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Abstract

In a paper written in 2001, Knopfmacher and Mays introduced the concept of
graph compositions. In another paper written in 2004, Ridley and Mays proved a
theorem on the number of compositions of the Cartesian product of the path graph
with another graph. We build on this theorem to create an algorithm that calculates
the closed-form solutions for the sequences given by the numbers of compositions of the
Cartesian product of the path graph with complete graphs, and we apply this algorithm
to produce two new sequences in the On-Line Encyclopedia of Integer Sequences. We
also demonstrate some unexpected results that arise from these sequences, and try to
explain why they might occur.

1 Introduction

Knopfmacher and Mays [4] defined a composition of a graph G as a partition of V(G) into
vertex subsets whose induced subgraphs are connected, although it can also refer to the
union of those induced subgraphs. Ridley and Mays [5] later proved a theorem which, given
two graphs G and H as well as the numbers of compositions of G and H, gives the number
of compositions of the union of those two graphs.

Besides Knopfmacher, Ridley, and Mays, there have been several other papers on the
theory of compositions. To name a few, Huq [3] gave a result for the number of compositions
of a bipartite graph in terms of exponential functions; Bajguz 12] gave a result for the number
of compositions of trees of connected graphs; and recently, Arendds and others [1] found a
polynomial which gives the number of compositions of complements of certain graphs with
respect to the complete graph. Nevertheless, surprisingly little work has been done in this
field.

We will use the theorem proved by Ridley and Mays, as well as its corollary concerning
Cartesian products of graphs, to develop an algorithm written in pseudocode. This algorithm
takes a positive integer m and yields a closed-form solution for the sequence given by the
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composition of the m-complete graph with path graphs of increasing length. More formally,
it returns a closed-form expression for the sequence (C'(K,, x P,))5,.

We will then apply this algorithm to K5, K3, and K4 to calculate the composition counts
of Ky x P,, K3 x P,, and K, x P, (illustrated below). We will also examine those results
and investigate some of the patterns they display. Finally, we suggest possible avenues for
further research.

1.1 Notation

We make use of the following notation.

e For a graph G, we let V(G) denote the vertices of G, and we let E(G) denote the edges
of G.

e For a graph G, we let C(G) denote the number of compositions of G.
For example, C(Cy) = 12.
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Figure 1: the compositions of Cy

e For graphs G and H, we let G x H denote the Cartesian graph product of G and H.
In other words, the vertices of G x H are V(G) x V(H), and for any combination of
91,92 € V(G) and hy, hy € V(H), (g1, h1) and (g2, ha) are adjacent in G x H iff either
g1 = ¢go and h; and hy are adjacent in H, or hy = he and ¢g; and g, are adjacent in
G. For example, below are illustrated the Cartesian products of some complete graphs
with Py.

Figure 2: Ky X P,




Figure 3: K3 x Py

Figure 4: K4, x P,

e For graphs G and H, we let GUH denote the graph union of G and H, and we let GNH
denote the graph intersection of G and H. In other words, the vertices of G U H are
V(G)UV(H), and the edges of GUH are E(G)UE(H). Likewise, we let GN H denote
the graph intersection of G and H, and so the vertices of GN H are V(G)NV(H), and
the edges of G N H are E(G) N E(H).

2 Algorithm

2.1 Definitions
We make use of the following results by Ridley and Mays [5].

Definition 1 (Type of a vertex pair). A vertex pair (a,b) € V(H)? on a composition H of
a graph G is defined as being type 0 if no edges must be added from G to H in order for a
and b to be connected. Similarly, (a,b) is defined as being type 1 if one edge must be added,
or type 2 if two or more edges must be added.

Theorem 2. Let A and B be graphs. Let Cy(A),...,Cr_1(A) denote the numbers of com-
positions of A in the k cases determined by the possible types of pairs of vertices in AN B,

and for each case r = 0,1,...,k — 1, let M, denote the number of valid compositions of G
obtained by considering all compositions of B. Then C(G) = MyCo(A)+- -+ M} _1Cr_1(A).

Corollary 3. If G, = A x P, for eachn =1,2,3,..., then C(G,) = zM" 'wy, where z is
the 1 x k row vector (1---1), wy is a k x 1 column vector, and M is a k X k matriz.

For convenience, we will also use the following definition in the description of the algo-
rithm.

Definition 4 (Case of a vertex set). For a vertex set V' and a composition H on a graph
G, define the case of V on H as the vector whose elements are given by taking the types of
each pair of vertices in V.



2.2 Statement

The following algorithm takes a positive integer m and yields the values of w; and M which
fulfill the conditions of Corollary 2.1.1 when A = K,,.

Step 1.1.

Step 1.2.

Step 1.3.

Step 2.1.

Step 2.2.

Step 2.3.

Step 2.4.

Step 3.1.

Step 3.2.

Let V(K,,)? denote the arbitrarily ordered set of pairs of vertices of K,,.

Let S’ be the ones vector of length m? Let S be the arbitrarily ordered
set of nonnegative integer vectors whose elements are not greater than the
corresponding elements of S’. (For example, if S" were 15, then S would be

{(0,0),(0,1),(1,0), (1,1))}.)

Remove each element s of S where, for some element (vy,v3) of V(A)?, there
exists some element vy of V(A) where the sum of the elements in s corre-
sponding to (v1,v2) and (ve,v3) is less than the element in s corresponding to

(Ul,Ug).

Let B be K,,, X Ps.

Let B’ be one of the two subgraphs of B which are congruent to K,,. Remove
the edges of B’ from B.

Let V(K,,)? denote the set of pairs of vertices of the subgraph of B congruent
to K, whose edges were not removed from B. Let V(K,,)3 denote the set of
pairs of vertices of B’.

For each element (vy,vy) of V(K,,)3, let n be the element of S corresponding
to (v1,v2), then construct an n-path graph with starting point v; and ending
point v,. Let C' be the graph union of the graphs so constructed.

For each i € [1,]5]], let (wy); be the number of compositions of K, on which
V(K,,) is case i.

For each j € [1,]S]], let C’ be some composition of C' on which the case of
V(K,)3 is K;. Then, for each i € [1, S]], let M;; be the number of composi-
tions of B U C” on which the case of V(K,,)? is S; and the case of V(K,,)3 is
S;.

Example 5. If we apply this algorithm step-by-step to K, the results at each step are as
follows. (For convenience, let {a,as} denote the vertices of K5.)

o At step 1.1, VI(A)? is set to {(as,as)}.

e At step 1.2, S is set to (1), and S is set to {(0), (1)}.

e At step 1.3, no elements are removed from S, so the final value of S is {(0), (1)}.



o At step 2.1, B is set to Ky X P.

e At step 2.2, B’ is set to one of the subgraphs of B which are congruent to A, and then
the edges of B’ are removed from B. (Note that B is now congruent to P;.)

e At step 2.3, V(A)? and V(A)3 are both set to sets of pairs of vertices.

o At step 2.4, the edge that was removed in step 2.2 is added back.
(For convenience, let {(a1,a12)} denote V(A)3, and let {(as1, aze)} denote V(A)2.)

e At step 3.1, (wy); is set to 1, since there is 1 composition of Ky on which (ay, as) is of
type 0. Similarly, (wy )z is also set to 1, so the final value of wy is (1,1).

e At step 3.2, when j = 1, (" is set to a graph with one edge connecting a;; and as.
When i = 1, My is set to 2, since there are 2 compositions of BUC” (illustrated below
in red) on which (a1, a12) and (ag, age) are both of type 0. Similarly, when i = 2, M;3
is set to 3, since there are 3 valid compositions of B U C” (illusrated below in blue).

]
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Figure 5: the compositions of B U C” when j =1

When j = 2, (" is set to a graph with vertices {a11, a2} and no edges. When i = 1,
Moy, is set to 3, since there are 3 valid compositions of B U C” (illustrated below in
yellow). Similarly, when i = 2, My, is set to 4, since there are 4 valid compositions of
BUC" (illustrated below in green). (One composition of BUC” is not counted towards
either entry, since the type of (a1, ai2) on it is 0.)

Figure 6: the compositions of B U C” when j = 2

The final value of M is (?} 2)



2.3 Remarks

Rather than enumerating over each composition of K,, x P, and checking if there exists
some composition of A x P, _; from which it could be built, we need merely construct one
composition of C' for each possible case of V(A)3, then check the compositions of B U C'.
Introducing this substitution makes the algorithm much faster, and its validity is a trivial
corollary of the following theorem.

Theorem 6. Let G and H be two graphs and let G, G be two compositions of G. Then if
V(GNH) is of the same case on G} as on GY, then V(G N H) is of the same case on G} UH
as on G4 U H.

Proof. First, we define the set of missing edges in a path P on a composition H of a graph
G as the set of edges in G\ H.

For any vertex pair (a,b) € V(G N H)?, let P, be the path in G}, U H with endpoints a
and b with the least missing edges, and let P, be a path constructed in G, in the same way.

Suppose that P, has more edges that are not in G; than P, does that are not in Gg, or
vice versa. Then, since the only difference between G} U H and G, U H is in G \ H, there
must exist at least one pair of subpaths in G \ H with the same endpoints, but different
numbers of missing edges.

Let P be the subpath of P, in G\ H with the least missing edges, and let Pj be the
subpath of P, in G\ H, such that P, and P, have the same endpoints (c,d) € V(GNH)? But
since V(GNH) is of the same case on GG} as on G, the number of missing edges in the path in
G, with endpoints (¢, d) with the least missing edges, and the number of missing edges in the
path constructed in G, in the same way, must be equal. This is a contradiction. Therefore,
Py and P, must have the same number of missing edges, so for all (a,b) € V(G N H)?, (a,b)
must be of the same type on G as on Gj,. O



3 Results

3.1 Values

The results of applying the algorithm to K, for m € [1,4], as well as the corresponding
entries in the On-Line Encyclopedia of Integer Sequences (OEIS), are as follows.

1 (0 2) 1,2,4,8,16,... A000079
2 | (1,1) see below  2,12,74,456,2810,17316,...  A078469
3| 15 scebelow 5 114,2712, 64518, 1534872, ... A346273
4 1,5 see below 15,1548,168386,18328142,... A344638

Table 1: the results of the algorithm, applied to K,,

where, for m = 2,

2 3
M_<3 4>, 1)
for m = 3,
8 6 6 6 4
6 4 5 5 3
M=|6 545 3|; (2)
6 5 5 4 3
4 3 3 3 2

and for m = 4,

16 12 12 12 12 12 12 9 9 9 8 8 8 8 5
12 8 10 10 9 10 10 6 8 8 6 6 7 7 4
12 10 8 9 10 10 10 8 6 8 6 7 6 7 4
1210 9 8 10 10 10 8 6 8 7 6 7 6 4
129 10 10 8 10 10 6 8 8 7 7 6 6 4
12 10 10 10 10 8 9 8 8 6 7 6 6 7 4
12 10 10 10 10 9 8 8 8 6 6 7 7 6 4
M=]9 6 8 8 6 & 8 4775555 3 (3)
9 8 6 6 8 8 8 74 755 55 3
9 8 8 8 8 6 6 77455 55 3
8 6 6 7 7 7 6 55 545 55 3
8 6 7 6 7 6 7 55 55455 3
8 7 6 7 6 6 7 55 55 545 3
8 7 7 6 6 7 6 55 555 543
5 4 4 4 4 4 4 3333333 2
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3.2 Properties

The matrices associated with K, have in common several unusual properties. For example,
unlike other graphs’ matrices, the matrices associated with K, are symmetric.

This is because any two vertices on K, are adjacent, so there exists a trivial bijective map
between a possible case of V(A),_; and a composition of K. This means that it is possible,
for all 7 € [1, k|, to choose a composition of G,,_; which is congruent with a composition of
K,,, which in turn means that it is possible for all compositions in all G’ to be congruent with
a composition of K, x P,. Finally, since there exists a bijective map between a composition
in some G’ on which V' (A),_ is of case ¢ and V(A),, is of case j, and one on which V(A),,—
is of case j and V(A), is of case i, it follows that for 4,5 € [1,n], M;; = M;;.

The matrices associated with K, also yield unusually simple recurrence relations; for
example,

C(KQ X Pn+2) = GC(KQ X Pn+1) + C(K2 X Pn), (4)
C(K3 X Pn+2) = 24C(K3 X Pn+1) + 5C(K3 X Pn), (5)
and

C<K4 X Pn+5) = 112C(K4 X Pn+4) — 3460(K4 X Pn+3)
+ 306C<K4 X Pn+2) — 570<K4 X PnJrl) (6)

As Ridley and Mays’s results predict, the dimensions of these matrices are given by the
Bell numbers (sequence A000110 in the OEIS). Nevertheless, the order of the recurrence
relations which describe them are unusually low. Exactly why this happens is not apparent,
although it is likely related to the complete graph’s simplicity of structure.

4 Conclusion

We used the results of Ridley and Mays to develop an algorithm in pseudocode. This
algorithm takes a graph and yields the closed-form solution for the sequence given by the
composition of that graph with path graphs of increasing length.

We applied this algorithm to Ks, K3, and K, to calculate the composition counts of
Ky x P,, K3 x P,, and K4 x P,. We also examined those results and investigated some of
the patterns they display.

Some interesting areas for further research include why complete graphs yield such sim-
ple recurrence relations; how this algorithm could be generalized beyond path graphs; and
whether there might be an even simpler formulation equivalent to the results of this algo-
rithm.

Credit to Prof. Greg Dresden, who helped me greatly throughout the process of writing
this paper.
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