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Abstract

Let x ≥ 1 be a real number and Tn(m) = −1m + 2m − · · · + (−1)nnm, where n

and m are nonnegative integers with n ≥ 1. In this note we obtain an explicit formula
for T⌊x⌋(m), where ⌊x⌋ is the greatest integer less than or equal to x, and we establish
a new expression for alternating power sums Tn(m) in terms of Stirling numbers of
the second kind. Moreover, we give a congruence involving alternating sums of falling
factorial.

1 Introduction and statement of results

Although they are important in many branches of mathematics and science, such as combi-
natorics, statistics and number theory, alternating power sums of integers

n
∑

k=1

(−1)kkm
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where n and m are nonnegative integers with n ≥ 1, have attracted less interest, of mathe-
maticians, compared to the sums of powers of integers with positive signs

n
∑

k=1

km, (m ≥ 0).

These last sums have been studied since antiquity to the Renaissance by Faulhaber, Fermat,
Pascal and Bernoulli, to the modern era, where we find an abundant wealth of formulas in
terms of Bernoulli, Stirling, Euler numbers and various other number sequences. One can

find the expression
n
∑

k=1

(−1)kkm in a manuscript of Euler [4, p. 499] entitled ”Institutiones

Calculi Differentialis”, published in 1755, and over the years many formulas were also found
in term of many polynomials and number sequences, among them the Euler polynomials.

Recall that Euler polynomials (En(x))n≥0 can be defined via generating series by

∞
∑

n=0

En(x)
tn

n!
=

2ext

et + 1
, (|t| < π)

and Euler numbers (see A122045 in the On-Line Encyclopedia of Integer Sequences (OEIS)
[8]) can be defined by En = 2nEn(

1
2
). It is well-known that the alternating power sum Tn(m)

can be written via Euler polynomials as follows [1, p. 804] and [6, Theorem 1]:

Tn(m) =
(−1)nEm(n+ 1) + Em(0)

2
, for n,m ≥ 1.

For example, the first four alternating power sums are

Tn(0) =
n
∑

k=1

(−1)k =
−1 + (−1)n

2

Tn(1) =
n
∑

k=1

(−1)kk = −
1

4
+

(−1)n

4
(2n+ 1)

Tn(2) =
n
∑

k=1

(−1)kk2 =
(−1)n

2
n(n+ 1)

Tn(3) =
n
∑

k=1

(−1)kk3 =
1

8
+

(−1)n

8
(2n+ 1)(2n2 + 2n− 1).

For nonnegative integers n, k, the binomial coefficient is defined by

(

n

k

)

=

{

n!
k!(n−k)!

, if 0 ≤ k ≤ n;

0, otherwise.
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Named after James Stirling, who defined and studied them in 1730, the Stirling numbers
of the second kind S(n, k) (A008277) may be defined as follows: S(n, k) is the number
of partitions of the set {1, . . . , n} into k non-empty subsets. For more details on Stirling
numbers and their properties, the reader is referred to [3, 5].

The following result expresses T⌊x⌋(m) by means of Euler polynomials:

Theorem 1. Let x ∈ [1,∞[. For a nonnegative integer m ≥ 1, we have

⌊x⌋
∑

k=1

(−1)kkm =
1

2

(

Em(0) + (−1)⌊x⌋
m
∑

j=0

(−1)j
(

m

j

)

Ej({x})x
m−j

)

where ⌊x⌋ = max{k ∈ Z/ k ≤ x} and {x} = x− ⌊x⌋ is the fractional part of x.

For x a rational number we have the following corollary:

Corollary 2. Let p be an odd prime and m a nonnegative integer. Then

p−1

2
∑

k=1

(−1)kk2m =











−1+(−1)⌊
p
2
⌋

2
, if m = 0;

(−1)⌊
p
2
⌋

22m+1

2m
∑

j=0

(−1)j
(

2m
j

)

p2m−jEj, if m ≥ 1,

and
p−1

2
∑

k=1

(−1)kk2m−1 =
1− 4m

2m
B2m +

(−1)⌊
p

2
⌋

22m

2m−1
∑

j=0

(−1)j
(

2m− 1

j

)

p2m−1−jEj,

where Bn is the nth Bernoulli number.

Note that by using the extended Boole summation formula, Schumacher [7, Section 4]
obtained the following expression

⌊x⌋
∑

k=1

(−1)k+1km = η(−m) +
(−1)x−⌊x⌋

2(m+ 1)

m
∑

k=0

(−1)k+1(k + 1)

(

m+ 1

k + 1

)

Ek({x})x
m−k,

where η(s) :=
∞
∑

k=1

(−1)k+1

ks
is the Dirichlet eta function.

The following theorem provides an expression of
n−1
∑

k=0

(−1)kkm in terms of Stirling numbers

of second kind.

Theorem 3. Let n and m be nonnegative integers with n ≥ 1. Then

n−1
∑

k=0

(−1)kkm = (−1)m
m+1
∑

k=1

(−1)k−1(k − 1)!

2k
S(m+ 1, k)

+ (−1)n+1

m
∑

k=0

k+1
∑

ℓ=1

(

m

k

)

(−1)k+ℓ−1(ℓ− 1)!

2ℓ
nm−kS(k + 1, ℓ),

where S(n, k) is the kth Stirling number of the second kind.
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The following theorem gives us a congruence modulo p of the alternating sum of the
falling factorials.

Recall that a p-integer is a rational number whose denominator is coprime with p. In the
ring of p-integers, denoted by Zp, we write a

b
≡ c

d
(mod p) when ad− bc ≡ 0 (mod p) in Z.

Theorem 4. Let p ≥ 3 be a prime and m a nonnegative integer. Then

p−1
∑

k=0

(−1)kkm ≡ (−1)m
m!

2m
(mod p).

Note that the falling factorial xm (A068424) is the polynomial in x defined by x0 := 1

and xm : =
m−1
∏

k=0

(x− k) for integers m ≥ 1.

2 Proofs

The proof of Theorem 1 is mainly based on the following two lemmas and some properties
of Euler polynomials [1, p. 804].

Lemma 5. For integers n ≥ 1 and m ≥ 0, we have

Tn(m) =
1

2
(Em(0) + (−1)n+mEm(−n)).

Proof. By using the relation En(x+ 1) + En(x) = 2xn, we have

n−1
∑

k=0

(−1)kkm =
1

2

n−1
∑

k=0

(−1)k(Em(k + 1) + Em(k))

=
1

2

(

n−1
∑

k=0

(−1)kEm(k)−
n
∑

k=1

(−1)kEm(k)

)

=
1

2
(Em(0)− (−1)nEm(n)).

Then we deduce that

n
∑

k=1

(−1)kkm =
1

2
(Em(0) + (−1)nEm(n+ 1)).

As Em(1 − x) = (−1)mEm(x), for x = −n we obtain Em(1 + n) = (−1)mEm(−n), then it
follows that

n
∑

k=1

(−1)kkm =
1

2
(Em(0) + (−1)n+mEm(−n)).
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Lemma 6. Let m, j, k be non-negative integers. Then

(

m

k

)(

m− k

j

)

=

(

m

j

)(

m− j

k

)

.

Proof. A direct calculation gives

(

m

k

)(

m− k

j

)

=
m!

k!(m− k)!

(m− k)!

j!(m− k − j)!
=

m!

k!j!(m− k − j)!

=
m!

j!(m− j)!

(m− j)!

k!(m− j − k)!
=

(

m

j

)(

m− j

k

)

.

Proof of Theorem 1. With the help of the relation

En(x) =
n
∑

k=0

(

n

k

)

Ek

2k

(

x−
1

2

)n−k

and Lemma 5, we have

n
∑

k=1

(−1)kkm =
1

2

(

Em(0) + (−1)n+m

m
∑

k=0

(

m

k

)

Ek

2k

(

−n−
1

2

)m−k
)

. (1)

Taking n = ⌊x⌋ = x− {x} for x ≥ 1 in Eq. (1), we obtain the following:

⌊x⌋
∑

k=1

(−1)kkm =
1

2
Em(0) +

(−1)⌊x⌋

2m+1

m
∑

k=0

(

m

k

)

(−1)kEk(2x+ 1− {x})m−k. (2)

Putting a = 2x, b = 1− 2{x} and n = m− k in Newton’s binomial formula

(a+ b)n =
n
∑

j=0

(

n

j

)

ajbn−j,

we obtain

(2x+ 1− 2{x})m−k =
m−k
∑

j=0

(

m− k

j

)

(2x)j(1− 2{x})m−k−j. (3)

Then by Relations (2) and (3), we deduce

T⌊x⌋(m) =
1

2
Em(0) +

(−1)⌊x⌋

2

m
∑

j=0

(−1)m−jEk

2k
xj

m−j
∑

k=0

(

m

k

)(

m− k

j

)(

{x} −
1

2

)m−j−k

.
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Finally, an appeal to Lemma 6, gives

T⌊x⌋(m) =
1

2
Em(0) +

(−1)⌊x⌋

2

m
∑

j=0

(

m

j

)

(−1)m−jxj
m−j
∑

k=0

(

m− j

k

)

Ek

2k

(

{x} −
1

2

)m−j−k

=
1

2
Em(0) +

(−1)⌊x⌋

2

m
∑

j=0

(

m

j

)

(−1)m−jEm−j({x})x
j.

This completes the proof.

Proof of Theorem 3. We consider the function Φn(x) =
n−1
∑

k=0

(−1)kekx. Since Φn(x) is the sum

of the geometric sequence of common ratio −ex, then we have

Φn(x) =
n−1
∑

k=0

(−1)kekx = (−1)n+1 enx

ex + 1
+

1

ex + 1
. (4)

Differentiating the members of Eq. (4) m times, we obtain

Φ(m)
n (x) =

n−1
∑

k=0

(−1)kkmekx = (−1)n+1ϕ(x) + ψ(x), (5)

where ϕ(x) =
(

enx

ex+1

)(m)
and ψ(x) =

(

1
ex+1

)(m)
.

Note that g(m) := dmg

dxm is the mth derivative of g with respect to x. By applying Leibniz’s
formula of derivation, we can write ϕ(x) as follows:

ϕ(x) =

(

enx

ex + 1

)(m)

=
m
∑

k=0

(

m

k

)

nm−kenx
(

1

ex + 1

)(k)

.

Taking λ = −1 and α = 1 in the Formula (3.1) of [9, Theorem 3.1]

(

1

1− λeαx

)(m)

= (−α)m
m+1
∑

k=1

(−1)k−1(k − 1)!

(1− λeαx)k
S(m+ 1, k), (6)

allows us to write ϕ(x) and ψ(x) as follows:

ϕ(x) = nm

m
∑

k=0

k+1
∑

ℓ=1

(

m

k

)

1

nk
(−1)k+ℓ−1(ℓ− 1)!S(k + 1, ℓ)

enx

(ex + 1)ℓ
, (7)

and

ψ(x) = (−1)m
m+1
∑

k=1

(−1)k−1(k − 1)!

(1 + ex)k
S(m+ 1, k). (8)

Replacing x by 0 in Eq. (5), and using the expressions of ϕ(x) and ψ(x) given by (7) and
(8) gives us the wanted result.
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Corollary 7. Let n and m be nonnegative integers with n ≥ 1. Then

n
∑

k=1

(−1)kkm =
m+1
∑

k=1

(−1)k(k − 1)!

2k
S(m+ 1, k)

+ (−1)n
m
∑

k=0

k+1
∑

ℓ=1

(

m

k

)

(−1)ℓ−1(ℓ− 1)!

2ℓ
nm−kS(k + 1, ℓ).

Proof. Here, using the function Ψn(x) =
n
∑

k=1

(−1)kekx, differentiating m times, and then

according to Eq. (6) for λ = −1 and α = −1, the result follows.

Proof of Theorem 4. In a similar way to the proof of Theorem 3, one considers the geometric
sequence of common ratio −x, then the sum of the n first terms is

n−1
∑

k=0

(−1)kxk =
1

1 + x
+ (−1)n+1 xn

1 + x
. (9)

Differentiating the members of Eq. (9) m times provides

n−1
∑

k=0

(−1)kkmxk−m = (−1)m
m!

(1 + x)m+1
+ (−1)n+1φ(x), (10)

where φ(x) =
(

xn

x+1

)(m)
. Applying the Leibniz derivation formula, φ(x) may be written as

follows:

φ(x) =
m
∑

k=0

(−1)m−k

(

m

k

)

n(n− 1) · · · (n− k + 1)
(m− k)!

(1 + x)m−k+1
xn−k

= m!
m
∑

k=0

(

n

k

)

(−1)m−k xm−k

(1 + x)m−k+1
. (11)

Replacing (11) in (10), we get

n−1
∑

k=0

(−1)kkmxk−m = (−1)m
m!

(1 + x)m+1
+ (−1)n+1m!

m
∑

k=0

(

n

k

)

(−1)m−k xm−k

(1 + x)m−k+1
. (12)

Now, replacing x by 1 in Eq. (12), we get

n−1
∑

k=0

(−1)kkm = (−1)m
m!

2m+1
+ (−1)n+1m!

m
∑

k=0

(

n

k

)

(−1)m−k 1

2m−k+1

= (−1)m
m!

2m+1

(

1 + (−1)n+1

m
∑

k=0

(

n

k

)

(−2)k

)

. (13)
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Finally, taking n = p in Eq. (13) and by the trivial congruence
(

p

k

)

≡ 0 (mod p) for k =
1, . . . , p− 1, we have

p−1
∑

k=0

(−1)kkm ≡ (−1)m
m!

2m
(mod p).

This evidently completes the proof.

Note that Eq. (13) has been proven by Bazsó and Mező [2] by using Cauchy’s residue
theorem.

Remark 8. Taking m = p− 1 in Theorem 4 and using Fermat little theorem for a = 2 with
Wilson theorem, we obtain the following congruence:

p−1
∑

k=0

(−1)kkp−1 ≡ −1 (mod p).
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