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Abstract

We consider pseudo-involutions in the Riordan group where the generating function

g for the first column of a Riordan array satisfies a palindromic or near-palindromic

functional equation. For those types of equations, we find, for very little work, the

pseudo-involutory companion of g and have a pseudo-involution in a k-Bell subgroup.

There are only slight differences in the ordinary and exponential cases. In many cases,

we also develop a general method for finding B-functions of Riordan pseudo-involutions

in k-Bell subgroups, and show that these B-functions involve Chebyshev polynomials.

We apply our method for many families of Riordan arrays, both new and already

known.

We also have some duality and reciprocity results. Since many of the examples we

discuss have combinatorial significance, we conclude with a few remarks on the general

framework for a combinatorial interpretation of some of the generating function results

we obtain.

1 Preface

This paper is concerned with the Riordan group, first defined by Shapiro et al. [28], a group
of infinite lower triangular matrices with properties generalizing those of the Pascal triangle.
Before starting systematically in Section 2, we will assume some familiarity with the Riordan
group and pseudo-involutions (see [4, 29] for an introductory book and lecture) and make a
few remarks to add some perspective.
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Riordan arrays are useful in enumerating unlabeled or labeled combinatorial structures
consisting of a sequence of nonempty structures of the same type connected to a root struc-
ture, possibly empty and possibly of a different type. Examples of unlabeled structures
include compositions, lattice paths, rooted unlabeled trees, secondary RNA structures, and
directed animals, while examples of labeled structures include sets, set partitions, necklaces
of set partitions, and rooted labeled trees. As we mentioned before, the basic example of
a Riordan array is the Pascal triangle matrix, given by

(
1

1−z
, z
1−z

)
as an ordinary Riordan

array, and by [ez, z] as an exponential Riordan array. Other well-known examples of ordi-
nary Riordan arrays include the RNA matrix (R, zR) (Example 12) and the directed animal
matrix (m̃(z), zm̃(z)) (Example 8). Well-known examples of exponential Riordan arrays are
triangles of the Stirling numbers of the first and second kind.

Desirable properties of Riordan arrays include not only combinatorial meaning, but also
recognizable A- and Z-sequences [21, 23, 27], or B-sequences for pseudo-involutions [5, 6,
10, 12, 13, 14, 20]. Those sequences let us construct Riordan arrays along their rows or
antidiagonals, respectively, since the definition of Riordan arrays implies a column-by-column
construction.

In this paper, we are primarily interested in Riordan arrays with certain special properties
and other arrays closely related to those. One such property is that the Riordan array
be an element of finite order in the Riordan group. It is straightforward to see that the
only real-valued non-identity Riordan arrays of finite order are elements of order 2, i.e.,
involutions. It turns out, however, that the closely related pseudo-involutions are often more
“combinatorial” as they are more likely to contain only nonnegative entries. The second
property of interest is that the Riordan array be contained in a k-Bell subgroup, i.e., be of
the form (g, f) or [g, f ] with f(z) = zg(z)k for some integer k. Some well-known examples
of pseudo-involutions in k-Bell subgroups for various k include the Pascal triangle, the RNA
matrix, and the directed animal matrix mentioned above, as well as arrays (C, zC3) and
(r, zr2), where C = C(z) and r = r(z) are the generating functions for the Catalan and large
Schröder numbers, respectively.

In this article we greatly increase the number of families of “desirable” pseudo-involutions.
We begin in Section 2 by defining a Riordan array, ordinary and exponential, and its asso-
ciated A- and Z-sequence and function, as well the B-sequence and B-function if the array
is a pseudo-involution. This includes the interpretation of the B-sequence of an exponential
Riordan array in terms of a recursive relation on a related array that we call the associated
reduced exponential Riordan array.

In Section 3, we show that, for functions g of Riordan arrays (g, f) or [g, f ], defined
by certain functional relations common in combinatorial contexts (e.g., C = 1 + zC2), we
can easily produce the pseudo-involutory companion f . Furthermore, we show that for
many classic combinatorial examples, where those functional equations involve palindromic
polynomials, the resulting Riordan pseudo-involution is in the k-Bell subgroup for some k.

In Section 4, we develop a general method for finding B-functions of k-Bell Riordan
pseudo-involutions and apply it to determine B-functions for several families of Riordan
arrays, both new and already known. An interesting feature of those B-functions is that
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they all involve Chebyshev polynomials. We also find the relation between the B-function
of a k-Bell Riordan pseudo-involution and the B-function of its aerated version in the 1-Bell
subgroup (simply called the Bell subgroup).

For example, consider walks from (0, 0) to (3n, 0) on or above the x-axis with steps (2, 1),
(1, 2) and (1,−1), a class also considered in Drake [17, Example 1.6.9]. It can be shown that
the ordinary generating function r3 = r3(z) for the counting sequence A027307 of such walks
satisfies the recurrence relation r3 = 1+ z(r23 + r33), from which we can infer that (r3, zr

4
3) is

a pseudo-involution that begins




1 0 0 0 0
2 1 0 0 0
10 10 1 0 0
66 90 18 1 0
498 810 234 26 1



.

However, to find the B-function for zr43, it is better to consider r3 not on its own but as part
of a family of functions rk = rk(z), k ≥ 1, that satisfy the equation rk = 1 + z(rk−1

k + rkk).
This family also includes the generating function r = r(z) for the large Schröder numbers as
r = r2. The functional relation for rk lets us show that the Riordan array (rk, zr

2k−2
k ) is a

pseudo-involution in the (2k− 2)-Bell subgroup, and its B-function is 4
1−z

Uk−2

(
1+z
1−z

)
, where

Un is the n-th Chebyshev polynomial of the second kind. Thus, we obtain Bzr4
3
= 8(1+z)

(1−z)2
.

In Section 5, we extend our results from the previous sections to new pseudo-involutions
where the pseudo-involutory companion f in (g, f) or [g, f ] is more difficult to find given the
function g. For example, we show that the pseudo-involutory companion of the Fibonacci
generating function F = F (z) = 1

1−z−z2
is (F −1)C(F −1) = (zC)◦(F −1), where C = C(z)

is the Catalan generating function, and the array (F, (F − 1)C(F − 1)) begins




1 0 0 0 0 0
1 1 0 0 0 0
2 4 1 0 0 0
3 14 7 1 0 0
5 50 35 10 1 0
8 190 160 65 13 1




However, developing a general method that would simplify finding the B-function of this
array remains an open problem. Nevertheless, we find by computing a few initial terms,
comparing with existing OEIS sequences, and checking by substitution, that

B(F−1)C(F−1)(z) =
1 + z −

√
1− 10z + 5z2

2z
.

Another example of such a function g is the generating function m = m(z) for the Motzkin

numbers with the pseudo-involutory companion f = m−
√
4m−3m2

2
. We show (see Example
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47) how the pseudo-involution
(
m, m−

√
4m−3m2

2

)
can be easily recovered from the Pascal

triangle using an operation we call pseudo-conjugation. As in the previous example, a general
approach to finding the B-function under such an operation remains an open problem.

Among the new pseudo-involutions we find is a family that includes partial noncrossing
matchings and some types of secondary RNA structures. Another new family contains the
pseudo-involution (1/C(−zC2), z/C(−zC2)) in the Bell subgroup, where 1/C(−zC2) is the
generating function for the basketball walks [2, 3, 9]. Yet another new pseudo-involution we
find in a closely related family is (C(zC), zC5(zC)) in the 5-Bell subgroup, where C(zC)
is the generating function for the number of permutations of length 3n, n ≥ 0, that avoid
pattern 132 and decompose into n disjoint 3-cycles (a, b, c) with a > b > c (see Archer and
Graves [1]). Alternatively, C(zC) is the generating function for the number of permutations
that avoid the set of patterns {1342, 3142, 45132} and do not start with a descent.

Finally, we conclude with a few remarks on the general framework for a combinatorial
interpretation of some of the generating function results we have obtained.

2 Introduction

Consider the set F = R[[z]] of formal power series with real coefficients. We define the order
of f(z) ∈ R[[z]], where f =

∑∞
n=0 anz

n, as the smallest index n such that an 6= 0, and let
Fr be the set of all formal power series of order r. Whenever there is no confusion, we will
omit the variable (which we will assume to be z) and simply write f instead of f(z). (Note
that this setup readily generalizes to any field F in place of R, but we restrict ourselves to
R since our interest is motivated by possible combinatorial interpretations of the coefficients
of the formal power series f .)

A lower triangular matrix D = [dij ]i,j≥0 is called a Riordan array (or sometimes, an
ordinary Riordan array) if there exist g ∈ F0 and f ∈ F1 such that, for any k ≥ 0, the
generating function

∑∞
n=0 dnkz

n of the kth column of D is gfk. We will denote this by
writing D = (g, f).

Given a column vector h = [hk]
T
k≥0 and its generating function h(z) =

∑∞
k=0 hkz

k, the
generating function of the product Dh is given by

(g, f) ∗ h =
∞∑

k=0

hkgf
k = g

∞∑

k=0

hkf
k = g · (h ◦ f) = gh(f). (1)

Equation (1) is called the Fundamental Theorem of Riordan Arrays [28] (abbreviated FTRA).
From this identity, it is straightforward to see that the matrix multiplication induces the
following multiplication law for Riordan arrays:

(g, f) ∗ (G,F ) = (g · (G ◦ f), F ◦ f) = (gG(f), F (f)). (2)

Given a function f ∈ F1, let f̄ ∈ F1 denote its compositional inverse. Then we see that the
set of Riordan arrays is closed under matrix multiplication, with (1, z), the identity matrix,
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as the identity element and

(g, f)−1 =

(
1

g ◦ f̄ , f̄

)
=

(
1

g(f̄)
, f̄

)
(3)

for any Riordan array (g, f). This means that the Riordan arrays form a group, called the
Riordan group [28].

Given any Riordan array (g, f), we can write

(g, f) = (G,F ) ∗ (g(0), |f ′(0)|z)

for some G ∈ F0, F ∈ F1, such that G(0) = 1 and F ′(0) = ±1. Note that if both
G,F ∈ Z[[z]], then both 1/G, F̄ ∈ Z[[z]] as well, and moreover, (1/G)(0) = 1 and F̄ ′(0) = ±1.
Since our motivation for considering Riordan arrays is mostly combinatorial, we will assume
from now on, with little loss of generality, that Riordan arrays (g, f) have g(0) = 1 and
f ′(0) = ±1.

For example, consider the Pascal triangle as a lower triangular matrix P =
[(

i
j

)]
i,j≥0

.

The generating function of the kth column of P is

∞∑

i=0

(
i

k

)
zi =

zk

(1− z)k+1
=

1

1− z

(
z

1− z

)k

,

so

P =

(
1

1− z
,

z

1− z

)
. (4)

The Riordan group contains several subgroups whose elements often occur in combina-
torial contexts. Those include:

• the Lagrange subgroup of Riordan arrays of the form (1, f);

• the Appell subgroup of Riordan arrays of the form (g, z), which is normal in the Riordan
group;

• the Bell subgroup of Riordan arrays of the form (g, zg);

• the k-Bell subgroup, for each k ≥ 0, of Riordan arrays of the form (g, zgk), which
yields the Appell subgroup for k = 0 and the Bell subgroup for k = 1;

• the checkerboard subgroup of Riordan arrays of the form (g, f), where g is even and f
is odd, that is (g, f) = (u(z2), zv(z2)) for some u, v ∈ F0;

• more generally, for each k ≥ 1, the k-checkerboard subgroup of Riordan arrays of the
form (u(zk), zv(zk)), where u, v ∈ F0;
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• the derivative subgroup of Riordan arrays of the form (f ′, f) (where the multiplication
law is just the chain rule);

• the hitting time subgroup of Riordan arrays of the form (zf ′/f, f) (these are just
derivative subgroup arrays propagated one column to the left).

Note also that for any Riordan array (g, f), we have

(g, f) = (g, z) ∗ (1, f) = (1, f) ∗ (g(f̄), z),
so that the Riordan group is a semidirect product of its Appell and Lagrange subgroups.

Considering the rows of Riordan arrays, Rogers [27] and Merlini et al. [23] defined the A-
sequence and Z-sequence, respectively, of a Riordan array (g, f), whose generating functions
Af and Z(g,f) satisfy

f = z(Af ◦ f), g =
g(0)

1− z(Z(g,f) ◦ f)
(5)

or, equivalently,

Af =
z

f̄
, Z(g,f) =

g − g(0)

zg
◦ f̄ . (6)

Translating this into relations between the matrix entries of (g, f) = [dij ]i,j≥0, and the
coefficients of Af (z) =

∑∞
j=0 ajz

j and Z(g,f)(z) =
∑∞

j=0 ζjz
j , we obtain

dn+1,k+1 =
∞∑

j=0

ajdn,k+j, n, k ≥ 0,

dn+1,0 =
∞∑

j=0

ζjdn,j, n ≥ 0.

(7)

For more on properties of A- and Z-sequences of Riordan arrays, see, e.g., He and Sprugnoli
[21].

In this paper, our particular interest will be in the Riordan group elements of finite order.
With R as the underlying coefficient field, the only formal power series of finite order with
respect to composition are involutions, and thus, the only non-identity Riordan arrays of
finite order are those of order 2. It is a straightforward exercise to show that if (g, f) is
an involution, i.e., (g, f)2 = (1, z), then either f ′(0) = −1 or f = z, and in the latter case
(g, f) = (±1, z). Thus, non-identity involutions with g(0) = 1 always have f ′(0) = −1. Note
also that (g, f)2 = (1, z) is equivalent to

g · (g ◦ f) = 1, f ◦ f = z. (8)

A Riordan array (g, f) is called a pseudo-involution if (g,−f) is an involution. Equiv-
alently, (g, f) = [dij]i,j≥0 is a pseudo-involution if and only if (g, f)−1 = [(−1)i−jdij ]i,j≥0.
Since (g,−f) = (g, f)∗ (1,−z), it follows that (g, f) is a pseudo-involution if and and only if

(g, f)−1 = (1,−z) ∗ (g, f) ∗ (1,−z) = (g(−z),−f(−z)),
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or, equivalently,

g ◦ (−f) =
1

g
and f̄ = −f(−z) = (−z) ◦ f ◦ (−z).

If (g, f) is a pseudo-involution, we say that g and f are companions. A given g can have
at most one companion f , but a given f has infinitely many companions g. In particular,
it is easy to check [26] that (gk, f) is also a pseudo-involution for any power k. When
f̄ = −f(−z), we will call f pseudo-involutory (so as not use the same term for a function
and a Riordan array).

If (g, f) is a pseudo-involution, then zf ∈ F2 and its coefficient at z2 is 1, thus
√
zf ∈ F1.

Furthermore, it is easy to check that (zf) ◦ (−f) = (−f) · (−z) = zf , and thus, zf is a fixed
point of −f , which implies that if f 6= −z then

√
zf ◦ (−f) = −

√
zf . Moreover, f − z ∈ F2

and (f − z) ◦ (−f) = −z − (−f) = f − z, i.e., f − z is also a fixed point of −f . Therefore,
for a pseudo-involution (g, f) we can define a so-called B-function of f , Bf = Bf (z), such
that

f − z = (zBf ) ◦ (zf) = zfBf (zf). (9)

If Bf (z) =
∑∞

j=0 bjz
j, then this is equivalent to the fact that

dn+1,k+1 = dn,k +
∞∑

j=0

bjdn−j,k+j+1, n, k ≥ 0, (10)

and {bn}n≥0 is called the B-sequence of f . The B-sequence and B-function of a Riordan array
were first introduced in Cheon et al. [12] as the ∆-sequence and ∆-function, respectively,
but were subsequently called the B-sequence and B-function in later papers [19, 20, 26].

Pseudo-involutions often have combinatorial interpretations as distributions of combina-
torial statistics on combinatorial classes. For example, it is easy to check that Pascal triangle
(4) is a pseudo-involution. Furthermore, for the Pascal triangle P , we have

f − z =
z

1− z
− z =

z2

1− z
= zf,

so that Bf = 1. In this case, both the A- and B-sequences simply yield the binomial formula(
n+1
k+1

)
=
(
n
k

)
+
(

n
k+1

)
.

2.1 Exponential Riordan group

The preceding discussion assumed the use of ordinary generating functions. Some adjust-
ments are needed in order to use the exponential generating functions as companions in a
Riordan pair. Specifically, a lower triangular matrix M = [an,k]n,k≥0 is an exponential Rior-
dan array [g, f ] [16, 7], for exponential generating functions g ∈ F0 and f ∈ F1, if the kth

column of M (starting on the left with k = 0) is given by gfk

k!
. It follows that

an,k =

[
zn

n!

]
gfk

k!
=

n!

k!
[zn](gfk) =

n!

k!
dn,k , 0 ≤ k ≤ n, (11)
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where [dn,k]n,k≥0 = (g, f). The FTRA (1) still holds for the exponential Riordan arrays, and
the identity matrix is again given by [1, z].

For example, the Pascal triangle is the exponential Riordan array P = [ez, z] since

an,k =
n!

k!
[zn](zkez) =

n!

k!
[zn−k]ez =

n!

k!(n− k)!
=

(
n

k

)
.

Similarly, for any fixed integer k ≥ 0, the exponential generating function for the Stirling

numbers of the second kind S(n, k) is (ez−1)k

k!
, so the matrix [S(n, k)]n,k≥0 is the exponential

Riordan array [1, ez−1]. Likewise, letting s(n, k), 0 ≤ k ≤ n, be the signed Stirling numbers
of the first kind, we have

[s(n, k)]n,k≥0 = [S(n, k)]−1
n,k≥0 = [1, ez − 1]−1 = [1, (ez − 1)] = [1, log(1 + z)].

Therefore, for the signless Stirling numbers of the first kind, c(n, k) = (−1)n−ks(n, k), we
obtain

[c(n, k)]n,k≥0 = [1,−z] ∗ [1, log(1 + z)] ∗ [1,−z] = [1,− log(1− z)] =

[
1, log

(
1

1− z

)]
.

The involutions and pseudo-involutions in the exponential Riordan group are defined
just like those in the Riordan group: [g, f ] is an involution if [g, f ]2 = [1, z], and [g, f ] is a
pseudo-involution if [g,−f ] is an involution.

The definition of the B-sequence for the exponential Riordan array also requires some
adjustments so as to preserve the functional relation (9) for the B-function. Specifically,
with an,k and bj defined as in (11) and (10), respectively, let

αn,k =
an,k(
n
k

) , n ≥ k ≥ 0; αn,k = 0, n < k; βj = (2j + 1)! bj , j ≥ 0; (12)

so that αn,k (n ≥ k ≥ 0) is the coefficient at zn−k

(n−k)!
of the power series expansion of g · (f/z)k,

with f/z ∈ F0, and

Bf (z) =
∞∑

j=0

bjz
j =

∞∑

j=0

βj
zj

(2j + 1)!
. (13)

In other words, Bf (z) =
Yf(

√
z)√

z
for some odd exponential generating function Yf (z). Then

αn+1,k+1 = αn,k +
∞∑

j=0

(
n− k

2j + 1

)
βjαn−j,k+j+1, n ≥ k ≥ 0. (14)

For example, the Pascal triangle as the exponential Riordan array P = [ez, z] has f = z,

so zfBf (zf) = f − z = 0 and thus Bf = 0. Therefore, we have αn,k =
(nk)
(nk)

= 1 for all

n ≥ k ≥ 0 and βj = 0 for all j ≥ 0, and thus we see that Equation (14) holds for P .
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Definition 1. Given an exponential Riordan array [g, f ] = [an,k]n,k≥0, define its reduction
by red[g, f ] = [αn,k]n,k≥0, where αn,k is as in (12). We call red[g, f ] the reduced exponential
array associated with [g, f ], and call the sequence {βj}∞j=0 in (12) the beta-sequence of [g, f ].

Since αn,0 = an,0, the exponential generating function for the leftmost column of red[g, f ]
is simply g. Knowing the first column, we can use the sequence {βj}∞j=0 together with (14)
to construct the rest of red[g, f ] recursively. Finally, given any αn,k in red[g, f ], we find
an,k =

(
n
k

)
αn,k to construct the exponential Riordan array [g, f ].

3 Generalized palindromes and the k-Bell subgroup

In this section, we will consider two special cases of a recursive formula for g, the first
component of a Riordan array (g, f), that imply that f = zgk for some k ∈ Z. In other
words, all these Riordan arrays are pseudo-involutions in the k-Bell subgroup.

Consider a polynomial p(z) =
∑ℓ∗

j=ℓ∗
ajz

j , where aℓ∗ , aℓ∗ 6= 0. Then the reciprocal poly-
nomial of p(z) is

prec(z) =
ℓ∗∑

j=ℓ∗

aℓ∗+ℓ∗−jz
j = zℓ∗+ℓ∗p

(
1

z

)
.

Moreover, a polynomial p is called palindromic, or a palindrome, if prec = p.
Finally, we call a function γ = γ(z) a generalized palindrome if

γ(z)

γ
(
1
z

) = zk

for some k ∈ Q. In this case, we call k the darga of γ (stress on the second syllable), denoted
k = dar(γ). For example, for a palindromic polynomial p as above, we have dar(p) = ℓ∗+ ℓ∗.

Let Pd be the set of generalized palindromes of darga d, and let P =
⋃

d∈Q Pd. It is routine
to check that generalized palindromes satisfy the following properties: if γ1 = γ1(z) ∈ Pd1

and γ2 = γ2(z) ∈ Pd2 , then

• γ1γ2 ∈ Pd1+d2 ,

• γ1/γ2 ∈ Pd1−d2 ,

• γr
1 ∈ Prd1 for r ∈ Q,

• γ1(z
r) ∈ Prd1 for r ∈ Q,

• if d1 = d2 = d and γ1 + γ2 6= 0, then γ1 + γ2 ∈ Pd,

• if d1 = 0, then η ◦ γ1 ∈ P0 for any η = η(z) 6= 0.
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Most of the results in this paper stem from two simple observations, one more often useful
in the case of ordinary generating functions, and the other more often useful in the case of
exponential generating functions.

Theorem 2.

1. Let g = g(z) be a function that satisfies a functional relation

g = 1 + zγ(g) = 1 + z · (γ ◦ g), (15)

for some function γ. Then (g, f) and [g, f ] are pseudo-involutions if and only if

f = z
γ(g)

gγ
(

1
g

) . (16)

Moreover, if γ ∈ Pd, then f = zgd−1, so (g, f) and [g, f ] are in the (d − 1)-Bell
subgroup.

2. Let g = g(z) be a function that satisfies a functional relation

g = ezγ(g) = ez·(γ◦g), (17)

for some function γ. Then (g, f) and [g, f ] are pseudo-involutions if and only if

f = z
γ(g)

γ
(

1
g

) . (18)

Moreover, if γ ∈ Pd, then f = zgd, so (g, f) and [g, f ] are in the d-Bell subgroup.

Proof. In the first case, we have

z =
g − 1

γ(g)
.

Recall that for a pseudo-involution (g, f), we have g(−f) = 1/g, so

−f =
g(−f)− 1

γ(g(−f))
=

1
g
− 1

γ
(

1
g

) = − g − 1

gγ
(

1
g

) = − zγ(g)

gγ
(

1
g

) ,

and hence,

f = z
γ(g)

gγ
(

1
g

) .

In the second case, we have

z =
log(g)

γ(g)
,
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so

−f =
log(g(−f))

γ(g(−f))
=

log
(

1
g

)

γ
(

1
g

) = − log(g)

γ
(

1
g

) = − zγ(g)

γ
(

1
g

) ,

and hence,

f = z
γ(g)

γ
(

1
g

) .

We begin with an example where γ is not necessarily a generalized palindrome.

Example 3. Suppose that g = g(z) satisfies the equation g = 1+z(bg−a) for some constants
a, b such that a 6= b (if a = b, then g = 1, so (g, f) is a pseudo-involution whenever f is
pseudo-involutory). Then γ(z) = bz − a and

g =
1− az

1− bz
,

and if (g, f) is a pseudo-involution, then

f = z
bg − a

g ·
(

b
g
− a
) = z

bg − a

b− ag
=

z

1− (a+ b)z
.

As an example, we take a = 1 and b = 2 to get

(
1− z

1− 2z
,

z

1− 3z

)
=




1 0 0 0 0 · · ·
1 1 0 0 0 · · ·
2 4 1 0 0 · · ·
4 14 7 1 0 · · ·
8 46 35 10 1 · · ·
...

...
...

...
...
. . .



.

Note also that letting a = 0 and a = −b, respectively, leads to well-known examples(
1

1−bz
, z
1−bz

)
in the Bell subgroup and

(
1+bz
1−bz

, z
)
in the Appell subgroup, respectively.

Any pseudo-involution (g, zgk) can be expanded into a family of pseudo-involutions as
follows.

Corollary 4. Let g = g(z) be as in Theorem 2, and let k = d− 1 (resp., k = d) if g satisfies
the functional relation (15) (resp., (17)), where γ is a generalized palindrome. Let q ∈ N,
and let p = k/q. Then

(g(zq), zgp(zq))−1 = (g(−zq), zgp(−zq)) .

In particular, this implies the following:
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Special Case 1: for q = k and p = 1, we have
(
g(zk), zg

(
zk
))−1

=
(
g(−zk), zg

(
−zk

))
,

Special Case 2: if q is odd, then (g(zq), zgp(zq)) is a pseudo-involution,

Special Case 3: if k is odd, then
(
g(zk), zg(zk)

)
is a pseudo-involution.

Proof. Let h = h(z) = zgp(zq), then

zq ◦ h = hq = zqgpq(zq) = zqgk(zq) = (zgk) ◦ (zq).

Moreover,

g(−zq) ◦ h = g ◦ (−hq) = g ◦ (−zgk) ◦ zq = 1

g
◦ zq = 1

g(zq)
,

so

(zgp(−zq)) ◦ h = h · (gp ◦ (−hq)) = zgp(zq) ·
(

1

g(zq)

)p

= z,

and therefore
(g(zq), zgp(zq)) (g(−zq), zgp(−zq)) = (1, z).

A similar manipulation shows that (g(−zq), zgp(−zq)) (g(zq), zgp(zq)) = (1, z) as well, and
thus (g(zq), zgp(zq))−1 = (g(−zq), zgp(−zq)).

When q is odd, we have zq ◦ (−z) = (−z)q = −zq = (−z) ◦ zq, so

g(zq) ◦ (−h) = g ◦ (−h)q = g ◦ (−hq) =
1

g(zq)
,

and hence (g(zq), h) is a pseudo-involution.

In fact, note that for odd k in Corollary 4, (g, zgk) is a pseudo-involution if and only
if the array

(
g(zk), zg(zk)

)
is also a pseudo-involution, a fact that we will use later in the

paper. In this situation, if k = pq for some odd integer q ∈ N and p ∈ Q, then we call
(g(zq), zgp(zq)) a q-aeration of (g, zgk), and in particular, if p = 1 and q = k, simply an
aeration of (g, zgk).

We will now discuss some examples where γ ∈ Pd, in particular, when γ is a palindromic
polynomial.

Example 5. (Palindromic trees) Consider the class of vertex-colored rooted ordered trees
with color set {κi | 0 ≤ ℓ∗ ≤ i ≤ ℓ∗} where a vertex v of color κi has weight wt(v) = ai
and is the root of a subtree with i ordered, possibly empty subtrees. Then the weight of a
tree T is defined as the product of weights of its vertices, wt(T ) =

∏
v∈T wt(v). This allows

the weights aj to be negative as well. Then the generating function g = g(z) for the signed
weighted enumeration of such trees is

g = 1 +
ℓ∗∑

i=ℓ∗

aizg
i = 1 + zγ(g), (19)
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where γ = γ(z) =
∑ℓ∗

i=ℓ∗
aiz

i. We say that such a tree satisfies the palindromic condition, or
is palindromic, if ai = ad−i for d = ℓ∗ + ℓ∗ and i ∈ [ℓ∗, ℓ

∗]. Note that, for a palindromic class
of trees as above, the polynomial γ is palindromic as well, and dar(γ) = d.

Alternatively, we can dispense with colors and leave only weights as follows. Consider a
class of rooted ordered trees where a vertex of degree i ∈ [0, ℓ∗] has weight

∑l∗

k=i

(
k
i

)
ak (and

we set ai = 0 for i /∈ [ℓ∗, ℓ
∗]). Note that

∑l∗

k=i

(
k
i

)
ak = [zi]γ(z + 1) for 0 ≤ i ≤ ℓ∗. Let g be

the ordinary generating function for the enumerating sequence of this class. Then G = g− 1
satisfies the equation G = z · (γ(z + 1) ◦G) = zγ(G+ 1), which is equivalent to (19).

Here are several examples (or families of examples) of palindromic trees.

Example 6. (k-ary trees) Consider the class of (incomplete) k-ary trees, where ℓ∗ = ℓ∗ = k
(see Example 5) and all vertices have weight a 6= 0. If g = g(z) is the generating function for
this class, then g = 1+ azgk, so g = Tk(az), where Tk = Tk(z) is the generating function for
the uncolored k-ary trees, satisfying the equation Tk = 1 + zT k

k . We also have γ(z) = azk,
so γ is palindromic with dar(γ) = k + k = 2k, and thus

(
Tk(az), zT

2k−1
k (az)

)

is a pseudo-involution. For example, this yields pseudo-involutions (1 + z, z
1+z

) when k = 0,

( 1
1−z

, z
1−z

) when k = 1, and (C, zC3) when k = 2, where C = C(z) = 1−
√
1−4z
2z

is the Catalan
generating function (see A000108) and zC3 is the generating function of A000245.

Example 7. (Schröder trees) If γ = γ(z) is palindromic and has only two nonzero terms,
then γ = azk + azℓ for some a 6= 0, and dar(γ) = k + ℓ, so

(g, zgk+ℓ−1)

is a pseudo-involution. For example, setting k = 1 and ℓ = 2 yields g = r(az) and the
pseudo-involution (

r(az), zr2(az)
)
,

where r = r(z) is the generating function for the large Schröder numbers A006318 that
satisfies the functional equation r = 1 + zr + zr2. Recall that the n-th large Schröder
number counts the number of Schröder paths, i.e., lattice paths from (0, 0) to (2n, 0) with
steps (1, 1), (1,−1), (2, 0) that stay on or above the x-axis. The related little Schröder
numbers A001003, whose generating function s = s(z) satisfies s = (r − 1)/2 = 1/(1− zr),
count the lattice paths with the same steps and no (2, 0) (“level”) steps on the x-axis.

Example 8. (Motzkin trees) Motzkin trees are ordered trees where each internal vertex has
outdegree 1 or 2. Thus the generating function m for Motzkin trees satisfies the functional
equation m = 1 + zm + z2m2 (see A001006). Let m̃ = 1 + zm be the generating function
for the planted Motzkin trees (i.e., Motzkin trees with the root of degree at most 1), then
m̃ = 1+z(1+(m̃−1)m̃) = 1+z(1−m̃+m̃2), so in this case γ = 1−z+z2, a palindrome with
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dar(γ) = 0 + 2 = 2, and hence (m̃, zm̃) is a pseudo-involution (see A086246). We also note
that m is the generating function for the number of Motzkin paths, i.e., paths from (0, 0) to
(n, 0) with unit steps (1, 1), (1, 0), (1,−1) staying on or above the x-axis, as well as for the
number of (partial) noncrossing matchings of points labeled 1, . . . , n (i.e., if a < b < c < d,
then a matching cannot simultaneously include pairs ac and bd), and m̃ is the generating
function for the number of (partial) noncrossing matchings where 1 is unmatched (or the
matching is empty).

Example 9. (Doubling at the root) Consider a class of colored k-ary trees where the root
of any nonempty tree has 2 possible colors and all other vertices have only one color. The
generating function for such k-ary trees is tk = 2Tk − 1, where Tk is as above. Then

tk = 1 + 2(Tk − 1) = 1 + 2zT k
k = 1 + 2z

(
1 + tk
2

)k

,

so in this case γ = 2
(
1+z
2

)k
is palindromic with dar(γ) = 0+ k = k, and therefore (tk, zt

k−1
k )

is a pseudo-involution. In particular, this yields
(
1+z
1−z

, z
)
for k = 1, and (2C − 1, z(2C − 1))

for k = 2 (A068875).
Similarly, it is easy to check that the functional equation g = 1 + z(1 + g)k yields

g = tk(2
k−1z) and f = zgk−1 for a pseudo-involution (g, f).

Example 10. (Doubling at the leaves) Consider a class of colored k-ary trees where the
leaves of any nonempty tree have 2 possible colors and all internal vertices have only one
color. The generating function uk for such trees satisfies the functional equation

uk = 1 + z(1 + uk
k), (20)

so in this case γ = 1 + zk is palindromic with dar(γ) = 0 + k = k, and therefore (uk, zu
k−1
k )

is a pseudo-involution. Since uk = (1 + z) + zuk
k, we obtain after some routine algebra that

uk = (1 + z)Tk

(
z(1 + z)k−1

)
.

In particular, this yields
(
1+z
1−z

, z
)
for k = 1, and (u2, zu2) for k = 2, where u2(z) = (1 +

z)C(z(1 + z)), or equivalently, zu2 = (zC) ◦ (z + z2), with the coefficient sequence given by
A025227.

Note the following curious duality between the pseudo-involutory functions ztk−1
k and

zuk−1
k from Examples 9 and 10. Since zT k−1

k = (z(1− z)k−1) and 1 + zT k−1
k = (2Tk − 1)/Tk,

we have

ztk−1
k = (z(1 + z)k−1) ◦ (z(1− z)k−1),

zuk−1
k = (z(1− z)k−1) ◦ (z(1 + z)k−1),
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and z(1 + z)k−1 = (−z) ◦ (z(1 − z)k−1) ◦ (−z). Likewise, for the aerations ztk(z
k−1) and

zuk(z
z−1), we have

ztk(z
k−1) = (z + zk) ◦ (z − zk),

zuk(z
k−1) = (z − zk) ◦ (z + zk).

Furthermore, if k is odd, then z + zk = (−z) ◦ (z − zk) ◦ (−z), which implies that both
ztk(z

k−1) and zuk(z
k−1) are pseudo-involutory.

Some well-known pseudo-involutions arise from functions γ that are not polynomials.

Example 11. (Central binomial coefficients) Consider γ(z) = 4z2

1+z
, then γ is palindromic as

a ratio of two palindromic polynomials. Moreover, dar(γ) = (2 + 2)− (0 + 1) = 3, and if

g = 1 + z
4g2

1 + g
,

then g = 1√
1−4z

= B(z) = B, the generating function for the central binomial coefficients.
In this case, we obtain the pseudo-involution

(B, zB2) =

(
1√

1− 4z
,

z

1− 4z

)
.

Example 12. (Secondary RNA structures) A secondary RNA structure can be modeled as
a noncrossing partial matching of points on a straight line where no two adjacent points can
be in the same pair. Let g be the generating function of the counting sequence A004148 for
the secondary RNA structures (see, e.g., Cameron and Nkwanta [10]), then g satisfies the
functional equation

g = 1 + zg + z2g(g − 1).

Then
g − 1 =

zg

1− z2g
= z

g

1− z2g
,

so
(1− z)2

z
◦ g =

(g − 1)2

g
=

z2g

(1− z2g)2
=

z

(1− z)2
◦ (z2g),

or, equivalently,

z2g =

(
z

(1− z)2

)
◦ (1− z)2

z
◦ g = (zC2(−z)) ◦ (1− z)2

z
◦ g.

Therefore,

1− z2g = (1− zC2(−z)) ◦ (1− z)2

z
◦ g = C(−z) ◦ (1− z)2

z
◦ g = C

(
−(1− z)2

z

)
◦ g,
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and hence,

g = 1 + z ·


 z

C
(
− (1−z)2

z

) ◦ g


.

To find the darga of

γ =
z

C
(
− (1−z)2

z

) ,

note that (1− z)2/z is a generalized palindrome of darga (0+2)− (1+1) = 0, and therefore
C(−(1− z)2/z) also has darga 0. Thus, dar(γ) = dar(z) − 0 = 2, and hence (g, zg2−1) =
(g, zg) is a pseudo-involution in the Bell subgroup.

When γ is a quadratic polynomial, not necessarily a palindrome, we have the following
general result.

Theorem 13. For constants a, b, c, where a 6= 0, let f ∈ F1 satisfy the functional equation

f = z(a+ bf + cf 2), (21)

in other words, let f have Af = a+ bz + cz2. Let t = 1+ (b/a)f = (a+ bf)/a. Then h = zt
is pseudo-involutory with Bh = bC(acz).

Note that for c = 0, C(0) = 1 is the constant term of the power series expansion of C(z),
and indeed in that case h = z

1−bz
and Bh = b.

The way we find the B-function in the proof that follows is somewhat ad hoc. We will
develop a more general method for finding B-functions in Section 4.1, then apply it (see
Example 28) to recover this B-function result.

Proof. When b = 0, we have t = 1, h = z, and Bh = Bz = 0. Assume b 6= 0. Substituting
f = (a/b)(t− 1) into (21), we obtain

t = 1 +
b

a
f = 1 +

b

a
z(a+ bf + cf 2)

= 1 +
b

a
z

(
a+ b

a

b
(t− 1) + c

(a
b
(t− 1)

)2)

= 1 + z
(
bt+

ac

b
(t− 1)2

)
,

(22)

and notice that the γ function for t is

γ(z) = bz +
ac

b
(z − 1)2 ∈ P2, (23)

since both summands are palindromic of darga 2. Therefore h = zt2−1 = zt is pseudo-
involutory.
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Finally, for the B-function of h = zt, we have zt = z + z2tBzt(z
2t), i.e., Bzt(z

2t) = t−1
zt
.

Let g = g(z) = 1
b
Bzt(z

2t), then

g =
t− 1

bzt
=

(b/a)f

bzt
=

f

azt
=

f/z

at
=

a+ bf + cf 2

a+ bf

= 1 +
cf 2

a+ bf
= 1 +

cf 2

at
= 1 + acz2t

(
f

azt

)2

= 1 + (aczh) g2,

and g = 1 + (aczh)g2 has a unique power series solution g = C(aczh), which implies that

Bh(z) = bC(acz).

Example 14. If f = zm, where m is the generating function for the Motzkin numbers, then
a = b = c = 1, so h = z(1 + zm) = zm̃ and Bh = C.

Example 15. If f = C−1 = zC2, then f = z(1+2f+f 2), so h = z(1+2f) = z(2C−1) = zt2
from Example 9 and Bh = 2C.

Example 16. If f = zmk, where mk = 1 + kzmk + z2m2
k is the generating function for

the k-Motzkin numbers counting Motzkin paths with horizontal steps of k colors. Then
f = z(1 + kf + f 2), so h = z(1 + kf) = z(1 + kzmk) = zm̃k and Bh = kC. In particular,
letting k = 1 and k = 2 yields Examples 14 and 15, respectively, while letting k = 3 yields
the planted hex trees [15] (see A002212).

Example 17. If f = u2−1 = z(1+u2
2), where u2 is as in Example 10, then f = z(2+2f+f 2),

so h = z(2 + 2f)/2 = z(1 + f) = zu2 and Bh = 2C(2z).

Example 18. If f = r−1, where r is the generating function for the large Schröder numbers,
then r−1 = z(r+r2), i.e., f = z(2+3f+f 2), so h = z(2+3f)/2 = z(3r−1)/2 = z(r+s−1),
where s is the generating function for the little Schröder numbers, and Bh = 3C(2z). The
coefficient sequence of t (that we may call huge Schröder numbers) is given by A238113.

Corollary 19. Let g = g(z) be the function defined by the functional relation

g = 1 + z(a+ bg + cg2)

for some constants a, b, c such that a+ b+ c 6= 0. Let

t = t(z) =
(b+ 2c)g + (a− c)

a+ b+ c
= 1 +

b+ 2c

a+ b+ c
(g − 1).

Then zt is a pseudo-involutory, and its B-function is

Bzt(z) = (b+ 2c)C
(
(a+ b+ c)cz

)
.

17

https://oeis.org/A002212
https://oeis.org/A238113


Proof. Let f = r − 1 in Theorem 13.

Remark 20. In particular, as expected from the prior discussion, t = g when c = a in
Corollary 19, and then zg is pseudo-involutory with Bzg = (b + 2c)C

(
(b + 2c)cz

)
. For

example, when g = m̃, we have a = c = 1 and b = −1 in Corollary 19, so Bzm̃ = C, as
before.

Remark 21. Note also that when a = 0, we obtain a generalization of large and little Schröder
number generating functions r = r(z) and s = s(z), respectively, where

r = 1 + z(br + cr2) = 1 + (b+ c)zrs,

s =
b+ cr

b+ c
=

1

1− czr
= 1 + czrs,

t = r + s− 1 = 1 + (b+ 2c)zrs.

The Schröder numbers correspond to b = c = 1, whereas the Catalan numbers correspond
to b = 0, c = 1. In the latter case, r = s = C, so that t = 2r − 1 = 2C − 1, and we
recover the pseudo-involutory function z(2C − 1). To interpret this combinatorially, notice
that, given some classes of trees enumerated by the coefficient sequences of r and s, the
corresponding structure for t is obtained by taking the combinatorial sum of the r- and
s-structures and identifying the two empty objects. The “doubling” mentioned above for
k-ary trees generalizes in this case to the disjoint sum of the nonempty “large” and “little”
objects.

Another related combinatorial interpretation of r and s is (b, c)-Schröder paths, which
are Schröder paths where level steps L = (2, 0) come in b colors, while up-steps U = (1, 1)
and down-steps D = (1,−1) come in c colors. The large (b, c)-Schröder paths (corresponding
to r) have no further restrictions, while the little (b, c)-Schröder paths (corresponding to s)
additionally have no level steps at height 0.

Alternatively, t counts the (b, c)-Schröder paths, such that if the leftmost D comes before
the leftmost L, then that leftmost D has 2c colors, i.e., twice as many as other downsteps.
To see this, note that any nonempty (b, c)-Schröder path can be uniquely decomposed either
as Uk−1LP1DP2d · · ·DPk or as UkDP1DP2D · · ·DPk for some positive integer k and smaller
(b, c)-Schröder paths P1, . . . , Pk. In the latter case, the leftmost D (marked in bold) can
be colored in 2c, rather than c, colors. Then the number of such paths has the generating
function

1 +
bzr

1− czr
+

2czr

1− czr
= 1 + (b+ 2c)zrs = t.

We conclude this section with two applications of Theorem 2 to exponential Riordan
group. Both of these examples are related to labeled trees.

Example 22. (Rooted labeled trees) The set of labeled trees with vertices {0, 1, . . . , n},
n ≥ 0, rooted at 0 are counted by the sequence 1, 1, 3, 16, 125, 1296, . . . , (n + 1)n−1, . . .
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(A000272 without the initial 1), whose exponential generating function T = T (z) satisfies
the functional equation

T = ezT , (24)

or, equivalently, zT = zezT , i.e., zT = (ze−z). From Equation (17), we have that γ = z, a
palindrome with dar(γ) = 1+1 = 2. Therefore, from the second part of Theorem 2, it follows
that [T, zT 2] is a pseudo-involution in the 2-Bell subgroup of the exponential Riordan group.
An application of Lagrange inversion shows that the companion zT 2 of T is the exponential
generating function of the sequence

{
2n(n+ 1)n−2

}
n≥0

= {0, 1, 4, 24, 200, 2160, 28812, . . . }

(a shifted version of A089946). Similarly, the kth column of the matrix [T, zT 2] has ex-
ponential generating function T · (zT 2)k/k! = zkT 2k+1/k!, which, after applying Lagrange
inversion and some algebraic manipulations, yields

[T, zT 2] =

[
(2k + 1)

(
n

k

)
(n+ k + 1)n−k−1

]

n,k≥0

,

which begins with 


1 0 0 0 0 0
1 1 0 0 0 0
3 6 1 0 0 0
16 45 15 1 0 0
125 432 210 28 1 0
1296 5145 3200 630 45 1



.

Note that the associated Riordan array

[1, zT 2] =

[
2k

(
n

k

)
(n+ k)n−k−1

]

n,k≥0

in the Lagrange subgroup begins




1 0 0 0 0 0
0 1 0 0 0 0
0 4 1 0 0 0
0 24 12 1 0 0
0 200 144 24 1 0
0 2160 1960 480 40 1



.

Example 23. (Rooted labeled trees with 2-colored leaves) Consider a function S = S(z) that
satisfies a functional equation similar to (24):

S = ez(1+S). (25)
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Then zS = zezezS, or, in other words, zS = (zT )◦ (zez), where T is from Example 22. Here,
the function γ from Equation (17) is γ = 1 + z, a palindrome with dar(γ) = 0 + 1 = 1, and
thus [S, zS] is a pseudo-involution in the Bell subgroup of the exponential Riordan group.
It is easy to check directly that zS is pseudo-involutory: note that

zS = (zT ) ◦ (zez) = (ze−z) ◦ (zez) = (−z) ◦ (zez) ◦ (−z) ◦ (zez), (26)

and thus
(zS) = (zez) ◦ (−z) ◦ (zez) ◦ (−z) = (−z) ◦ (zS) ◦ (−z).

The coefficient sequence of S begins 1, 2, 8, 56, 576, 7872, . . . (A349562) and counts rooted
labeled forests with 2-colored leaves. Equivalently, the sequence A349562 counts rooted
labeled trees on vertices 0, 1, . . . , n rooted at 0 with 2-colored leaves (except the singleton
tree 0 is 1-colored). The coefficient sequence of zS begins 0, 1, 4, 24, 224, 2880, 47232, . . .
(see A216857 and A038049) and counts, e.g., rooted labeled trees on vertices 1, 2, . . . , n
with 2-colored leaves (with the exception that the singleton tree is 1-colored). Moreover,
Lagrange inversion for zT and the identity zS = (zT ) ◦ (zez) yield

[
zn

n!

]
zS =

∑n
j=1

(
n
j

)
jn−1

and
[
zn

n!

]
S =

∑n
j=0

(
n
j

)
(j + 1)n−1, and similarly,

[
zn

n!

]
S(zS)k

k!
=

(
n

k

)
(k + 1)

n−k∑

j=0

(
n− k

j

)
(j + k + 1)n−k−1.

Thus, the array

[S, zS] =

[(
n

k

)
(k + 1)

n−k∑

j=0

(
n− k

j

)
(j + k + 1)n−k−1

]

n,k≥0

begins 


1 0 0 0 0 0
2 1 0 0 0 0
8 8 1 0 0 0
56 72 18 1 0 0
576 832 288 32 1 0
7872 12160 5040 800 50 1



,

and the associated array

[1, zS] =

[(
n

k

)
k

n−k∑

j=0

(
n− k

j

)
(j + k)n−k−1

]

n,k≥0
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in the Lagrange subgroup begins




1 0 0 0 0 0
0 1 0 0 0 0
0 4 1 0 0 0
0 24 12 1 0 0
0 224 144 24 1 0
0 2880 2080 480 40 1



.

4 B-sequence and B-function

As we mentioned earlier (see Equation (9) on page 7), given a pseudo-involution (g, f), its
B-sequence {bn}n≥0 and B-function Bf (z) =

∑∞
n=0 bnz

n are defined so that the pseudo-
involutory function f satisfies

f − z = (zBf ) ◦ (zf) = zfBf (zf) =
∞∑

n=0

bn(zf)
n+1. (27)

Note that the Bf depends only on f . In fact, the B-sequence of f , together with the leftmost
column of (g, f), gives us enough information to determine f and the entire matrix (g, f).
For example, the B-function of f = zC3 is BzC3 = 3 + z, a fact that we shall re-establish
later in this section, so its B-sequence is 3, 1, 0, 0, 0, . . . . Looking at the matrix (C, zC3),
whose first few rows and columns are given by




1 0 0 0 0 0
1 1 0 0 0 0
2 4 1 0 0 0
5 14 7 1 0 0
14 48 35 10 1 0
42 165 154 65 13 1



,

we see that, for instance, 154 = 48 + 3 · 35 + 1 · 1. Every entry other than those in the
leftmost column can be computed from this simple 3,1-rule.

4.1 B-functions for ordinary Riordan arrays with palindromic γ

Recall from Theorem 2, that if g = g(z) satisfies the functional equation (15), where γ = γ(z)
is a generalized palindrome of darga d, then (g, zgd−1) is a pseudo-involution. Then

dar

(
γ(z)

zd/2

)
= d− 2 · d

2
= 0,
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so γ(z)

zd/2
is a function of z + 1

z
, or, equivalently, a function of z + 1

z
− 2 = (z−1)2

z
. Define a

function δ = δ(z) so that

δ

(
(z − 1)2

z

)
=

γ(z)

zd/2
, (28)

and suppose that δ(0) 6= 0. Then let the function D = D(z) be defined by

zD2 =
( z

δ2

)
. (29)

In other words, from Equation (6), we have D2 = 1/Az/δ2 and δ2 = AzD2 .

Lemma 24. Let g = g(z) satisfy the functional equation g = 1 + zγ(g), where γ = γ(z) is
a generalized palindrome of darga d, and let the functions δ and D be as in (28) and (29).
Then

(g − 1)2

g
= (zD2) ◦ (z2gd−1). (30)

Proof. We have

(g − 1)2

g
=

(zγ(g))2

g
= z2gd−1 ·

(
γ(g)

gd/2

)2

= z2gd−1 · δ2
(
(g − 1)2

g

)
,

or, equivalently,

z2gd−1 =
( z

δ2

)
◦
(
(g − 1)2

g

)
,

which implies (30), as claimed.

On the other hand, note that for h = h(z) = zgd−1, we have h− z = zhBh(zh), and thus

(zB2
h) ◦ (zh) = (zB2

h) ◦ (z2gd−1) =
(h− z)2

zh
=

(gd−1 − 1)2

gd−1
= gd−1 +

1

gd−1
− 2, (31)

so the final piece we need to find Bh is the family of polynomials pk = pk(z), k ≥ 0, such
that

(zpk) ◦
(
(g − 1)2

g

)
=

(gk+1 − 1)2

gk+1
, (32)

or, equivalently,

(zpk) ◦
(
g +

1

g
− 2

)
= gk+1 +

1

gk+1
− 2.

In addition, consistent with the above definition, we let p−1(z) = 0. Recall that for Cheby-
shev polynomials of the first kind Tk(z), k ≥ 0, defined by Tk(cos θ) = cos(kθ), we have the
identity

Tk

(
z + 1

z

2

)
=

zk + 1
zk

2
.
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Therefore,

pk(z) =
1

z

(
2Tk+1

(
z + 2

2

)
− 2

)
=

(
Tk+1 − 1

z − 1

)
◦
(
z + 2

2

)
. (33)

Consider the Riordan array A156308,

[dn,k]n,k≥0 =

(
1 + z

(1− z)3
,

z

(1− z)2

)
,

where

dn,k =
n+ 1

k + 1

(
n+ k + 1

2k + 1

)
= 2

(
n+ k + 2

2k + 2

)
−
(
n+ k + 1

2k + 1

)
.

Its first few rows are given by 


1 0 0 0 0
4 1 0 0 0
9 6 1 0 0
16 20 8 1 0
25 50 35 10 1



.

Lemma 25. The array [dn,k]n,k≥0 satisfies the identity

[dn,k]n,k≥0

[(
(g − 1)2

g

)k+1
]T

k≥0

=

[
(gn+1 − 1)2

gn+1

]T

n≥0

(34)

(where the superscript T denotes the transpose).

Proof. The proof of this identity follows from the fundamental theorem of Riordan arrays
(1), since

(
1 + z

(1− z)3
,

z

(1− z)2

)
∗

(g−1)2

g

1− (g−1)2

g
z
=

g

1− zg
+

1/g

1− z/g
− 2

1− z
.

Thus, the polynomials pk(z) of (32) are given by

pk(z) =
k∑

j=0

dk,jz
j . (35)

Moreover, letting z = cos θ and applying routine trigonometric identities shows that

T2l+1(z)− 1

z − 1
= (Ul(z) + Ul−1(z))

2,

T2l+2(z)− 1

z − 1
= 2(1 + z)Ul(z)

2,
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where Ul(z), l ≥ 0, defined by Ul(cos θ) =
sin((l+1)θ)

sin θ
, are the Chebyshev polynomials of the

second kind. Therefore, polynomials pk can be also expressed in terms of the polynomials
Ul as follows (see also the notes for A156308):

p2l(z) =

(
Ul

(
z + 2

2

)
+ Ul−1

(
z + 2

2

))2

,

p2l+1(z) = (z + 4)

(
Ul

(
z + 2

2

))2

,

(36)

where we note that U−1(z) = 0. A Riordan array [ck,n]k,n≥0 where the generating function
for row k ≥ 0 is Uk

(
z
2

)
is given by A049310, in other words,

[ck,n]k,n≥0 =

(
1

1 + y2
,

y

1 + y2

)
,

and

ck,n =




(−1)

k+n
2

(
k+n
2

n

)
, if k − n ≥ 0 is even;

0, otherwise.

(37)

The preceding discussion, including Lemmas 24 and 25, implies the following theorem.

Theorem 26. Let g = g(z) satisfy the functional equation g = 1+ zγ(g), where γ = γ(z) is
a generalized palindrome of darga d, and let the functions δ and D be as in (28) and (29).
Then

Bh = D
√
p|d−1|−1(zD2) =





D
√

pd−2(zD2), if d ≥ 2;

0, if d = 1;

D
√

p−d(zD2), if d ≤ 0.

(38)

Proof. Indeed, if d ≥ 2, then from Lemma 24 and Equations (31) and (32) we have

zB2
h = (zp(d−1)−1) ◦ (zD2) = (zpd−2) ◦ (zD2).

If d = 1, then it is easy to see that h = f = z and thus Bh = 0. If d ≤ 0, then we note that

gd−1 +
1

gd−1
− 2 = g1−d +

1

g1−d
− 2,

so, for d ≤ 0, we have

Bh = D
√
p(1−d)−1(zD2) = D

√
p−d(zD2).
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Remark 27. We can combine the steps involved in finding, successively, δ, D, pk, and zB2
h

into explicit formulas for zD2 and zB2
h that involve only γ(z), namely,

zD2 =
(z − 1)2

z
◦
(
zd−1(z − 1)2

γ2(z)

)
,

zB2
h =

(zd−1 − 1)2

zd−1
◦
(
zd−1(z − 1)2

γ2(z)

)
.

(39)

However, we believe that for practical calculations, breaking down the procedure into steps
as described above is more effective.

Example 28. Let us apply Theorem 26 to re-establish Theorem 13. The function t in
Theorem 13 satisfies the equation t = 1 + zγ(t), where γ(z) = bz + ac

b
(z − 1)2 (see (23)) is

palindromic of darga d = 2. Thus, δ
(

(z−1)2

z

)
= γ(z)

z
= b + ac

b
(z−1)2

z
, and hence, δ = δ(z) =

b+ ac
b
z. Therefore,

z

δ2
=

z

(b+ ac
b
z)2

=
z
b2

(1 + ac z
b2
)2

=
z

ac
◦ z

(1 + z)2
◦ acz

b2
,

so

zD2 =
( z

δ2

)
=

b2z

ac
◦ (zC2) ◦ (acz) = b2zC2(acz),

and thus D = bC(acz), so Bzt = D
√

p0(zD2) = D = bC(acz).

4.2 B-functions for exponential Riordan arrays with palindromic

γ

Recall from Theorem 2, that if g = g(z) satisfies the functional equation (17), where γ = γ(z)
is a generalized palindrome of darga d, then the exponential Riordan array [g, zgd] is a
pseudo-involution (as is the ordinary Riordan array (g, zgd)). As in Section 4.1, we have

dar

(
γ(z)

zd/2

)
= d− 2 · d

2
= 0.

Define a function ε = ε(z) so that

ε (log(z)) =
γ(z)

zd/2
, i.e. ε(z) =

γ(ez)

edz/2
, (40)

and suppose that ε(0) = γ(1) 6= 0. Then let the function E = E(z) be defined by

zE = (z/ε) =

(
zedz/2

γ(ez)

)
. (41)

In other words, from Equation (6), we have E = 1/Az/ε and ε = AzE. Then we have the
following lemma.
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Lemma 29. Let g = g(z) satisfy the functional equation g = ezγ(g), where γ = γ(z) is a
generalized palindrome of darga d, and let the functions δ and D be as in (40) and (41).
Then

log g = (zE) ◦
√
z ◦ (z2gd). (42)

Proof. This follows immediately from the fact that

z

ε
◦ log g =

log g

ε(log g))
=

zγ(g)

γ(g)/g
d
2

= zgd/2 =
√

z2gd.

This lets us find the B-function of the pseudo-involutory companion h = zgd of g.

Theorem 30. Let g = g(z) satisfy the functional equation g = ezγ(g), where γ = γ(z) is a
generalized palindrome of darga d, let h = zgd, and let the functions ε and E be as in (40)
and (41). Then

Bh =

(
2 sinh

(
d
2
zE
)

z

)
◦
√
z. (43)

In other words, Bh(z) =
∑∞

j=0 βj
zj

(2j+1)!
, where βj is the coefficient at z2n+1

(2n+1)!
in the power

series expansion of 2 sinh(dzE/2).

Proof. As before, we have

(zB2
h) ◦ (z2gd) =

(h− z)2

zh
=

(gd − 1)2

gd
=

(edz − 1)2

edz
◦ (log g) = 4 sinh2(dz/2) ◦ (log g).

Therefore, from Lemma 29, we obtain

zB2
h = 4 sinh2(dz/2) ◦ (zE) ◦

√
z,

or, equivalently,

Bh =
(2 sinh(dz/2)) ◦ (zE) ◦ √z√

z
=

(
2 sinh

(
d
2
zE
)

z

)
◦
√
z.

Example 31. Consider the set of labeled trees of Example 22 with vertices {0, 1, . . . , n},
n ≥ 0 and rooted at 0. The number of such trees on n + 1 vertices is (n + 1)n−1, and their
exponential generating function T = T (z) is given by the equation T = ezT . Thus, in this
case, we have γ(z) = z of darga d = 1 + 1 = 2, so the pseudo-involutory companion of T is
h = zT 2, and

ε(z) =
ez

ez
= 1, zE = (z/ε) = z,

so

Bh =
2 sinh(z)

z
◦
√
z =

2 sinh(
√
z)√

z
= 2

∞∑

j=0

zj

(2j + 1)!
,
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and thus βj = 2 for all j ≥ 0. We saw in Example 22 that the exponential Riordan arrays
[T, zT 2] and [1, zT 2] are given by

[T, zT 2] =

[
(2k + 1)

(
n

k

)
(n+ k + 1)n−k−1

]

n,k≥0

,

[1, zT 2] =

[
2k

(
n

k

)
(n+ k)n−k−1

]

n,k≥0

,

so their reductions (as in Definition 1) are

red[T, zT 2] =
[
(2k + 1)(n+ k + 1)n−k−1

]
n≥k≥0

,

red[1, zT 2] =
[
2k(n+ k)n−k−1

]
n≥k≥0

,

with all entries above the main diagonal equal to 0. (Here we evaluate the entry at (n, k) =
(0, 0) of [1, zT 2] and red[1, zT 2] as 1, similarly to other entries on the main diagonal where
n = k > 0.) Substituting these values into the recurrence relation (14), we obtain the
following respective identities for n ≥ k ≥ 0:

(2k + 3)(n+ k + 3)n−k−1

= (2k + 1)(n+ k + 1)n−k−1 + 2
∞∑

j=0

(
n− k

2j + 1

)
(2k + 2j + 3)(n+ k + 2)n−k−2j−2,

(k + 1)(n+ k + 2)n−k−1 = k(n+ k)n−k−1 + 2
∞∑

j=0

(
n− k

2j + 1

)
(k + j + 1)(n+ k + 1)n−k−2j−2,

where we canceled the factor of 2 in the second identity. It would be interesting to see a
combinatorial interpretation of the above identities.

Example 32. Consider the function S of Example 23 defined by S = ez(1+S). Then γ(z) =
1 + z is palindromic with darga d = 0 + 1 = 1, so the pseudo-involutory companion of S is
h = zS. Moreover,

ε =
zez/2

1 + ez
=

2z

2 cosh(z/2)
= (z/2) sech(z/2) = (z sech(z)) ◦ (z/2),

so
zE = (z sech(z)) ◦ (z/2) = 2 (z sech(z))

and

Bh =
2 sinh(zE/2)

z
◦
√
z =

2 sinh(z) ◦ (z sech(z))
z

◦
√
z

As in the previous example, we want

βj =

[
zj

(2j + 1)!

]
Bh =

[
z2j+1

(2j + 1)!

](
2 sinh(z) ◦ (z sech(z))

)
.
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This can be found using Lagrange inversion, as we need the odd-power coefficients of
2 sinh(u(z)) where u = u(z) satisfies the equation u = z cosh(u). After some routine manip-
ulations, we obtain

βj =

{
2, if j = 0;∑j

i=0

(
2j+2

i

)
(j + 1− i)2j, if j ≥ 1.

In other words, βj = 2 ·A007106(j + 1), that is twice the number of labeled trees on 2j + 2
vertices with all degrees odd.

We also saw in Example 23 that the exponential Riordan arrays [S, zS] and [1, zS] are
given by

[S, zS] =

[(
n

k

)
(k + 1)

n−k∑

j=0

(
n− k

j

)
(j + k + 1)n−k−1

]

n,k≥0

,

[1, zS] =

[(
n

k

)
k

n−k∑

j=0

(
n− k

j

)
(j + k)n−k−1

]

n,k≥0

,

so their reductions (as in Definition 1) are

red[S, zS] =

[
(k + 1)

n−k∑

j=0

(
n− k

j

)
(j + k + 1)n−k−1

]

n≥k≥0

,

red[1, zS] =

[
k

n−k∑

j=0

(
n− k

j

)
(j + k)n−k−1

]

n≥k≥0

,

with all entries above the main diagonal equal to 0. The matrix red[S, zS] begins



1 0 0 0 0 0
2 1 0 0 0 0
8 4 1 0 0 0
56 24 6 1 0 0
576 208 48 8 1 0
7872 2432 504 80 10 1



,

and the matrix red[1, zS] is simply red[S, zS] shifted 1 row down and 1 column to the right,
with the new first column [1, 0, 0, 0, . . . ]T prepended.

As in the Example 31, it would be interesting to find a combinatorial interpretation of
the recurrence (14) for the exponential Riordan arrays [S, zS] and [1, zS].

4.3 B-sequence and aeration

Even though Theorem 26 and Theorem 30 give general solutions for B-functions, that general
solution can be simplified for some special families, such as when g satisfies (15) and d is even,
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or when g satisfies (17) and d is odd. Then we see from Corollary 4 that (g(zd−1), zg(zd−1)),
or, respectively, (g(zd), zg(zd)), is also a pseudo-involution. The same applies to the cor-
responding exponential Riordan arrays. We shall see now how the B-functions of these
un-aerated and aerated Riordan arrays (both ordinary and exponential) are related.

Theorem 33 (“The Twin Powers Theorem”). Let g = g(z) be a power series with g(0) 6= 0,
and suppose that, for some integer l ≥ 0,

f = zg(z2l+1) or h = zg2l+1(z) (44)

is pseudo-involutory. Then both functions f and h are pseudo-involutory, and

(zB2
h) ◦ (z2l+1) = (zP 2

l ) ◦ (zB2
f ), (45)

where

Pl = Pl(z) =
l∑

j=0

aljz
j (46)

and

alj =
2l + 1

2j + 1

(
l + j

2j

)
, j, l ≥ 0. (47)

Note that we only need to know that one of f or h is a pseudo-involution, then so is the
other one. Note also that alj = 0 if j > l, so [alj]l,j≥0 is a lower triangular matrix. In fact,
it is straightforward to see that

[alj]l,j≥0 =

(
1 + z

(1− z)2
,

z

(1− z)2

)

is the array A111125 that starts with




1 0 0 0 0
3 1 0 0 0
5 5 1 0 0
7 14 7 1 0
9 30 27 9 1



.

Then Pl is the polynomial whose coefficient sequence forms the l-th row of [alj]l,j≥0. For our
proof, we will need a generalized version of this array, [aij(uv)

i−j]i,j≥0.

Lemma 34. The array [aij(uv)
i−j]i,j≥0 satisfies the identity

[
alj(uv)

l−j
]
l,j≥0

[
(u− v)2j+1

]T
j≥0

=
[
u2l+1 − v2l+1

]T
l≥0

(48)

(where the superscript T denotes the transpose).
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This identity has a long history going back to Albert Girard (1629) and Edward Waring
(1762). The article of Gould [18], where it appears as [18, Equation (1)] (up to a simple
change of variables), discusses this history and generalizations to more variables.

The first few rows of (48) are



1 0 0 0 0
3uv 1 0 0 0
5u2v2 5uv 1 0 0
7u3v3 14u2v2 7uv 1 0
9u4v4 30u3v3 27u2v2 9uv 1







u− v

(u− v)3

(u− v)5

(u− v)7

(u− v)9



=




u− v
u3 − v3

u5 − v5

u7 − v7

u9 − v9



.

Proof. The proof of this matrix identity follows from the fundamental theorem of Riordan
arrays (1), since

(
1 + uvy

(1− uvy)2
,

y

(1− uvy)2

)
∗ u− v

1− (u− v)2y
=

u

1− u2y
− v

1− v2y

(we use y instead of z as the main variable here due to substitutions that we will make
later).

Proof of Theorem 33. Note that

z2l+1 ◦ f = f 2l+1 = z2l+1g2l+1(z2l+1) = h(z2l+1) = h ◦ z2l+1,

and therefore h− z = zhBh(zh) = (zBh) ◦ (zh) implies that

f 2l+1 − z2l+1 = h(z2l+1)− z2l+1

= (zBh) ◦
(
z2l+1h(z2l+1)

)
= (zBh) ◦ (z2l+1f 2l+1) = (zBh) ◦

(
(zf)2l+1

)
.

Note also that f − z = (zBf ) ◦ (zf) = zfBf (zf). Then, from equation (48) with u = f and
v = z, we have

(zf)2l+1Bh

(
(zf)2l+1)

)
= f 2l+1 − z2l+1

=
l∑

j=0

alj(zf)
l−j(f − z)2j+1

=
l∑

j=0

alj(zf)
l−j(zf)2j+1(Bf (zf))

2j+1

= (zf)l+1

l∑

j=0

alj(zf)
j(Bf (zf))

2j+1.

Cancelling (zf)l+1 on both sides and replacing zf with z, we obtain

zlBh(z
2l+1) =

l∑

j=0

aljz
jBf (z)

2j+1.
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Now, multiplying both sides by
√
z, we obtain the following compositions of functions on

the respective sides of the equation:

(√
zBh

)
◦ (z2l+1) =

(
√
z

l∑

j=0

aljz
j

)
◦ (zB2

f ) = (
√
zPl) ◦ (zB2

f ). (49)

Finally, squaring both sides of (49), we obtain

(zB2
h) ◦ (z2l+1) = (zP 2

l ) ◦ (zB2
f ).

Example 35. (k-ary trees) Let g = Tk from Example 6, then d = 2k, so 2l + 1 = d − 1 =
2k − 1, i.e., l = k − 1. Then f = zTk(z

2k−1), h = zT 2k−1
k , and

f − z = zTk(z
2k−1)− z = z(Tk(z

2k−1)− 1) =

= z · z2k−1T k
k (z

2k−1) =
(
z2Tk(z

2k−1)
)k

= (zf)k = (zBf ) ◦ (zf),
so zBf = zk, and thus, Bf = zk−1 and zB2

f = z2k−1. Therefore, from Theorem 33,

(zB2
h) ◦ (z2k−1) = (zP 2

k−1) ◦ (z2k−1),

and thus, Bh = Pk−1. For example, k = 2 yields d = 4, l = 1, g = C, f = zC(z3), h = zC3,
Bf = z, and Bh = 3 + z. Likewise, for k = 3, we have BzT3(z5) = z2 and BzT 5

3
= 5 + 5z + z2.

We conclude this section with a few remarks relating the results of Theorems 26 and 33.

Remark 36. Notice that the Riordan arrays [αnk]n,k≥0 and [ank]n,k≥0 only differ by a factor

of 1
1−z

in the first component. This implies that

pk(z) =
k∑

l=0

Pl(z), i.e. Pk(z) = pk(z)− pk−1(z). (50)

Moreover, it is easy to verify, using the fact that Tk(cos θ) = cos(kθ) and Equation (33), that

Pl(z) = Ul

(
z + 2

2

)
+ Ul−1

(
z + 2

2

)
=
√

p2l(z), l ≥ 0. (51)

Corollary 37. Let g, f , h, l be as in Theorem 33, and let δ and D be as in (28) and (29).
Then

Bh = DPl(zD
2) and Bf = zlD(z2l+1).

Proof. Equation (51) implies that for even darga d = 2l + 2, l ≥ 0, in Theorem 26, we have

Bh = D
√
p2l(zD2) = DPl(zD

2),

or, equivalently,
zB2

h = (zP 2
l ) ◦ (zD2).

Therefore, from Equation (45) we obtain

zB2
f = (zD2) ◦ (z2l+1),

and thus,
Bf = zlD(z2l+1).
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4.4 B-functions for doubled k-ary trees

Consider the family tk = tk(z), k ≥ 1, from Example 9. Recall that tk = 2Tk − 1, where
Tk = 1 + zT k

k is the generating function for k-ary trees, and

tk = 1 + 2z

(
1 + tk
2

)k

.

In this case, γ = 2
(
1+z
2

)k
from Equation (15) has darga d = k, so (tk, zt

k−1
k ) is a pseudo-

involution in the (k − 1)-Bell subgroup. Moreover, if k is even (i.e., k − 1 is odd), then by
Corollary 4, (tk(z

k−1), ztk(z
k−1)) is a pseudo-involution in the Bell subgroup.

Consider the δ and D functions for tk. From Equations (28) and (29), we have

δ2
(
(z − 1)2

z

)
=

γ2(z)

zd
=

4(1 + z)2k

22kzk
= 4

(
(1 + z)2

4z

)k

= 4

(
1 +

(z − 1)2

4z

)k

,

so

δ2(z) = 4
(
1 +

z

4

)k
,

and hence,
z

δ2(z)
=

z

4
(
1 + z

4

)k =
z

(1 + z)k
◦ z

4
.

Therefore,

zD2 =
( z

δ2

)
= (4z) ◦

(
z

(1 + z)k

)
= (4z) ◦ (zT k

k ) = 4zT k
k ,

and thus
D = 2T

k/2
k . (52)

From the discussion above, we see that for even k = 2l, the B-function for f = zt2l(z
2l−1)

is quite simple.

Theorem 38. For f = zt2l(z
2l−1), we have Bf = 2zl−1T l

2l(z
2l−1).

Proof. We have Bf = zl−1D(z2l−1) from Corollary 37, and D = 2T
2l/2
2l = 2T l

2l from (52).

For example, when k = 2, i.e., l = 1, we get 2l−1 = 1, f = zt2, and Bf = 2T2 = 2C, as in
Example 15. Similarly, for k = 4, we have l = 2, 2l−1 = 3, f = zt4(z

3), and Bf = 2zT 2
4 (z

3).
Note that it is possible to use Corollary 37 to find Bh for h = zt2l−1

2l . For the remaining
half of the family, where h = zt2l2l+1, l ≥ 0, we find the B-functions directly from Theorem
26.

Lemma 39. For h = zt2l−1
2l , we have

Bh = 2T l
2lPl−1

(
4zT 2l

2l

)
= 2T l

2l · (Ul−1 + Ul−2) ◦ (t2l).

For h = zt2l2l+1, we have
Bh = 2T l+1

2l+1 Ul−1(t2l+1).
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Proof. Note that zD2 = 4zT k
k for D = T

k/2
k . We will make use of the following facts:

z + 2

2
◦ (4zT k

k ) =
4zT k

k + 2

2
= 1 + 2zT k

k = 2Tk − 1 = tk ,

(z + 4) ◦ (4zT k
k ) = 4 + 4zT k

k = 4Tk .

For k = 2l and h = zt2l−1
2l , Corollary 37 implies that

Bh = DPl−1(zD
2) = 2T l

2lPl−1(4zT
2l
2l ) = 2T l

2l · (Ul−1 + Ul−2) ◦ (t2l).

For k = 2l + 1 and h = zt2l2l+1, Theorem 26 implies that

Bh = D
√
pd−2(zD2) = 2T

l+ 1

2

2l+1

√
p2l−1(4zT

2l+1
2l+1 ) = 2T

l+ 1

2

2l+1

√
4 + 4zT 2l+1

2l+1 Ul−1(t2l+1)

= 2T
l+ 1

2

2l+1 · 2T
1

2

2l+1Ul−1(t2l+1) = 4T l+1
2l+1Ul−1(t2l+1).

We can express Bh for h = ztk−1
k as a polynomial in Tk even more simply.

Theorem 40. For h = ztk−1
k , k ≥ 1, and [ck,n]k,n≥0 as in (37), we have

Bh = 2T
k/2
k Uk−2

(√
Tk

)
=

k−2∑

n=0

2n+1ck−2,nT
k+n
2

k . (53)

Proof. We have Bh = φk(Tk), where

φk(z) =

{
2zl · ((Ul−1 + Ul−2) ◦ (2z − 1)) = 2zl(U∗

l−1 + U∗
l−2) , if k = 2l;

4zl+1Ul−1(2z − 1) = 4zl+1U∗
l−1 , if k = 2l + 1.

The polynomial U∗
l (z) = Ul(2z−1) is called the shifted Chebyshev polynomial of the second

kind and has the following properties (derivable from the definition of Uk by replacing θ with
2θ and using applicable trigonometric identities):

U∗
l (z

2) =
U2l+1(z)

2z
,

U∗
l (z

2) + U∗
l−1(z

2) =
U2l+1(z) + U2l−1(z)

2z
= U2l(z).

This implies that, for both k = 2l and k = 2l + 1, we have

φk(z
2) = 2zkUk−2(z),

or, equivalently, φk(z) = 2zk/2Uk−2(
√
z). Applying Lemma 39 now yields the theorem.

Note that k+n
2

= (k−2)+n
2

+ 1 in Equation (53), so all nonzero summands in the above
sum contain only integer powers of Tk. Note also that for k = 1, we have t1 = 1+z

1−z
, whose

Riordan companion is zt01 = z with Bz = 0, which agrees with Theorem 40, since the sum
in the theorem statement is empty for k = 1.
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Example 41. The matrix [ck,n]k,n≥0 begins




1 0 0 0 0 0 0
0 1 0 0 0 0 0

−1 0 1 0 0 0 0
0 −2 0 1 0 0 0
1 0 −3 0 1 0 0
0 3 0 −4 0 1 0

−1 0 6 0 −5 0 1




,

so the matrix [2n+1ck,n]k,n≥0 begins




2 0 0 0 0 0 0
0 4 0 0 0 0 0

−2 0 8 0 0 0 0
0 −8 0 16 0 0 0
2 0 −24 0 32 0 0
0 12 0 −64 0 64 0

−2 0 48 0 −160 0 128




.

Hence, for the first few values of k, we have

Bzt2 = 2T2 = 2C,

Bzt2
3
= 4T 2

3 ,

Bzt3
4
= −2T 2

4 + 8T 3
4 = 2T 2

4 · (2t4 + 1),

Bzt4
5
= −8T 3

5 + 16T 4
5 = 4T 3

5 · 2t5,
Bzt5

6
= 2T 3

6 − 24T 4
6 + 32T 5

6 = 2T 3
6 · (4t26 + 2t6 − 1).

4.5 Generalized Schröder trees

Another family we can analyze similarly to the k-ary trees and double k-ary trees is a special
case of Example 7: a family rk = rk(z), k ≥ 1, that satisfies the equation

rk = 1 + z(rk−1
k + rkk).

Then r1 =
1+z
1−z

= t1 and r2 = r, the generating function for the large Schröder numbers. Note

that in this case, γ = zk−1 + zk in Equation (15), so d = dar(γ) = (k− 1) + k = 2k− 1, and
thus the companion of rk is zr

2k−2
k , i.e., (rk, zr

2k−2
k ) is a pseudo-involution in the (2k−2)-Bell

subgroup.
Consider the δ and D functions for rk. From Equations (28) and (29), we have

δ2
(
(z − 1)2

z

)
=

γ2(z)

zd
=

(1 + z)2z2k−2

z2k−1
=

(1 + z)2

z
= 4 +

(z − 1)2

z
,
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so δ2(z) = z + 4, and thus

zD2 =

(
z

z + 4

)
=

4z

1− z
and D =

2√
1− z

.

Therefore, applying Corollary 37 to h = zr2k−2
k and d = 2k − 1, we get

Bh = D
√
p2k−3(zD2) = D

√
zD2 + 4 Uk−2

(
zD2 + 2

2

)

=
2√
1− z

· 2√
1− z

· Uk−2

(
1 + z

1− z

)
=

4

1− z
Uk−2

(
1 + z

1− z

)

For example, since U0(z) = 1, U1(z) = 2z, and U2(z) = 4z2 − 1, it follows that

Bzr2 = Bzr2
2
=

4

1− z
,

Bzr4
3
=

4

1− z
U1

(
1 + z

1− z

)
=

8(1 + z)

(1− z)2
,

Bzr6
4
=

4

1− z
U2

(
1 + z

1− z

)
=

4(3 + z)(1 + 3z)

(1− z)3
,

and so on. Note that, just like for the previous family, we have r1 =
1+z
1−z

for k = 1, with the
Riordan companion of h = zr01 = z and Bh = Bz = 0.

4.6 Increasing trees of even arity

To conclude this section, we want to give an example of functions f(z) and h(z) as in (44),
where Bh is easier to find, which in turn allows us to find Bf using Equation (45) of Theorem
33.

A (d + 1)-ary increasing tree is a rooted, partially labeled tree in which each internal
vertex has outdegree (arity) d + 1, leaves are unlabeled, internal vertices are labeled with
consecutive integers starting with 1, and labels increase along any path away from the root.
A (d + 1)-ary tree with n internal vertices has dn + 1 leaves and (d + 1)n + 1 vertices in
total. For an extensive treatment of various types of increasing trees, see, e.g., Bergeron
et al. [8]. We also mention that (d + 1)-ary increasing trees are in bijection with d-Stirling
permutations [22], i.e., permutations of {1d, 2d, . . . , nd} where any subsequence a · · · b · · · a
satisfies b ≥ a. From [8, Table 1], we see that the exponential generating function for the
number of such trees with n internal vertices (including the singleton tree when n = 0) is
given by

1

(1− dz)
1

d

.
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We will instead consider these trees according to the number of leaves, i.e., the weight of a
tree with n internal vertices will be zdn+1. This yields the exponential generating function

z

(1− dzd)
1

d

.

To generalize the class of functions under consideration slightly, we let

f = f(z) =
z

(1− czd)
1

d

,

where c is an arbitrary constant. For a nonnegative integer c, this corresponds to allowing c
possible colors for each internal vertex, while leaves remain uncolored. Note that this implies
that

zd ◦ f = fd =
zd

1− czd
=

z

1− cz
◦ zd,

and since z/(1 − cz) is pseudo-involutory, it follows that so is f when d is odd (i.e., when
the outdegree d+ 1 is even). In that case, let l = (d− 1)/2, so that d = 2l + 1.

Note that

f(z) =
z

(1− czd)
1

d

=
∞∑

n=0

(( c
d

)n n∏

j=0

(jd+ 1)

)
xn

n!
,

so the coefficient at xn/n! is an integer if d | c, and the coefficient at xn is an integer if d2 | c.
When d = 1, this yields the coefficient n! at xn/n!, corresponding to the well-known fact
that binary increasing trees are in bijection with permutations. The expression

∏n
j=0(jd+1)

is sometimes denoted (dn+ 1)(!d), i.e., n!, (2n+ 1)!!, (3n+ 1)!!!, etc.
Let g = g(z) = 1/(1 − cz)1/d, then f(z) = zg(zd) as in (45), while the corresponding

function h from (45) is h = zgd = z/(1−cz). Therefore, Bh(z) = c is constant, so zB2
h = c2z,

and thus (45) implies that

(zP 2
l ) ◦ (zB2

f ) = (zB2
h) ◦ (z2l+1) = (c2z) ◦ (z2l+1) = c2z2l+1,

or, equivalently,
zB2

f = (zP 2
l ) ◦ (c2z2l+1),

where Pl = Pl(z) is as in (46).

Example 42. Letting d = 1 (i.e., considering binary increasing trees) yields l = 0 and
Pl = 1, so that Bf = czl = c. Letting d = 3 (i.e., considering quaternary increasing trees)
yields l = 1 and Pl = 3+ z, so for the corresponding function f = f(z) = z/(1− cz3)1/3 (see
A007559 for c = 3), we have

zB2
f = (z(3 + z)2) ◦ (c2z3).

Note that

z(3 + z)2 = (27z) ◦ (z(1 + z)2) ◦
(z
3

)
= (3z) ◦

(
zT 2

3 (−z)
)
◦
( z

27

)
=

z

9
T 2
3

(
− z

27

)
,
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and therefore

zB2
f =

c2z3

9
T 2
3

(
−c2z3

27

)
,

or, equivalently,

Bf =
cz

3
T3

(
−c2z3

27

)
.

In particular, this yields Bf = zT3(−z3/3) for c = 3 and Bf = 3zT3(−3z3) for c = 9.

5 Pseudo-conjugation of pseudo-involutions

In this section, we will give a simple general result useful in obtaining new pseudo-involutions
from the existing ones by compositions with invertible functions. This will be followed by
several applications of that general result. Furthermore, we will find the B-functions for
some of the families of pseudo-involutions in our examples.

Definition 43. Let h be an invertible formal power series, and define the pseudo-inverse ĥ
of h to be ĥ = (−z) ◦ h ◦ (−z).

Note that ĥ = h if and only if h = (−z)◦h◦(−z), i.e., if and only if h is pseudo-involutory.

Note also that, for an arbitrary invertible h, we have ĥ = ĥ = (−z) ◦ h ◦ (−z).

Theorem 44. Let h be an invertible formal power series. Then (g, f) is a pseudo-involution

if and only if (g ◦ h, ĥ ◦ f ◦ h) is a pseudo-involution.

Note that (g ◦h, ĥ◦f ◦h) = (1, h)(g, f)(1, ĥ), with the order of h and ĥ reversed. We call

ĥ ◦ f ◦ h the pseudo-conjugate of f by h. Likewise, (g ◦ h, ĥ ◦ f ◦ h) is the pseudo-conjugate
of (g, f) by (1, h). In each case, we call the corresponding operation pseudo-conjugation.

Corollary 45. Let h be pseudo-involutory. Then (g, f) is a pseudo-involution if and only if
(g ◦ h, h ◦ f ◦ h) is a pseudo-involution.

The same statements also hold for the exponential pseudo-involutions [g, f ] and [g ◦h, ĥ◦
f ◦ h].

We note that Theorem 44 and Corollary 45 have already appeared in He and Shapiro
[20] as Theorem 5.1 and Corollary 5.2, as part of the “very helpful comments” by the first
author of this paper, referred to in [20, Acknowledgments].

Proof of Theorem 44. (g, f) is a pseudo-involution if and only if g(−f) = 1/g, i.e.

g ◦ (−z) ◦ f =
1

g
.
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But then

(g ◦ h) ◦ (−z) ◦ (ĥ ◦ f ◦ h) = g ◦ h ◦ (−z) ◦ (−z) ◦ h ◦ (−z) ◦ f ◦ h

= g ◦ (−z) ◦ f ◦ h =
1

g
◦ h =

1

g ◦ h,

i.e., (g ◦ h, ĥ ◦ f ◦ h) is a pseudo-involution.

The converse follows easily from the above and the facts that g = (g◦h)◦h and ĥ = ĥ.

We note, following He and Shapiro [20], that when h is pseudo-involutory, the Riordan
array

(g ◦ h, h ◦ f ◦ h) = (1, h)(g, f)(1, h)

is a pseudo-involution as a palindromic product of pseudo-involutions.
We will first give a few examples of Corollary 45, where h is pseudo-involutory.

Example 46. Let h =
z

1− z
and g = m̃ of Example 8. Then f = zm̃, so g ◦ h = C, and

h ◦ f ◦ h =
z

1− z
◦ (zm̃) ◦ z

1− z
=

z

1− z
◦ zC

1− z
=

zC

1− z − zC
= zC3.

This uses the identity m̃
(

z
1−z

)
= C, or equivalently, m̃ = C

(
z

1+z

)
. The last of the chain

of equalities is obtained by multiplying through by C and using the identity C − zC2 = 1
twice. Thus, we (re-)obtain pseudo-involution (C, zC3) from (m̃, zm̃).

Example 47. Let h = zm̃ and g =
1

1− z
. Then f =

z

1− z
, so g ◦ h =

1

1− zm̃
= m, and

h ◦ f ◦ h = (zm̃) ◦ z

1− z
◦ (zm̃) =

zC

1− z
◦ (zm̃)

=
zm̃

1− zm̃
C(zm̃) = zm̃mC(zm̃) = (m− 1)C(zm̃).

Thus, we (re-)obtain the pseudo-involution (m, (m− 1)C(zm̃)) and see that the pseudo-
involutory companion to the Motzkin generating function m is

(m− 1)C(zm̃) = m · ((zC) ◦ (zm̃)).

Example 48. Let h = zm̃ and g = 1+z
1−z

. Then f = z, so g ◦ h = 1+zm̃
1−zm̃

= m(1 + zm̃) =
m+ (m− 1) = 2m− 1, and h ◦ f ◦ h = (zm̃) ◦ (zm̃). This yields the pseudo-involution

(2m− 1, (zm̃) ◦ (zm̃)) .

Similarly, we can see that
(

1+h
1−h

, ĥ ◦ h
)
is a pseudo-involution for any invertible function h.

38



Note that the coefficient sequence A348197 of (zm̃) ◦ (zm̃) begins

0, 1, 2, 4, 10, 28, 84, 264, 860, 2880, 9862, 34392, . . . ,

and, curiously, its first 8 terms coincide with those of z(2C − 1). From the 9th term on, it
appears that ((zm̃) ◦ (zm̃))−z(2C−1) = 2z8+20z9+138z10+800z11+ · · · has only positive
coefficients. It would be interesting to see a combinatorial interpretation of that fact.

Example 49. Let h =
z

1 + z
and g = 2C−1. Then f = z(2C−1), so g◦h = (2C−1)◦ z

1 + z
=

2m̃− 1, and

h ◦ f ◦ h =
z

1 + z
◦ (z(2C − 1)) ◦ z

1 + z

=
z

1 + z
◦ z(2m̃− 1)

1 + z
=

z(2m̃− 1)

1 + z + z(2m̃− 1)
=

z(2m̃− 1)

1 + 2zm̃
.

Thus, (
2m̃− 1,

z(2m̃− 1)

1 + 2zm̃

)

is a pseudo-involution. The pseudo-involutory companion

z(2m̃− 1)

1 + 2zm̃
=

1−
√
1− 2z − 3z2

2 + z −
√
1− 2z − 3z2

of 2m̃− 1 corresponds to the coefficient sequence A348189 that begins

0, 1, 0, 0, 2, 0, 6, 8, 24, 60, 148, 396, 1026, 2744, 7350, 19872, 54102, 148104, 407682, . . . .

It would be interesting to see a natural combinatorial interpretation of this sequence.

Now we give some examples of the application of Theorem 44, where h is not necessarily
pseudo-involutory. An easy example involves the Fibonacci generating function.

Example 50. Let g = 1
1−z

and h = z + z2, then f = z
1−z

, ĥ = (z − z2) = zC, F = g ◦ h =
1

1−z−z2
is the generating function for the Fibonacci numbers, and

ĥ ◦ f ◦ h = (zC) ◦ z

1− z
◦ (z + z2) = (zC) ◦ (F − 1) = (F − 1) · C(F − 1).

Thus, (F, (zC) ◦ (F − 1)) is a pseudo-involution. It begins



1 0 0 0 0 0
1 1 0 0 0 0
2 4 1 0 0 0
3 14 7 1 0 0
5 50 35 10 1 0
8 190 160 65 13 1



.
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We note that the pseudo-involutory companion

(zC) ◦ (F − 1) =
1

2

(
1−

√
1− 5z − 5z2

1− z − z2

)

is the generating function for the sequence A344623. The methods for finding B-functions
discussed in this paper do not appear to apply in this case, but comparing a few initial terms
of this pseudo-involution’s B-sequence with existing OEIS sequences allows us to conjecture
and verify the entire B-sequence: it is, in fact, A200031 with the initial 1 replaced by 3.
Thus, y = B(zC)◦(F−1) satisfies the functional equation

y = 3− z − zy + zy2

and is given explicitly by

B(zC)◦(F−1) =
1 + z −

√
1− 10z + 5z2

2z
.

The next pair of examples involves two related families of functions (so related that we
will see that it is, in fact, a single family of functions), with both aerated and non-aerated
versions of those families. These examples rely on the following identity satisfied by the
Catalan generating function C = 1 + zC2:

1 + zC3 = 1 + (C − 1)C = 1− C + C2 = C2 − zC2 = (1− z)C2, (54)

or, equivalently,

1− z =
1− C + C2

C2
=

1− z + z2

z2
◦ C =

1 + z + z2

(1 + z)2
◦ (zC2). (55)

Example 51. Let Tn = Tn(z) be the generating function for the n-ary trees from Example
6, i.e., Tn = 1 + zT n

n . Let g = C and h = zT n−1
n , then f = zC3 and h = z(1 − z)n−1, so

ĥ = z(1 + z)n−1, and hence

ĥ ◦ f ◦ h = (z(1 + z)n−1) ◦ (zC3) ◦ (zT n−1
n ).

However, from Equation (54),

(z(1 + z)n−1) ◦ (zC3) = zC3(1 + zC3)n−1 = zC3
(
(1− z)C2

)n−1
= z(1− z)n−1C2n+1,

so, recalling that z(1− z)n−1 = zT n−1
n , we have

ĥ ◦ f ◦ h =
(
z(1− z)n−1C2n+1

)
◦
(
zT n−1

n

)
= zC2n+1(zT n−1

n ).
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Thus, (C(zT n−1
n ), zC2n+1(zT n−1

n )) is a pseudo-involution in the (2n+ 1)-Bell subgroup.
Note also that Tn = 1/(1− zT n−1

n ), and C = m̃
(

z
1−z

)
, so

C(zT n−1
n ) = m̃

(
zT n−1

n

1− zT n−1
n

)
= m̃(zT n

n ),

and thus
(C(zT n−1

n ), zC2n+1(zT n−1
n )) = (m̃(zT n

n ), zm̃
2n+1(zT n

n )).

Thus, letting n = 0, we recover the pseudo-involution (m̃, zm̃); letting n = 1, we recover
the pseudo-involution (C, zC3).

Letting n = 2 in this example yields the pseudo-involution (C(zC), zC5(zC)). The
function C(zC) is the generating function for the sequence A127632, which is the counting
sequence e.g., for permutations that avoid the set of patterns (1342, 3142, 45132) and do
not start with a descent. Alternatively, as shown by Archer and Graves [1], C(zC) is the
generating function for the number of 132-avoiding permutations of length 3n, n ≥ 0, whose
disjoint cycle decomposition contains only 3-cycles (a, b, c) with a > b > c.

Likewise, letting n = 3 and n = 4, we obtain pseudo-involutions (C(zT 2
3 ), zC

7(zT 2
3 )) and

(C(zT 3
4 ), zC

9(zT 3
4 )), where the first components are the generating functions for sequences

A153295 and A153396, respectively.

Finally, for comparison, note that, for n ≥ 2, we have Tn = 1 + (zT n−2
n )T 2

n , so Tn =
C(zT n−2

n ), and thus (C(zT n−2
n ), zC2n−1(zT n−2

n )) = (Tn, zT
2n−1
n ) is also a pseudo-involution

(see Example 6).

Example 52. The following family is complementary to the one in Example 51. With Tn

as before, let g = 1/C = 1 − zC and h = −zT n
n , then f = zC3 and h = −z/(1 − z)n, so

ĥ = −z/(1 + z)n, and hence

ĥ ◦ f ◦ h = (−z/(1 + z)n) ◦ (zC3) ◦ (−zT n
n ).

However,

(
− z

(1 + z)n

)
◦ (zC3) = − zC3

(1 + zC3)n
= − zC3

((1− z)C2)n
= − z

(1− z)nC2n−3
,

so, recalling that −z/(1− z)n = (−zT n
n ), we have

ĥ ◦ f ◦ h =

(
− z

(1− z)nC2n−3

)
◦ (−zT n

n ) =
z

C2n−3(−zT n
n )

.

Thus, (
1

C(−zT n
n )

,
z

C2n−3(−zT n
n )

)
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is a pseudo-involution in the (2n − 3)-Bell subgroup. In particular, for n = 2, the pseudo-
involution (

1

C(−zC2)
,

z

C(−zC2)

)

is in the Bell subgroup.
Note that, despite the negative signs and division in the generating function 1/C(−zT n

n ),
its sequence of coefficients consists of positive integers only. For example, for n = 2, the
coefficient sequence A166135 of 1/C(−zC2) begins

1, 1, 1, 3, 7, 22, 65, 213, 693, 2352, 8034, . . . ,

and for n = 3, the coefficient sequence A347953 of 1/C(−zT 3
3 ) begins

1, 1, 2, 8, 35, 171, 882, 4744, 26286, 149045, 860596, . . . .

The pseudo-involution
(

1
C(−zC2)

, z
C(−zC2)

)
begins




1 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0
1 2 1 0 0 0 0 0 0
3 3 3 1 0 0 0 0 0
7 8 6 4 1 0 0 0 0
22 21 16 10 5 1 0 0 0
65 64 45 28 15 6 1 0 0
213 197 138 83 45 21 7 1 0
693 642 436 260 140 68 28 8 1




.

The sequence 1/C(−zC2) is the generating function for the basketball walks defined in
Ayyer and Zeilberger [2] and considered using the kernel method in Banderier et al. [3] and
bijectively in Bettinelli et al. [9], i.e., lattice paths starting at (0, 0) that either consist of a
single point, or have only steps from among (1, 1), (1,−1), (1, 2), (1,−2), stay at positive
height except at (0, 0), and end at height 1.

Unfortunately, we were unable to construct a lattice path generalization of basket-
ball walks whose counting sequence would have 1/C(−zT n

n ) as its generating function.
Such a generalization or another natural combinatorial interpretation of the coefficients of
1/C(−zT n

n ) would be interesting to see.
Finally, notice that Tn = 1 + zT n

n and C = m̃
(

z
1−z

)
imply that

C(−zT n
n ) = m̃

( −zT n
n

1 + zT n
n

)
= m̃(−zT n−1

n ),

and thus
(

1

C(−zT n
n )

,
z

C2n−3(−zT n
n )

)
=

(
1

m̃(−zT n−1
n )

,
z

m̃2n−3(−zT n−1
n )

)
.
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The two families of functions in Examples 51 and 52 are complementary in the following
way. We can extend the family of n-ary tree generating functions Tn from n ≥ 1 to all n ∈ Z

using the functional equation Tn = 1 + zT n
n . Then, for n ≥ 0, we have T−n = 1 + zT−n

−n .
Dividing this through by T−n and rearranging terms, we obtain

1

T−n

= 1− z

(
1

T−n

)n+1

,

i.e.
1

T−n

= Tn+1(−z),

or, equivalently,

T−n =
1

Tn+1(−z)
. (56)

Now denote the pseudo-involutory companions in Examples 51 and 52 by

h1,n = zC2n+1(zT n−1
n ), h2,n =

z

C2n−3(−zT n
n )

. (57)

Then

z

C2(−n)−3(−zT−n
−n )

=
z

C−2n−3(−zT n
n+1(−z))

= (−z) ◦ (zC2n+3(zT n
n+1)) ◦ (−z),

or, in other words,
h2,−n = (−z) ◦ h1,n+1 ◦ (−z) = h1,n+1,

and therefore, similarly,

h1,−n = (−z) ◦ h2,n+1 ◦ (−z) = h2,n+1.

As an alternative way to show that functions h1,n and h2,n are pseudo-involutory and yield
pseudo-involutions in the k-Bell subgroups for k = 2n + 1 and k = 2n − 3, respectively, we
can produce the corresponding generalized palindromes γ satisfying (15) for g = C(zT n−1

n )
and g = 1/C(−zT n

n ), respectively.
For g = C(zT n−1

n ), we have

g − 1 = C(zT n−1
n )− 1 = (zC2) ◦ (zT n−1

n ),

which implies

z = (zT n−1
n ) ◦ (zC2) ◦ (g − 1) =

(
z(1− z)n−1

)
◦
(

z

(1 + z)2

)
◦ (g − 1)

=
z(1 + z + z2)n−1

(1 + z)2n
◦ (g − 1) =

(g − 1)(1− g + g2)n−1

g2n
,
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and therefore,

g = 1 + z
g2n

(1− g + g2)n−1
,

so

γ(z) =
z2n

(1− z + z2)n−1
, (58)

which is palindromic with dar(γ) = (2n + 2n) − (0 + 2) · (n − 1) = 2n + 2, and thus, by
Theorem 2, (g, zg2n+1) is a pseudo-involution.

Similarly, for g = 1/C(−zT n
n ), we have

g − 1 =
1

C(−zT n
n )

− 1 = (−zC) ◦ (−zT n
n ) = (−z) ◦ (zC) ◦ (−z) ◦ (zT n

n ),

and therefore

z = (zT n
n ) ◦ (−z) ◦ (zC) ◦ (−z) ◦ (g − 1) =

z

(1 + z)n
◦ (−z) ◦ (z − z2) ◦ (−z) ◦ (g − 1)

=
z

(1 + z)n
◦ (z + z2) ◦ (g − 1) =

z(1 + z)

(1 + z + z2)n
◦ (g − 1) =

(g − 1)g

(1− g + g2)n
,

which implies

g = 1 + z
(1− g + g2)n

g
,

so

γ(z) =
(1− z + z2)n

z
, (59)

which is palindromic with dar(γ) = (0 + 2) · n− (1 + 1) = 2n− 2, and thus, by Theorem 2,
(g, zg2n−3) is a pseudo-involution.

Since both powers 2n+ 1 and 2n− 3 are odd, it follows that the aerations
(
C(z2n+1T n−1

n (z2n+1), zC(z2n+1T n−1
n (z2n+1)

)

and (
1

C(−z2n−3T n
n (−z2n−3))

,
z

C(−z2n−3T n
n (−z2n−3))

)

are also pseudo-involutions in the Bell subgroup. We will denote the pseudo-involutory
companions in those pseudo-involutions as

f1,n = zC(z2n+1T n−1
n (z2n+1)), f2,n =

z

C(−z2n−3T n
n (−z2n−3))

. (60)

As we have seen in Example 35 and Theorem 38, it is often the case that the B-function
for a k-Bell pseudo-involution (g, zgk) is difficult to find directly, whereas the B-function for
the associated aerated pseudo-involution (g(zk), zg(zk)) in the Bell subgroup is somewhat
easier to obtain. Such is the case with the families in Examples 51 and 52.

44



Theorem 53. The B-functions for the pseudo-involutory functions f1,n and f2,n defined in
(60) and h1,n and h2,n defined in (57) are as follows:

• for f1,n = zC(z2n+1T n−1
n (z2n+1)) and h1,n = zC2n+1(zT n−1

n ), we have

Bf1,n = znT n−1
2n−1(−z2n+1) and Bh1,n = T n−1

2n−1(−z)Pn

(
zT 2n−2

2n−1 (−z)
)
,

• for f2,n =
z

C(−z2n−3T n
n (z

2n−3))
and h2,n =

z

C2n−3(−zT n
n )

, we have

Bf2,n = zn−2T n
2n(z

2n−3) and Bh2,n = T n
2n Pn−2

(
zT 2n

2n

)
.

Proof. Let functions δ and D be defined as in (28) and (29), respectively. From Corollary
37, it follows that we only need to find the function D in each case.

For the first family, with γ as in (58) and d = dar(γ) = 2n+ 2, we have

δ2
(
(z − 1)2

z

)
=

γ(z)2

zd
=

1

z2n+2
· z4n

(1− z + z2)2n−2
=

(
z

1− z + z2

)2n−2

=
1

(
1 + (z−1)2

z

)2n−2 ,

so δ2(z) = 1/(1 + z)2n−2 and therefore z/δ2 = z(1 + z)2n−2. This implies

zD2 = z(1 + z)2n−2 = zT 2n−2
2n−1 (−z),

and therefore,
D = T n−1

2n−1(−z).

Likewise, for the second family, with γ as in (59) and d = dar(γ) = 2n− 2, we have

δ2
(
(z − 1)2

z

)
=

γ(z)2

zd
=

1

z2n−2
· (1− z + z2)2n

z2
=

(
1− z + z2

z

)2n

=

(
1 +

(z − 1)2

z

)2n

,

so δ2(z) = (1 + z)2n and therefore z/δ2 = z/(1 + z)2n. This implies

zD2 =

(
z

(1 + z)2n

)
= zT 2n

2n ,

and therefore,
D = T n

2n.

Since in each case, the darga d is even, and hence d−1 is odd, the theorem now follows from
Theorem 2, Theorem 33, and Corollary 37.

Example 54. We will give a few initial examples of the results of Theorem 53.
In the first family, letting n = 0 yields T0 = 1 + z, f = zC

(
z

1+z

)
= zm̃, and Bf =

T−1
−1 (−z) = T2 = C (see (56) for Tn with n < 0). Similarly, letting n = 1 yields f = zC(z3)

and Bf = z; and letting n = 2 yields f = zC(z5C(z5)) and Bf = z2T3(−z5).
In the second family, letting n = 2 yields f = z/C(−zC2) and Bf = T 2

4 (A069271).
Likewise, letting n = 3 yields f = z/C(−z3T 3

3 (z
3)) and Bf = zT 3

6 (z
3) (A212072 with 0

prepended).
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Example 55. We have P0 = 1, P1 = 3 + z, P2 = 5 + 5z + z2, which yields, for the first
family,

Bzm̃ = Bh1,0 = T−1
−1 (−z) = C,

BzC3 = Bh1,1 = P1(z) = 3 + z,

BzC5(zC) = Bh1,2 = T3(−z)P2(zT
2
3 (−z))

= T3(−z)(5 + 5zT 2
3 (−z) + (zT 2

3 (−z))2)

= (5T3 − 5zT 3
3 + z2T 5

3 ) ◦ (−z) = 5 + z2T 5
3 (−z)

= 5 +
∞∑

n=2

(−1)n
5

2n+ 1

(
3n− 2

n− 2

)
zn

= 5 + z2 − 5z3 + 25z4 − 130z5 + . . . ,

and, similarly, for the second family,

Bz/C(−zC2) = Bh2,2 = T 2
4

=
∞∑

n=0

2

3n+ 2

(
4n+ 1

n

)
zn = 1 + 2z + 9z2 + 52z3 + 340z4 + · · · ,

Bz/C3(−zT 3
3
) = Bh2,3 = T 3

6 P1(zT
6
6 ) = T 3

6 (3 + zT 6
6 ) = T 3

6 (2 + T6) = 2T 3
6 + T 4

6

=
∞∑

n=0

3

2n+ 1

(
6n+ 4

n

)
zn = 3 + 10z + 72z2 + 660z3 + 6825z4 + · · · .

Example 56. The form of the functions γ in (58) and (59) corresponding to Examples 51
and 52, respectively, leads us to the following generalization containing both of the above
families:

γ(z) = zk(1− z + z2)n. (61)

Indeed, suppose the function a function g = g(z) satisfies the functional equation

g = 1 + zγ(g) = 1 + zgk(1− g + g2)n.

Note that γ(z) is palindromic with dar(γ) = (k + k) + (0 + 2) · n = 2k + 2n. Therefore, the
function h = h(z) = zg2k+2n−1 is pseudo-involutory by Theorem 2, and thus, f = f(z) =
zg(z2k+2n−1) is also pseudo-involutory by Theorem 33. Moreover,

δ2
(
(z − 1)2

z

)
=

γ(z)2

zd
=

z2k(1− z + z2)2n

z2n+2k
=

(
1− z + z2

z

)2n

=

(
1 +

(z − 1)2

z

)2n

,

so δ2(z) = (1 + z)2n and D = T n
2n , as in the proof of Theorem 53.

For negative indices n = −p < 0, recall from (56) that T−n(z) = 1/Tn+1(−z), and
therefore,

D = T n
2n = T−p

−2p =
1

T−p
2p+1(−z)

= T p
2p+1(−z) = T−n

−2n+1(−z).
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Note that the darga d = 2k+2n is even, so d−1 is odd. Therefore, both f = zg(z2k+2n−1)
and h = zg2k+2n−1 are pseudo-involutory by Theorem 33, and

Bf = Bf (z) = zk+n−1T n
2n(z

2k+2n−1) and Bh = Bh(z) = T n
2nPk+n−1(zT

2n
2n ) (62)

by Corollary 37.

Example 57. (Modulo-k-matched noncrossing matchings) Replacing k with k−1 and letting
n = 1 in Example 56, we get

g = 1 + zgk−1(1− g + g2), f = zg(z2k−1), h = zg2k−1,

and since T n
2n = T2 = C, it follows that

Bf = zk−1C(z2k−1), Bh = CPk−1(zC
2).

For k = 1, we recover g = m̃, f = h = zm̃, Bf = Bh = C, as in Examples 8 and 14.
For k = 2, we find that g is the generating function for the sequence A106228, and

Bf = zC(z3), Bh = CP1(zC
2) = C(3 + zC2) = C(2 + C) = C2 + 2C,

where the latter is the generating function for the sequence A038629.
This example arises combinatorially in several different contexts (see A106228), and we

give another one here. Consider partial noncrossing matchings (see Example 8) on p points
labeled 1 through p from left to right where only points with labels congruent modulo k can
be matched. For k > 1, no pair of points with consecutive labels can be matched, so these
noncrossing matchings are also secondary RNA structures of Example 12.

Let ap be the number of such structures on p points, and consider the functions

Gi = Gi(z) =
∞∑

j=0

akj+iz
j , i = 0, 1, . . . , k − 1.

The point 1 is either unmatched or matched to some point kℓ + 1, where ℓ ≥ 0 and 2ℓ +
1 < p. Matching the point 1 to point kℓ + 1 separates the noncrossing matching into two
submatchings: on the kℓ−1 points labeled 2 through kℓ, and on the p−kℓ−1 points labeled
kℓ + 2 through p. The former submatching is necessarily of length k − 1 mod k, whereas
p− kℓ− 1 ≡ p− 1 mod k. This yields the following generating function equations:

G0(z
k) = 1 + z(zk−1Gk−1(z

k)) + z2(zk−1Gk−1(z
k))(zk−1Gk−1(z

k)),

ziGi(z
k) = z(zi−1Gi−1(z

k)) + z2(zk−1Gk−1(z
k))(zi−1Gi−1(z

k)), i = 1, 2, . . . , k − 1,

where the summands from left to right correspond to the empty string, point 1 unmatched,
and point 1 matched, respectively. Therefore,

G0 = 1 + zGk−1 + (zGk−1)
2,

Gi = Gi−1 + zGk−1Gi−1 = (1 + zGk−1)Gi−1, i = 1, 2, . . . , k − 1,
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which implies that

Gk−1 = (1 + zGk−1)
k−1
(
1 + zGk−1 + (zGk−1)

2
)
.

Now let g(z) = 1+zGk−1(z). Then g satisfies the functional equation g = 1+zgk−1(1−g+g2)
and corresponds to the counting sequence for the noncrossing matchings of length kℓ (ℓ ≥ 0),
where the point 1 is unmatched if the structure is nonempty, and only points with labels
congruent modulo k can be matched.

As noted above, for k = 2, g(z) = 1 + zG1(z) is the generating function for the sequence
A106228. We also note that G0(z) is the generating function for A109081, whereas G0(z

2)+
zG1(z

2) =
∑∞

j=0 ajz
j is the generating function for A215067.

Example 58. The identity (54) is one of many that can be used to produce pseudo-
involutions in k-Bell subgroups involving compositions of functions. Here we find a two-
parameter family of pseudo-involutions similar to those in Examples 51 and 52 using an
identity similar to (54).

Consider a family of functions vk = vk(z), k ∈ Z, defined implicitly by the equation

vk = 1 + z(vk + vkk). (63)

The function

vk =
1

1− z
Tk

(
z

(1− z)k

)
(64)

is the generating function, when k ≥ 1, for the number of lattice paths from (0, 0) to (kn, 0)
on or above the x-axis with steps U = (1, k−1), D = (1,−1), and L = (k, 0), a generalization
of Schröder paths. Furthermore, vk is closely related to functions in several other families
considered earlier in this paper. For example, v0 = 1+z

1−z
= r1 = t1 = u1 , v1 = 1

1−2z
,

v2 = r = r2 (see Section 4.5). Moreover, rewriting (63) as vk = 1+ zvk(1 + vk−1
k ), we obtain

vk = uk−1(zvk), i.e., uk−1 = Azvk and zvk = (z/uk−1), where uk is a function from the family
in Example 10. For nonpositive index values, i.e., for v−k, k ≥ 0, dividing equation (63)
through by v−k and rearranging terms, we obtain

1

v−k

= 1− z

(
1 +

(
1

v−k

)k+1
)
,

which implies that

v−k(z) =
1

uk+1(−z)
.

It is easy to see that, for the function vk, we have γ = z + zk, a palindrome of darga k + 1,
so (vk, zv

k) is a pseudo-involution. Moreover, similarly to the identity (54), we have

1 + zvkk = (1− z)vk . (65)
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As in Example 51, let g = vk and h = zT n−1
n , then g ◦ h = vk(zT

n−1
n ) and f = zvkk , so

ĥ ◦ f ◦ h = (z(1 + z)n−1) ◦ (zvkk) ◦ (zT n−1
n ).

However, from Equation (65),

(z(1 + z)n−1) ◦ (zvkk) = zvk
(
1 + zvkk

)n−1
= zvkk ((1− z)vk)

n−1 = z(1− z)n−1vn+k−1
k ,

so, recalling that z(1− z)n−1 = zT n−1
n , we have

ĥ ◦ f ◦ h =
(
z(1− z)n−1vn+k−1

k

)
◦
(
zT n−1

n

)
= zvn+k−1

k (zT n−1
n ).

Thus, (
vk(zT

n−1
n ), zvn+k−1

k (zT n−1
n )

)
(66)

is a pseudo-involution in the (n+ k − 1)-Bell subgroup.
Similarly, as in Example 52, let g = 1/vk and h = −zT n

n , then g ◦ h = 1/vk(−zT n
n ) and

f = zvkk , so

ĥ ◦ f ◦ h = (−z/(1 + z)n) ◦ (zvkk) ◦ (−zT n
n ).

However, from Equation (65),

(
− z

(1 + z)n

)
◦ (zvkk) = − zvkk

(1 + zvkk)
n
= − zvkk

((1− z)vk)n
= − z

(1− z)nvn−k
k

,

so, recalling that −z/(1− z)n = (−zT n
n ), we have

ĥ ◦ f ◦ h =

(
− z

(1− z)nvn−k
k

)
◦ (−zT n

n ) =
z

vn−k
k (−zT n

n )
.

Thus, (
1

vk(−zT n
n )

,
z

vn−k
k (−zT n

n )

)
(67)

is a pseudo-involution in the (n− k)-Bell subgroup.
Furthermore, since 1/(1− zT n−1

n ) = 1− (−zT n
n ) = Tn, we have

(
vk(zT

n−1
n ), zvn+k−1

k (zT n−1
n )

)
=
(
Tn Tk(zT

n+k−1
n ) , zT n+k−1

n T n+k−1
k (zT n+k−1

n )
)

=
(
Tn Tk(zT

n+k−1
n ) , (zT n+k−1

k ) ◦ (zT n+k−1
n )

)

and
(

1

vk(−zT n
n )

,
z

vn−k
k (−zT n

n )

)
=

(
Tn

Tk(−zT n−k
n )

,
zT n−k

n

T n−k
k (−zT n−k

n )

)

=

(
Tn

Tk(−zT n−k
n )

, (−zT k−n
k ) ◦ (−zT n−k

n )

)
.
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Note also that, for the first components of these pseudo-involutions, we have

Tn Tk(zT
n+k−1
n ) =

Tk(z)

Tk(−z)
◦ (zT n+k−1

n ),

Tn

Tk(−zT n−k
n )

=
Tk(z)

Tk(−z)
◦ (zT n−k

n ).

We leave it as an exercise for the reader to produce the B-functions for the pseudo-
involutions (66) and (67) following the example of Theorem 53. A natural combinatorial
interpretation of these pseudo-involutions would also be of interest.

Example 59. Finally, Examples 51, 52, and 58 are all part of a three-parameter family
of involutions in p-Bell subgroups (for various powers p) involving composition with either
zT n−1

n or −zT n
n . Given d, k, n ∈ Z, k > 0, consider a power series wk with wk(0) = 1 that

satisfies an equation similar to (54) and (65):

1 + zwd−1
k = (1− z)wk

k . (68)

Solving for z, we obtain

z =
wk

k − 1

wd−1
k + wk

k

=
(wk − 1)

∑k−1
j=0 w

j
k

wd−1
k + wk

k

,

or, equivalently,

wk = 1 + z
wd−1

k + wk
k∑k−1

j=0 w
j
k

.

Since the function γ(z) = (zd−1 + zk)/(
∑k−1

j=0 z
j) is a generalized palindrome (having a

palindromic numerator and denominator) of darga dar(γ) = (d − 1 + k) − (0 + k − 1) = d,
Theorem 2 implies that (wk, zw

d−1
k ) is a pseudo-involution.

Now, as in Examples 51, 52, and 58, applying Theorem 44 to (g, f) = (wk, zw
d−1
k ) and

h = zT n−1
n yields the pseudo-involution

(
wk(zT

n−1
n ), zw

k(n−1)+(d−1)
k (zT n−1

n )
)
, (69)

while applying Theorem 44 to (g, f) = (1/wk, zw
d−1
k ) and h = −zT n

n yields the pseudo-
involution (

1

wk(−zT n
n )

,
z

w
kn−(d−1)
k (−zT n

n )

)
. (70)

For example, letting k = 2 and d = 4 yields Examples 51 and 52, whereas letting k = 1
yields Example 58 for vd−1. As an exercise, the reader is invited to make the necessary minor
adjustments needed to adapt formulas (69) and (70) to the case when k < 0.
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5.1 Pseudo-conjugation of exponential pseudo-involutions

All the pseudo-conjugation results stated in Section 5 for ordinary Riordan arrays (g, f)
also apply to exponential Riordan arrays [g, f ]. In this section we give several examples
of pseudo-conjugation of exponential pseudo-involutions. In all of these examples, we start
with the exponential pseudo-involution [ez, z], the Pascal triangle.

Example 60. (Involutions) Let [g, f ] = [ez, z] and h = z + z2/2. Then g ◦ h = ez+z2/2 is
the exponential generating function for the number A000085 of involutions on an n-element
set. Moreover, h = z + z2/2 = (2z) ◦ (z + z2) ◦ (z/2), so h = (2z) ◦ (z + z2) ◦ (z/2) =

(2z) ◦ (zC(−z)) ◦ (z/2) = zC(−z/2), and thus ĥ = (−z) ◦ (zC(−z/2)) ◦ (−z) = zC(z/2) =
1−

√
1− 2z. Therefore,

ĥ ◦ f ◦ h =
(
zC
(z
2

))
◦
(
z +

z2

2

)
= 1−

√
1− 2z − z2,

the exponential generating function of A182037, and thus
[
ez+z2/2, 1−

√
1− 2z − z2

]
is a

pseudo-involution.

Example 61. (Set partitions and necklaces of partitions) Let [g, f ] = [ez, z] and h = ez − 1.
Then g ◦h = ee

z−1 is the exponential generating function for the Bell numbers A000110. We
also have ĥ = (−z) ◦ h ◦ (−z) = (−z) ◦ log(1 + z) ◦ (−z) = log(1/(1 − z)). Therefore, the
exponential pseudo-involutory companion of the Bell numbers is

ĥ ◦ f ◦ h = log

(
1

1− z

)
◦ z ◦ (ez − 1) = log

(
1

2− ez

)
,

the exponential generating function of the sequence A000629 prepended by 0, which counts
necklaces of set partitions. This yields the exponential pseudo-involution

[
ee

z−1, log

(
1

2− ez

)]

that begins 


1 0 0 0 0 0
1 1 0 0 0 0
2 4 1 0 0 0
5 18 9 1 0 0
15 94 72 16 1 0
52 575 600 200 25 1



.

Example 62. (Set partitions with marked elements and rooted labeled trees) Let [g, f ] =
[ez, z] and h = zez. Then g ◦ h = eze

z
is the exponential generating function for A000248

that counts set partitions with one marked element per part. Then

ĥ ◦ f ◦ h = (−z) ◦ (zez) ◦ (−z) ◦ (zez) = zS
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by (26), where S and zS are from Example 23, and zS is the exponential generating function
of A216857, i.e., the coefficients of zS count rooted trees labeled with parts of a partition
with one marked element per part. This yields the exponential pseudo-involution

[
eze

z
, zS

]

that begins 


1 0 0 0 0
1 1 0 0 0
3 6 1 0 0
10 45 15 1 0
41 432 210 28 1



.

6 Conclusion

In this paper, we have developed some general methods for finding ordinary and exponential
pseudo-involutions and their B-sequences, including, in particular, those in a k-Bell sub-
group for some k. We also found several new families of pseudo-involutions of combinatorial
significance. Many of the generating function identities involved, however, still await their
combinatorial interpretation. Those, in particular, include combinatorial interpretations of
several new integer sequences in our paper, as well as of the fact that the pseudo-involutory
functions we have considered are indeed pseudo-involutory. We intend to develop such in-
terpretations in subsequent papers and will only note here that many of those stem from the
generalizations of the Carlitz-Scoville-Vaughn Theorem [11] given by Parker [25] for ordinary
generating functions and by Drake [17] for exponential generating functions.

References

[1] K. Archer and C. Graves, Pattern-restricted permutations composed of 3-cycles,
preprint, April 26 2021. Available at https://arxiv.org/abs/2104.12664.

[2] A. Ayyer and D. Zeilberger. The number of [old-time] basketball games with final score
n : n where the home team was never losing but also never ahead by more than w
points, Electron. J. Combin. 14 (1) (2007), Research Paper 19.

[3] C. Banderier, C. Krattenthaler, A. Krinik, D. Kruchinin, V. Kruchinin, D. Nguyen,
and M. Wallner, Explicit formulas for enumeration of lattice paths: basketball and
the kernel method. In G. Andrews, C. Krattenthaler, and A. Krinik, eds., Lattice Path
Combinatorics and Applications. Developments in Mathematics, Vol. 58, Springer, 2019.
Preprint available electronically at https://arxiv.org/abs/1609.06473.

[4] P. Barry, The Riordan Group, a Primer, Logic Press, 2016.

[5] P. Barry, Chebyshev moments and Riordan involutions, preprint, December 26 2019.
Available at https://arxiv.org/abs/1912.11845.

52

https://oeis.org/A216857
https://arxiv.org/abs/2104.12664
https://www.combinatorics.org/ojs/index.php/eljc/article/view/v14i1r19/pdf
https://arxiv.org/abs/1609.06473
https://arxiv.org/abs/1912.11845


[6] P. Barry, Riordan pseudo-involutions, continued fractions, and Somos-4 sequences, J.
Integer Sequences 22 (2019), Article 19.6.1.

[7] P. Barry, On a family of generalized Pascal triangles defined by exponential Riordan
arrays, J. Integer Sequences 10 (2007), Article 07.3.5.

[8] F. Bergeron, P. Flajolet, and B. Salvy, Varieties of increasing trees, in Proceedings of
CAAP ’92 (Rennes, 1992) Lecture Notes in Comput. Sci., Vol. 581, Springer, 1992,
pp. 24–48.

[9] J. Bettinelli, E. Fusy, C. Mailler, L. Randazzo, A bijective study of basketball walks,
Sém. Lothar. Combin. 77 (2016), Article B77a, 1–24.

[10] N. T. Cameron and A. Nkwanta, On some (pseudo) involutions in the Riordan group,
J. Integer Sequences 8 (2005), Article 05.3.7.

[11] L. Carlitz, R. Scoville, and T. Vaughn, Enumeration of pairs of sequences by rises, falls
and levels, Manuscripta Math. 19 (1976), 211–243.

[12] G.-S. Cheon, S.-T. Jin, H. Kim, and L. W. Shapiro, Riordan group involutions and the
∆-sequence, Disc. Appl. Math. 157 (2009), 1696–1701.

[13] G.-S. Cheon and H. Kim, Simple proofs of open problems about the structure of invo-
lutions in the Riordan group, Lin. Alg. Appl. 428 (2008), 930–940.

[14] G.-S. Cheon, H. Kim and L. W. Shapiro, Riordan group involutions, Lin. Alg. Appl.
428 (2007), 941–952.

[15] E. Deutsch, E. Munarini, and S. Rinaldi, Skew Dyck paths, J. Stat. Plann. Infer. 140
(2010), 2191–2203.

[16] E. Deutsch and L. Shapiro, Exponential Riordan arrays, Lecture Notes, Nankai
University, 2004, http://www.combinatorics.net/ppt2004/Louis%20W.%20Shapiro/
shapiro.htm.

[17] B. Drake, An Inversion Theorem for Labeled Trees and Some Limits of Areas under
Lattice Paths, Ph.D. thesis, Brandeis University, 2008, http://people.brandeis.edu/

~gessel/homepage/students/drakethesis.pdf.

[18] H. W. Gould, The Girard-Waring power sum formulas for symmetric functions and
Fibonacci sequences, Fibonacci Quart. 37 (1999), 135–140.

[19] T.-X. He, A-sequences, Z-sequence, and B-sequences of Riordan matrices, Discrete
Math. 343 (2020), 111718.

[20] T.-X. He and L. Shapiro, Palindromes and pseudo-involution multiplication, Lin. Alg.
Appl. 593 (2020), 1–17.

53

https://cs.uwaterloo.ca/journals/JIS/VOL22/Barry4/barry431.html
http://www.cs.uwaterloo.ca/journals/JIS/VOL10/Barry/barry202.html
https://www.mat.univie.ac.at/~slc/wpapers/s77bettin.pdf
https://cs.uwaterloo.ca/journals/JIS/VOL8/Cameron/cameron46.html
http://www.combinatorics.net/ppt2004/Louis%20W.%20Shapiro/shapiro.htm
http://www.combinatorics.net/ppt2004/Louis%20W.%20Shapiro/shapiro.htm
http://people.brandeis.edu/~gessel/homepage/students/drakethesis.pdf
http://people.brandeis.edu/~gessel/homepage/students/drakethesis.pdf


[21] T.-X. He and R. Sprugnoli, Sequence characterization of Riordan arrays, Discrete Math.
309 (2009), 3962–3974.

[22] S. Janson, M. Kuba, and A. Panholzer, Generalized Stirling permutations of increasing
trees and urn models, J. Combin. Theory Ser. A 118 (2011), 94–114.

[23] D. Merlini, D. G. Rogers, R. Sprugnoli, and C. Verri, On some alternative characteri-
zations of Riordan arrays, Can. J. Math. 49 (1997), 301–320.

[24] OEIS, The Online Encyclopedia of Integer Sequences, 2022. Available at https://

oeis.org.

[25] S. F. Parker, The Combinatorics of Functional Composition and Inversion, Ph. D. the-
sis, Brandeis University, 1993. Available at http://people.brandeis.edu/~gessel/

homepage/students/parkerthesis.pdf.

[26] D. Phulara and L. Shapiro, Constructing pseudo-involutions in the Riordan group, J.
Integer Sequences 20 (2017), Article 17.4.7.

[27] D. G. Rogers, Pascal triangles, Catalan numbers and renewal arrays, Discrete Math. 22
(1978), 301–310.

[28] L. W. Shapiro, S. Getu, W. J. Woan, and L. Woodson, The Riordan group, Disc. Appl.
Math. 34 (1991), 229–239.

[29] M. Zeleke, Riordan Arrays and their applications in Combinatorics, parts 1 and 2,
YouTube, http://youtu.be/hdR24ApU_EM and http://youtu.be/coLIavPaW60.

2020 Mathematics Subject Classification: Primary 05A15. Secondary 05A05, 05A19, 11B83.
Keywords: Riordan group, Riordan array, pseudo-involution.

(Concerned with sequences A000085, A000108, A000110, A000245, A000248, A000272, A000629,
A001003, A001006, A002212, A004148, A006318, A007106, A007559, A025227, A027307,
A038049, A038629, A049310, A068875, A069271, A086246, A089946, A106228, A109081,
A111125, A127632, A153295, A153396, A156308, A166135, A182037, A200031, A212072,
A215067, A216857, A238113, A344623, A347953, A348189, A348197, and A349562.)

Received December 29 2021; revised version received March 14 2022. Published in Journal
of Integer Sequences, March 24 2022.

Return to Journal of Integer Sequences home page.

54

https://oeis.org
https://oeis.org
http://people.brandeis.edu/~gessel/homepage/students/parkerthesis.pdf
http://people.brandeis.edu/~gessel/homepage/students/parkerthesis.pdf
https://cs.uwaterloo.ca/journals/JIS/VOL20/Phulara/phulara3.html
http://youtu.be/hdR24ApU_EM
http://youtu.be/coLIavPaW60
https://oeis.org/A000085
https://oeis.org/A000108
https://oeis.org/A000110
https://oeis.org/A000245
https://oeis.org/A000248
https://oeis.org/A000272
https://oeis.org/A000629
https://oeis.org/A001003
https://oeis.org/A001006
https://oeis.org/A002212
https://oeis.org/A004148
https://oeis.org/A006318
https://oeis.org/A007106
https://oeis.org/A007559
https://oeis.org/A025227
https://oeis.org/A027307
https://oeis.org/A038049
https://oeis.org/A038629
https://oeis.org/A049310
https://oeis.org/A068875
https://oeis.org/A069271
https://oeis.org/A086246
https://oeis.org/A089946
https://oeis.org/A106228
https://oeis.org/A109081
https://oeis.org/A111125
https://oeis.org/A127632
https://oeis.org/A153295
https://oeis.org/A153396
https://oeis.org/A156308
https://oeis.org/A166135
https://oeis.org/A182037
https://oeis.org/A200031
https://oeis.org/A212072
https://oeis.org/A215067
https://oeis.org/A216857
https://oeis.org/A238113
https://oeis.org/A344623
https://oeis.org/A347953
https://oeis.org/A348189
https://oeis.org/A348197
https://oeis.org/A349562
http://www.cs.uwaterloo.ca/journals/JIS/

	Preface
	Introduction
	Exponential Riordan group

	Generalized palindromes and the k-Bell subgroup
	B-sequence and B-function
	B-functions for ordinary Riordan arrays with palindromic 
	B-functions for exponential Riordan arrays with palindromic 
	B-sequence and aeration
	B-functions for doubled k-ary trees
	Generalized Schröder trees
	Increasing trees of even arity

	Pseudo-conjugation of pseudo-involutions
	Pseudo-conjugation of exponential pseudo-involutions

	Conclusion

