
H

(2)
n

16n(2n− 1)
= 4− π

3
− 8

π
;

∞
∑

n=1

(

2n
n

)2
H

(2)
n

16n(2n− 1)2
= −12 +

2π

3
+

32

π
.

The aim of the present paper is to study the Ramanujan-like series involving powers of
central binomial coefficients. In contrast to [4, 16], our approach is based on Fourier-Legendre

2



series expansions. We will derive a variety of Ramanujan-like series including

∞
∑

n=0

(−1)n

16n

(

2n

n

)2

=

√
2 Γ2(1/4)

4π3/2
; (3)

∞
∑

n=0

(−1)n(4n+ 1)

64n(n+ 1)(1/2− n)

(

2n

n

)3

=
8

π
; (4)

∞
∑

n=0

(4n+ 1)

256n(n+ 1)2(1/2− n)2

(

2n

n

)4

=
128

3π2
. (5)

Here Γ(x) indicates the gamma function.
The rest of paper is organized as follows. In Section 2, three combinatorial identities

are established via the Wilf-Zeilberger method. These identities are used to derive several
Fourier-Legendre series expansions. By using specialization, inner product, and Parseval’s
identity, those series expansions are used to find various Ramanujan-like series in Section 3.
The paper ends with two remarks. To ensure accuracy, all formulas appearing in this paper
were verified numerically by Mathematica.

2 Some Fourier-Legendre series expansions

Recall the Legendre polynomial [9, pp. 983–985]

Pn(x) =
1

2n n!

dn

dxn
(x2 − 1)n.

It is well-known that
∫ 1

−1

Pn(x)Pm(x) dx =
2

2n+ 1
δmn,

where δmn denotes the Kronecker delta. This implies that (Pn(x))
∞

n=0 are orthogonal on
[−1, 1]. Now, we define

P̃n(x) = Pn(2x− 1).

Since x → 2x − 1 is an affine transformation that bijectively maps [0, 1] to [−1, 1], we see
that (P̃n(x))

∞

n=0 are orthogonal on [0, 1] with

∫ 1

0

P̃n(x)P̃m(x) dx =
1

2n+ 1
δmn.

Moreover, we have

P̃n(x) =
1

n!

dn

dxn
(x2 − x)n = (−1)n

n
∑

k=0

(

n

k

)(

n+ k

k

)

(−x)k. (6)
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Let f(x) ∈ L[0, 1]. The Fourier-Legendre series is defined by

f(x) =
∞
∑

n=0

anP̃n(x),

where

an = (2n+ 1)

∫ 1

0

f(x)P̃n(x) dx. (7)

The following three lemmas display some features of the coefficients of variant Fourier-
Legendre series.

Lemma 1. Let f(x) ∈ L[0, 1]. If f(x) =
∑

∞

n=0 anP̃n(x), then

f(1− x) =
∞
∑

n=0

(−1)nanP̃n(x).

Proof. Let a∗n be the nth coefficient of the Fourier-Legendre series for f(1− x). By (7), we
have

a∗n = (2n+ 1)

∫ 1

0

f(1− x)P̃n(x) dx

= (2n+ 1)

∫ 1

0

f(t)P̃n(1− t) dt (use t = 1− x)

= (2n+ 1)

∫ 1

0

f(t)(−1)nP̃n(t) dt = (−1)nan,

where we have used the fact that P̃n(1−t) = Pn(−(2t−1)) = (−1)nPn(2t−1) = (−1)nP̃n(t).

Lemma 2. Let f(x) ∈ L[0, 1]. If f(x) = f(1− x) for x ∈ [0, 1] and f(x) =
∑

∞

n=0 anP̃n(x),
then an = 0 when n is odd.

Proof. Using (7), we rewrite an as

an = (2n+ 1)

(

∫ 1/2

0

f(x)P̃n(x) dx+

∫ 1

1/2

f(x)P̃n(x) dx

)

= (2n+ 1)

(

∫ 1/2

0

f(x)P̃n(x) dx+

∫ 1/2

0

f(1− t)P̃n(1− t) dt

)

(use t = 1− x)

= (2n+ 1)

∫ 1/2

0

(1 + (−1)n)f(x)P̃n(x) dx (use f(t) = f(1− t)).

This leads to an = 0 when n is odd.
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Recall Bonnet’s recursion formula [9, Formula 8.914 No.1, p. 985]

(n+ 1)Pn+1(x) = (2n+ 1)xPn(x)− nPn−1(x).

This implies that

(2n+ 1)xP̃n(x) =
n+ 1

2
P̃n+1(x) +

2n+ 1

2
P̃n(x) +

n

2
P̃n−1(x),

which yields the following result.

Lemma 3. Let f(x) ∈ L[0, 1] and f(x) =
∑

∞

n=0 anP̃n(x). If

xf(x) =
∞
∑

n=0

bnP̃n(x),

then for all n ≥ 1,

bn =
n+ 1

2(2n+ 3)
an+1 +

1

2
an +

n

2(2n− 1)
an−1. (8)

The following two lemmas establish some identities that we will need later to simplify
the coefficients of the Fourier-Legendre series.

Lemma 4. For any non-negative integer n,

2n
∑

k=0

(−1)k
(

2n

k

)(

2n+ k

k

)(

2k

k

)

42n−k =

(

2n

n

)2

. (9)

This identity (9) appears as (6.35) in [8], and is credited to E. T. Bell without providing a
proof. For completeness, following Tauraso’s suggestion [14], we demonstrate a proof based
on the Wilf-Zeilberger method (WZ-method).

Proof. Rewrite (9) as
2n
∑

k=0

(−1)k
(

2n
k

)(

2n+k
k

)(

2k
k

)

42n−k

(

2n
n

)2 = 1. (10)

Let

F (n, k) =
(−1)k

(

2n
k

)(

2n+k
k

)(

2k
k

)

42n−k

(

2n
n

)2 .

Using the WZ-method, we find

G(n, k) = − 2(4n+ 3)k3

(2n− k + 1)(2n− k + 2)(2n+ 1)2
F (n, k).

Now it suffices to check

F (n+ 1, k)− F (n, k) = G(n, k + 1)−G(n, k). (11)
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Notice that

F (n+ 1, k) =
4(2n+ k + 2)(2n+ k + 1)(n+ 1)2

(2n− k + 2)(2n− k + 1)(2n+ 1)2
F (n, k),

F (n, k + 1) = −(2k + 1)(2n+ k + 1)(2n− k)

2(k + 1)3
F (n, k),

G(n, k + 1) =
(4n+ 3)(2k + 1)(2n+ k + 1)

(2n− k + 1)(2n+ 1)2
F (n, k);

with these (11) becomes the alleged identity

4(2n+ k + 2)(2n+ k + 1)(n+ 1)2

(2n− k + 2)(2n− k + 1)(2n+ 1)2
− 1

=
(4n+ 3)(2k + 1)(2n+ k + 1)

(2n+ 1− k)(2n+ 1)2
+

2(4n+ 3)k3

(2n+ 1− k)(2n+ 2− k)(2n+ 1)2
?

Combining the fractions shows that each side leads to

(4n+ 3)(2 + 5k + k2 + 6n+ 12kn+ 4n2 + 8kn2)

(2n− k + 1)(2n− k + 2)(2n+ 1)2
.

So (11) does actually hold. Since G is telescoping, we finally obtain

2n
∑

k=0

F (n, k) = const.

This constant does not depend on n. Thus (10), and so (9), follows from setting n = 0.

Similarly, applying the WZ-method, we can establish

Lemma 5. For any non-negative integer n,

2n
∑

k=0

(−1)k
(

2n

k

)(

2n+ k

k

)

3 · 7 · · · (4k − 1)

(2k + 1)k!
(

2k
k

) =
1

(4n+ 1)4n

(

2n

n

)

; (12)

2n
∑

k=0

(−1)k
(

2n

k

)(

2n+ k

k

)

5 · 9 · · · (4k + 1)

(2k + 3)(2k + 1)k!
(

2k
k

) =
1

(4n+ 3)(1− 4n)4n

(

2n

n

)

. (13)

Now we are ready to establish some Fourier-Legendre series in explicit form.

Theorem 6. For x ∈ (0, 1),

1
√

x(1− x)
=

∞
∑

n=0

(4n+ 1)π

16n

(

2n

n

)2

P̃2n(x). (14)
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Proof. Let f(x) = 1/
√

x(1− x). Then f(x) = f(1 − x) for all x ∈ (0, 1). Using Lemma 2,
an = 0 for odd n. Moreover,

a2n = (4n+ 1)

∫ 1

0

f(x)P̃2n(x) dx.

Invoking (6) leads to

a2n = (4n+ 1)
2n
∑

k=0

(−1)k
(

2n

k

)(

2n+ k

k

)
∫ 1

0

xk−1/2(1− x)−1/2 dx

= (4n+ 1)
2n
∑

k=0

(

2n

k

)(

2n+ k

k

)

(−1)kB(k + 1/2, 1/2),

where B(x, y) is the Euler Beta function. Using

Γ(1/2) =
√
π and Γ(k + 1/2) =

(2k)!

4k k!

√
π, (15)

it follows that

B(k + 1/2, 1/2) =
Γ(k + 1/2)Γ(1/2)

Γ(k + 1)
=

(2k)!

4k k!2
π =

π

4k

(

2k

k

)

.

This, together with (9), implies

a2n = (4n+ 1)π
2n
∑

k=0

(−1)k
(

2n

k

)(

2n+ k

k

)(

2k

k

)

4−k =
(4n+ 1)π

16n

(

2n

n

)2

,

which proves (14).

Applying (8) to (14) gives

x
√

x(1− x)
=

∞
∑

n=0

(4n+ 1)π

2 · 16n
(

2n

n

)2

P̃2n(x)

+
∞
∑

n=0

(4n+ 3)(2n+ 1)π

4 · 16n(n+ 1)

(

2n

n

)2

P̃2n+1(x). (16)

While applying (8) to (16) yields

x2

√

x(1− x)
=

∞
∑

n=0

(4n+ 1)(8n2 + 4n− 3)π

8 · 16n(n+ 1)(2n− 1)

(

2n

n

)2

P̃2n(x)

+
∞
∑

n=0

(4n+ 3)(2n+ 1)π

4 · 16n(n+ 1)

(

2n

n

)2

P̃2n+1(x). (17)
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Notice that
√

x(1− x) =
x

√

x(1− x)
− x2

√

x(1− x)
.

Combining (16) and (17) leads to

Theorem 7. For x ∈ (0, 1),

√

x(1− x) =
1

8

∞
∑

n=0

(4n+ 1)π

16n(n+ 1)(1− 2n)

(

2n

n

)2

P̃2n(x). (18)

Applying the above process to (18) yields

Theorem 8. For x ∈ (0, 1),

(

√

x(1− x)
)3

=
9

82

∞
∑

n=0

(4n+ 1)π

16n(n+ 1)(n+ 2)(1− 2n)(3− 2n)

(

2n

n

)2

P̃2n(x). (19)

By mathematical induction, we conclude

Theorem 9. Let m be a positive odd integer, and let p = (m+ 1)/2. Then

(

√

x(1− x)
)m

=
(m!!)2

8p

∞
∑

n=0

(4n+ 1)π

16n(n+ 1) · · · (n+ p− 1)(1− 2n) · · · (2p− 1− 2n)

(

2n

n

)2

P̃2n(x).

In terms of the Pochhammer symbol, (a)k := a(a + 1) · · · (a + k − 1) for k ≥ 1, the above

expression can be rewritten compactly as

(

√

x(1− x)
)m

=
(m!!)2

16p

∞
∑

n=0

(4n+ 1)π

16n(n+ 1)p(1/2− n)p

(

2n

n

)2

P̃2n(x). (20)

Next, let f(x) = [x(1− x)]−1/4. Using Lemma 2, an = 0 for odd n. Moreover, in view of
(6),

a2n = (4n+ 1)
2n
∑

k=0

(−1)k
(

2n

k

)(

2n+ k

k

)
∫ 1

0

xk−1/4(1− x)−1/4 dx

= (4n+ 1)
2n
∑

k=0

(

2n

k

)(

2n+ k

k

)

(−1)kB(k + 3/4, 3/4). (21)

Using (15) and

Γ(k + 3/4) =
3 · 7 · · · (4k − 1)

4k
Γ(3/4),
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we have

B(k + 3/4, 3/4) =
Γ(k + 3/4)Γ(3/4)

Γ(k + 3/2)

=
4Γ2(3/4)√

π

3 · 7 · · · (4k − 1)(k + 1)!

(2(k + 1))!

=
4Γ2(3/4)√

π

3 · 7 · · · (4k − 1)

2(2k + 1)k!
(

2n
n

) .

Substituting this into (21) and then applying (12) yields

a2n =
2Γ2(3/4)√

π

1

4n

(

2n

n

)

.

Notice that
Γ(3/4)Γ(1/4) =

π

sin(π/4)
=

√
2 π. (22)

Theorem 10. For x ∈ (0, 1),

1
4

√

x(1− x)
=

4π3/2

Γ2(1/4)

∞
∑

n=0

1

4n

(

2n

n

)

P̃2n(x). (23)

Finally, applying (6), (13) and (22) gives

Theorem 11. For x ∈ (0, 1),

4

√

x(1− x) =
π3/2

2Γ2(3/4)

∞
∑

n=0

4n+ 1

4n(4n+ 3)(1− 4n)

(

2n

n

)

P̃2n(x). (24)

3 Some new Ramanujan-like series

The Fourier-Legendre series expansions (14), (18), (19), (20), (23) and (24), along with their
specialization, inner product and Parseval’s identity, will enable us to find many Ramanujan-
like series involving powers of central binomial coefficients.

First, replacing 2x− 1 by t in (14), (16) and (18),

Theorem 12. For |t| < 1,

1√
1− t2

=
1

2

∞
∑

n=0

(4n+ 1)π

16n

(

2n

n

)2

P2n(t);

t√
1− t2

=
1

4

∞
∑

n=0

(4n+ 3)(2n+ 1)π

16n(n+ 1)

(

2n

n

)2

P2n+1(t);

√
1− t2 =

1

8

∞
∑

n=0

(4n+ 1)π

16n(n+ 1)(1/2− n)

(

2n

n

)2

P2n(t).
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These recover Formulas 8.922 No. 3–5 in [9, p. 988], for which I am unable to find
references to their proofs. It is interesting to compare these identities with the well-known
generating function of the central binomial coefficients:

1√
1− t2

=
∞
∑

n=0

1

4n

(

2n

n

)

t2n.

Furthermore, let x = cos2(θ/2) in (14), (18)–(20), respectively. Then 2x− 1 = cos θ, and
P̃2n(x) = P2n(cos θ).

Theorem 13. For θ ∈ (0, π),

∞
∑

n=0

4n+ 1

16n

(

2n

n

)2

P2n(cos θ) =
2

π sin θ
, (25)

∞
∑

n=0

4n+ 1

16n(n+ 1)(1/2− n)

(

2n

n

)2

P2n(cos θ) =
8 sin θ

π
, (26)

∞
∑

n=0

4n+ 1

64n(n+ 1)(n+ 2)(1/2− n)(3/2− n)

(

2n

n

)2

P2n(cos θ) =
32 sin3 θ

9π
, (27)

∞
∑

n=0

4n+ 1

64n(n+ 1)p(1/2− n)p

(

2n

n

)2

P2n(cos θ) =
16p sinm θ

2m(m!!)2π
, (28)

where m is a positive odd integer and p = (m+ 1)/2.

Identity (26) appeared in [9, p. 989] as Formula 8.925 No. 2. Next, let x = cos2(θ/2) in
(23) and (24), respectively.

Theorem 14. For θ ∈ (0, π),

∞
∑

n=0

1

4n

(

2n

n

)

P2n(cos θ) =

√
2 Γ2(1/4)

4
√
sin θπ3/2

, (29)

∞
∑

n=0

4n+ 1

4n(4n+ 3)(1− 4n)

(

2n

n

)

P2n(cos θ) =

√
2 sin θ Γ2(3/4)

π3/2
. (30)

Based on Theorems 13 and 14, via specialization, we find some Ramanujan-like series as
follows.
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Example 1. Recall that P2n(0) = (−1)n
(

2n
n

)

/4n. Letting θ = π/2 in Theorem 13 yields

∞
∑

n=0

(−1)n(4n+ 1)

64n

(

2n

n

)3

=
2

π
, (31)

∞
∑

n=0

(−1)n(4n+ 1)

64n(n+ 1)(1/2− n)

(

2n

n

)3

=
8

π
, (32)

∞
∑

n=0

(−1)n(4n+ 1)

64n(n+ 1)(n+ 2)(1/2− n)(3/2− n)

(

2n

n

)3

=
32

9π
, (33)

∞
∑

n=0

(−1)n(4n+ 1)

64n(n+ 1)p(1/2− n)p

(

2n

n

)3

=
16p

2m(m!!)2π
, (34)

where m is a positive odd integer and p = (m+ 1)/2. (31) reveals Bailey’s classical formula
(See [1], or [3, Formula 5.5.24, p. 184]), which was originally obtained via hypergeometric
functions.

Example 2. Let θ = π/2 in Theorem 14. Then

∞
∑

n=0

(−1)n

16n

(

2n

n

)2

=

√
2Γ2(1/4)

4π3/2
, (35)

∞
∑

n=0

(−1)n(4n+ 1)

16n(4n+ 3)(1− 4n)

(

2n

n

)2

=

√
2Γ2(3/4)

π3/2
. (36)

We also obtain some interesting series following in another direction:
Example 3. Since Pn(1) = 1 for all n ≥ 0, letting θ = 0 in (30), (26)–(28), respectively,

then splitting the n = 0 term, we find
∞
∑

n=1

4n+ 1

4n(4n+ 3)(4n− 1)

(

2n

n

)

=
1

3
, (37)

∞
∑

n=1

4n+ 1

16n(n+ 1)(1/2− n)

(

2n

n

)2

= −2, (38)

∞
∑

n=1

4n+ 1

16n(n+ 1)(n+ 2)(1/2− n)(3/2− n)

(

2n

n

)2

= −2

3
, (39)

∞
∑

n=1

4n+ 1

16n(n+ 1)p(1/2− n)p

(

2n

n

)2

= − 1

p!(1/2)p
, (40)

where p ∈ N.
Next, let f(x) =

∑

∞

n=0 anP̃n(x) and g(x) =
∑

∞

n=0 bnP̃n(x). If f(x)g(x) ∈ L2[0, 1], then
the inner product of f and g leads to

∞
∑

n=0

(

1√
2n+ 1

an

)

·
(

1√
2n+ 1

bn

)

=

∫ 1

0

f(x)g(x) dx. (41)

11



The inner products of (14) with (18), (14) with (19), (18) with (19) and (14) with (20) lead
to the following

Theorem 15. Let m be a positive odd integer and p = (m+ 1)/2. Then

∞
∑

n=0

4n+ 1

256n(n+ 1)(1/2− n)

(

2n

n

)4

=
16

π2
, (42)

∞
∑

n=0

4n+ 1

256n(n+ 1)(n+ 2)(1/2− n)(3/2− n)

(

2n

n

)4

=
128

27π2
, (43)

∞
∑

n=0

4n+ 1

256n(n+ 1)2(n+ 2)(1/2− n)2(3/2− n)

(

2n

n

)4

=
2048

135π2
, (44)

∞
∑

n=0

(4n+ 1)

256n(n+ 1)p(1/2− n)p

(

2n

n

)4

=
16p[(p− 1)!]2

(m!!)2m!π2
. (45)

Similarly, the inner products of (14) with (23), (14) with (24), (18) with (23), (18) with
(24), (19) with (23), and (19) with (24) lead to

Theorem 16.

∞
∑

n=0

1

64n

(

2n

n

)3

=
Γ4(1/4)

4π3
, (46)

∞
∑

n=0

4n+ 1

64n(4n+ 3)(1− 4n)

(

2n

n

)3

=
4Γ4(3/4)

π3
, (47)

∞
∑

n=0

1

64n(n+ 1)(1/2− n)

(

2n

n

)3

=
Γ4(1/4)

3π3
, (48)

∞
∑

n=0

(4n+ 1)

64n(n+ 1)(1/2− n)(4n+ 3)(1− 4n)

(

2n

n

)3

=
48Γ4(3/4)

5π3
, (49)

∞
∑

n=0

1

64n(n+ 1)(n+ 2)(1/2− n)(3/2− n)

(

2n

n

)3

=
20Γ4(1/4)

189π3
, (50)

∞
∑

n=0

(4n+ 1)

64n(n+ 1)(n+ 2)(1/2− n)(3/2− n)(4n+ 3)(1− 4n)

(

2n

n

)3

=
448Γ4(3/4)

135π3
. (51)

Furthermore, the inner product of (23) and (24) leads to a simple Ramanujan-like series:

∞
∑

n=0

1

16n(4n+ 3)(1− 4n)

(

2n

n

)2

=
1

π
. (52)

In general, taking the inner product (20) with (23) and (24), respectively, yields

12



Theorem 17. Let m be a positive odd integer and p = (m+ 1)/2. Then

∞
∑

n=0

1

64n(n+ 1)p(1/2− n)p

(

2n

n

)3

=
16p(1 · 5 · (4p− 3))2(2p)!Γ4(1/4)

4(m!!)2(4p)!π3
,

(53)
∞
∑

n=0

(4n+ 1)

64n(n+ 1)p(1/2− n)p(4n+ 3)(1− 4n)

(

2n

n

)3

=
16p+1(3 · 7 · (4p− 1))2(2p+ 1)!Γ4(3/4)

2(m!!)2(4p+ 2)!π3
.

(54)

Finally, recall Parseval’s identity: If f(x) ∈ L2[0, 1], then

∞
∑

n=0

[

1√
2n+ 1

an

]2

=

∫ 1

0

f 2(x) dx. (55)

Applying (55) to (23), (24) and (18)–(20), respectively, yields

Theorem 18. Let m be a positive odd integer and p = (m+ 1)/2. Then

∞
∑

n=0

1

16n(4n+ 1)

(

2n

n

)2

=
Γ4(1/4)

16π2
, (56)

∞
∑

n=0

4n+ 1

16n(4n+ 3)2(1− 4n)2

(

2n

n

)2

=
Γ4(3/4)

2π2
, (57)

∞
∑

n=0

4n+ 1

256n(n+ 1)2(1/2− n)2

(

2n

n

)4

=
128

3π2
, (58)

∞
∑

n=0

4n+ 1

256n(n+ 1)2(n+ 2)2(1/2− n)2(3/2− n)2

(

2n

n

)4

=
16384

2835π2
, (59)

∞
∑

n=0

(4n+ 1)

256n(n+ 1)2p(1/2− n)2p

(

2n

n

)4

=
256p(m!)2

(m!!)4(2m+ 1)!π2
. (60)

4 Remarks

We now conclude this paper with two remarks.

1. Recall the complete elliptical integral of the first kind defined by

K(k) :=

∫ π/2

0

dθ
√

1− k2 sin2 θ
.

13



Invoking the generating function of the central binomial coefficients

∞
∑

n=0

1

4n

(

2n

n

)

x2n =
1√

1− x2
for |x| < 1

and Wallis’ formula
∫ π/2

0

sin2n θ dθ =
π

22n+1

(

2n

n

)

,

we have

K(k) =
π

2

∞
∑

n=0

1

16n

(

2n

n

)2

k2n.

Moreover, Watson’s elliptic function identity [3, p. 188] claims

π2

4

∞
∑

n=0

1

64n

(

2n

n

)3

= K2(1/
√
2).

Thus, together with (46), we obtain another proof of the classical result [3, Theorem
1.7, p. 25]:

K

(

1√
2

)

=
Γ2(1/4)

4
√
π

.

2. The neat forms of Fourier-Legendre series in Section 3 rely on the combinatorial iden-
tities (9), (12) and (13). Similar to (9), by the WZ-method, Tauraso [15, Lemma 4.2]
proved

2n
∑

k=0

(−1)k
(

2n

k

)(

2n+ k

k

)(

2k

k

)

42n−kHk =

(

2n

n

)2

H2n.

This enables us to find Ramanujan-like series and other well-known constants involving
the product of the central binomial coefficients and the harmonic numbers like

∞
∑

n=1

1

16n(2n− 1)

(

2n

n

)2

H2n =
6 ln 2− 2

π

and
∞
∑

n=0

1

16n(2n+ 1)

(

2n

n

)(

3H2n+1 +
4

2n+ 1

)

= 8G,

where G is the Catalan constant defined by
∑

∞

n=0(−1)n/(2n + 1)2. The interested
reader is encouraged to pursue results in this direction.

Addendum. After this paper was submitted for publication, the referee brought my attention
to the papers [12] and [5]. The identities (33), (34), and (58)–(60) are found in [12], in which
Levrie used a different approach to derive the Fourier-Legendre series (20). The identities
(58)–(60) were also rediscovered by Cantarini and D’Aurizio [5].
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