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Abstract

A permutation of size n can be identified with its diagram in which there is ex-
actly one point in each row and column in the grid [n]2. In this paper we consider
multidimensional permutations (or d-permutations), which are identified with their di-
agrams on the grid [n]d in which there is exactly one point per hyperplane xi = j
for i ∈ [d] and j ∈ [n]. We first exhaustively investigate all small pattern-avoiding
classes for d = 3. We provide several bijections to enumerate some of these classes and
we propose conjectures for others. We then give a generalization of the well-studied
Baxter permutations to higher dimensions. In addition, we provide a vincular pattern-
avoidance characterization of Baxter d-permutations.

1 Introduction

A permutation σ = σ(1), . . . , σ(n) ∈ Sn is a bijection from [n] := {1, 2, . . . , n} to itself. The
(2-dimensional) diagram of σ is simply the set of points Pσ := {(i, σ(i)), 1 ≤ i ≤ n}. The
diagrams of permutations of size n are exactly the point sets such that every row and column
of [n]2 contains exactly one point.
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Figure 1: The diagram of the 3-permutation (253146, 654321) together with its 3 projec-
tions of dimension 2: the blue, red permutations that define the 3-permutation and green
permutation 51 that is deduced from the two first permutations.

In this paper we are interested in d-dimensional diagrams: sets of points Pσ of [n]d such
that every hyperplane xi = j with i ∈ [d] and j ∈ [n] contains exactly one point of Pσ. Such
a diagram is equivalently described by a sequence of d− 1 permutations σ := (σ1, . . . , σd−1)
such that

Pσ = {(i, σ1(i), σ2(i), . . . , σd−1(i)), i ∈ [n]}.

Figure 1 gives an example of a 3-permutation of size 6. We remark that different gen-
eralizations of permutations to higher dimensions have also been proposed, such as Latin
squares [16, 16] or other “semi-dense” multidimensional permutations [17].

Permutation-tuples have already been studied (see, for instance, [23, 1]), but as far as we
know, the d-permutations have been explicitly considered only in a few papers: [3, 23]. From
our point of view, the paper of Asinoski and Mansour [3] is the most significant in our context:
they present a generalization of separable permutations (permutations that can be recursively
decomposed with two elementary composition operations: add the second diagram after the
first one and shift it above or below the first diagram). The formal definition is provided
in Section 4. In addition, they characterize those d-permutations with a set of forbidden
patterns.

The study of permutations defined by forbidden patterns has received a lot of attention
and sets of small patterns have been exhaustively studied [24, 30, 25]. The first main contri-
bution of this paper is to initiate the exhaustive study of small patterns for 3-permutations.
For this purpose, we propose a definition of pattern avoidance for d-permutations. We say
that the 3-permutation σ contains the 3-permutation π := (π1, π2) if there is a subset of Pσ
that is order isomorphic to Pπ. Also, we say that σ contains a 2-permutation π if one of its
(direct) projections contains π. We let Sd−1n (π1, . . . ,πk) denote the set of d-permutations
of size n that avoid all patterns π1, . . . ,πk. The formal definition is provided in Section 2.
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This definition is slightly different from the one introduced in [3]. The present definition has
the advantage of being more expressive than the previous one and it matches the classical
one for d = 2.

With this definition in mind, we first investigate exhaustively the enumeration of 3-
permutations defined by small sets of patterns to avoid. Since 3-permutations are defined by
a couple of permutations, it is not surprising that we fall back on existing combinatorial ob-
jects from different fields: S2

n((12, 12)) are in bijection with intervals in the weak-Bruhat order
(see Prop. 5), S2

n((12, 21), (312, 132)) are the allowable pairs sorted by a priority queue [4].
Also, several “OEIS coincidences” lead us to conjecture other bijections. This is the case
for four different pairs of size 3 permutations (see Table 3). In addition, even very sim-
ple patterns lead to sequences not listed in the On-Line Encyclopedia of Integer Sequences
(OEIS) [26]. This is in particular the case for all non-trivially equivalent patterns of size
3 (S2

n((123, 123)), S2
n((123, 132)), S2

n((132, 213)), S2
n(123), S2

n(312) and S2
n(321)) and some 2-

and 3-dimensional pairs of patterns (S2
n(132, (12, 21)), S2

n(213, (12, 12)), S2
n(231, (12, 12)),

S2
n(231, (21, 12)), S2

n(321, (21, 12))) (see Section 2 for the notation).
The second main contribution of this paper is a generalization of Baxter permutations

to higher dimensions. Baxter permutations are a central family of permutations that have
received a lot of attention, in particular because they are in bijection with a large variety of
combinatorial objects:

• twin binary trees [15],

• plane bipolar orientations [9],

• triples of non-intersecting lattice paths [15],

• monotone 2-line meanders [20], open diagrams [12],

• Baxter tree-like tableaux [6],

• boxed arrangements of axis-parallel segments in R2 [18],

and many others.
With the bijection with boxed arrangements in mind, the following question [13, 3, 14]

was raised: What are the 3-dimensional analog of Baxter permutations? In this paper we
propose an analog of Baxter permutations of any dimension d ≥ 3. The proposed extension
seems natural to us, but we did not investigate the potential links with boxed arrangements.
The generalization of the bijection with boxed arrangements in higher dimensions remains
open. In addition, we propose a generalization of vincular patterns for d-permutations and
we characterize Baxter d-permutations by a set of forbidden vincular patterns (Theorem 11).

The rest of this paper is organized as follows. In Section 2 we give some definitions and
examples of d-permutations. We also formalize the notion of patterns for d-permutations
and we give a few simple properties. Then in Section 3 we provide an exhaustive study of the
enumeration of 3-permutations that avoid different sets of small patterns. For some known
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sequences, we provide (simple) explanations. Then in Section 4 we propose a definition of
Baxter d-permutations that generalizes the classic Baxter permutations. We also generalize
vincular patterns and we characterize Baxter d-permutations in terms of vincular pattern-
avoidance. Finally, in Section 5 we conclude with a list of open problems.

2 Preliminaries

Let Sn be the symmetric group on [n] := {1, 2, . . . , n}. Given a permutation

σ = σ(1), . . . , σ(n) ∈ Sn,

the diagram of σ, denoted by Pσ, is the point set {(1, σ(1)), (2, σ(2)), . . . , (n, σ(n))}. A
permutation σ contains a permutation (or a pattern) π = π(1), . . . , π(k) ∈ Sk if there exist
indices c1 < · · · < ck such that σ(c1) · · ·σ(ck) is order isomorphic to π. We say that the
set of indices c1, . . . , ck, and by extension the point set {(c1, σ(c1)), . . . , (ck, σ(ck))}, is an
occurrence of the π.

We let Idn denote the identity permutation of size n. Given a set of patterns π1, . . . , πk,
we let Sn(π1, . . . , πk) denote the set of permutations of Sn that avoid each pattern πi.

Definition 1. A d-permutation of size n, σ := (σ1, . . . , σd−1) is a sequence of d − 1
permutations of size n. We let Sd−1n denote the set of d-permutations of size n. Let
σ = (Idn, σ1, . . . , σd−1). Then d is called the dimension of the permutation. The diagram of
a d-permutation σ is the set of points in Pσ := {(σ1(i), σ2(i), . . . , σd(i)), i ∈ [n]}.

A 2-permutation is in fact a (classical) permutation. A d-permutation can be seen as
a sequence of d permutations such that the first one is the identity (as defined with the
notation σ). This first trivial permutation can be forgotten, leading to a sequence of d− 1
permutations. The choice to have this offset of 1 is motivated by the fact the value d matches
the dimension of the diagram of the d-permutation.

The d-diagrams of size n are exactly the point sets of [n]d such that every hyperplane
xi = j with i ∈ [d] and j ∈ [n] contains exactly one point. One can observe that |Sd−1n | =
n!d−1. Figure 1 gives an example of a 3-permutation of size 6.

Suppose given P := {p1, . . . , pn} a set of points in Rd such that every hyperplane xj = α
with α ∈ R contains at most one point of P . The standardization of P is the point set
P ′ = {p′1, . . . , p′n} in [n]d−1 such that the relative order with respect to each axis is the same.
Hence the standardization of a subset of points of a diagram is the diagram of a (smaller)
d-permutation (with the same dimension).

In what follows we identify a d-permutation and its diagram, so that a transformation
on one can be directly translated into the other. For instance, removing a point of a per-
mutation means removing one point of its diagram and considering the permutation of the
standardization of the sub-diagram.
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Figure 2: On the left, the 3-permutation (1432, 3124). The red dots are an instance of the
pattern (132, 213) that is represented in the middle. The red dots are also an instance of the
pattern 231 that is represented on the right.

At this point we are tempted to define a pattern in the following way: a d-permutation
σ ∈ Sd−1n contains a pattern π ∈ Sd−1k if there exists a subset of points of the diagram of σ
such that its standardization is equal to the diagram of π (see Figure 2).

This definition has been considered in [23], for instance, in the context of permutation
tuples. For d = 2, this definition is consistent with the classical definition over permutations.
In higher dimensions, it is convenient to deal also with patterns of smaller dimensions (which
is not possible when d = 2). Hence we provide a more general definition of pattern that
matches the previous one when the dimension of the pattern is equal to the dimension of
the permutation.

Given a sequence of indices i := i1, . . . , id′ ∈ [d]d
′
, the projection on i of the d-permutation

σ is the d′-permutation proji(σ) := σi2σ
−1
i1
, σi3σ

−1
i1
, . . . , σid′σ

−1
i1

. Then d′ is the dimension of
the projection.

When dealing with permutations of dimension 2 or 3, we often use x, y, z instead of 1, 2, 3.

Remark 2. We have proj1,i(σ) = σi−1 = σi and proji,1(σ) = σ−1i . In particular, when d = 3,
we have projxy(σ) = σ1 and projxz(σ) = σ2, and so projyz(σ) = σ2σ1

−1. For instance,
projyz((253146, 654321)) = 364251 (see Figure 1).

A projection proji is direct if i1 < i2 < · · · < id′ and indirect otherwise.

Definition 3. Let σ = (σ1, . . . , σd−1) ∈ Sd−1n and π = (π1, . . . , πd′−1) ∈ Sd
′−1
k with k ≤ n.

Then σ contains the pattern π if there exist a direct projection σ′ = proji(σ) of dimension
d′ and indices c1 < · · · < ck such that σ′i(c1) · · ·σ′i(ck) is order isomorphic to πi for all i ∈ [d′].
A permutation avoids a pattern if it does not contain it.

Given a set of patterns π1, . . . ,πk, we let Sd−1n (π1, . . . ,πk) denote the set of d-permutations
that avoid each pattern πi.
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This definition of pattern differs slightly from the one proposed in [3]: here we consider
only direct projections, whereas they consider every projection. The advantage of our con-
vention is that for d = 2 our definition matches the classical definition of pattern avoidance:
S2
n(π) = Sn(π), where, for instance, the set of 2-permutations that avoid 2413 with the other

definition is Sn(2413, 3142), since 3142 = projyx(2413).
We observe that a d-permutation σ contains a d-permutation π if there exists a subset

of points of its diagram that have the same relative positions as those of the diagram of the
pattern π. This implies that σi ∈ S(πi)∀i ∈ [d− 1].

Hence
Sn(π1)× Sn(π2) · · · × Sn(πd−1) ⊆ Sd−1n (π).

In general this inclusion is strict. For instance, the (132, 312) does not contain the pattern
(12, 12) but 132 and 312 both contain the pattern 12 (but in different positions).

Avoiding a pattern π of dimension 2 means that each projection of dimension 2 avoids
π, in particular the d− 1 permutations defining the d-permutation, hence

Sd−1n (π) ⊆ Sn(π)× · · · × Sn(π)︸ ︷︷ ︸
d− 1 times

.

Once again, in general this inclusion is strict. For instance, (132, 132) ∈ Sn(123)×Sn(123)
but not in S2

n(123) since projyz((132, 132)) = 123.
We conclude this section with the bijections of Sd−1n that correspond to symmetries of

the d-dimensional cube. These operations are defined by signed permutation matrices of
dimension d. Let us formalize this. A signed permutation matrix is a square matrix with
entries in {−1, 0, 1} such that each row and column contains exactly one non-zero entry. The
set of such matrices of size d will be denoted by d−Sym (or simply Sym when the dimension
d is understood).

Given s ∈ d− Sym and σ ∈ Sd−1n , we define s(σ) as the d-permutation whose diagram is
the standardization of the point set

P ′ := {(s.(p1, . . . , pd)T )T , (p1, . . . , pd) ∈ Pσ}.

For instance, in two dimensions,
(
−1 0
0 1

)
(σ) is the reverse permutation of σ, denoted by

rev(σ): rev(σ)(i) = σ(n− i+ 1).
(
0 1
1 0

)
(σ) is the inverse permutation of σ, denoted by σ−1.

In dimension 2, there are 8 symmetries and in dimension 3, there are 48 (|3-Sym | = 48).

3 Pattern avoidance

In this section, we give some exhaustive enumerations of small pattern-avoiding d-permutations.
We first recall known results for d = 2 and then we investigate the case d = 3. We start
with combinations of basic patterns. Two sets of patterns π1,π2, . . . ,πk and τ 1, τ 2, . . . , τ k′
are d-Wilf-equivalent if

|Sd−1n (π1,π2, . . . ,πk)| = |Sd−1n (τ 1, τ 2, . . . , τ k′)|.
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We say that two sets of patterns π1,π2, . . . ,πk and τ 1, τ 2, . . . , τ k′ are trivially d-Wilf-
equivalent if there exists a symmetry s ∈ d−Sym that is a bijection from Sn(π1,π2, . . . ,πk)
to Sn(τ 1, τ 2, . . . , τ k′). In particular, if each pattern π1,π2, . . . ,πk, τ 1, τ 2, . . . , τ k′ is of di-
mension d, the two pattern sets are equivalent if s sends the the first one to the second
one.

3.1 Some known results on permutations

In dimension 2, there are only two patterns of size 2 (12 and 21) that are trivially Wilf-
equivalent. For patterns of size 3, there are 2 classes of patterns that are trivially Wilf-
equivalent: 123 and 321 on the one hand and 312, 213, 231, 132 on the other hand. In fact,
these six patterns are Wilf-equivalent and enumerated by Catalan numbers [30]: |Sn(τ)| = Cn
for any τ of size 3 where Cn = 1

n+1

(
2n
n

)
. All combinations of patterns of size 3 have been

treated in [30]. Table 1 summarizes these results. Recently, all combinations of size 4
patterns have been studied [25].

Patterns #TWE Sequence Comment

12 2 1, 1, 1, 1, 1, 1, 1, · · ·
12, 21 1 1, 0, 0, 0, 0, 0, 0, · · ·
312 4 1

n+1

(
2n
n

)
= 1, 2, 5, 14, 42, 132, 429, · · · stack-sortable [24]

123 2 1
n+1

(
2n
n

)
= 1, 2, 5, 14, 42, 132, 429, · · · [24], [30, Prop. 19]

123, 321 1 1, 2, 4, 4, 0, 0, 0, · · · [30, Prop. 14]

213, 321 4 1 + n(n−1)
2

= 1, 2, 4, 7, 11, 16, 22, · · · [30, Prop. 11]
312, 231 2 2n−1 = 1, 2, 4, 8, 16, 32, 64, · · · [27, Thm. 9], [30, Prop. 8]
231, 132 4 2n−1 = 1, 2, 4, 8, 16, 32, 64, · · · [30, Prop. 9]
312, 321 4 2n−1 = 1, 2, 4, 8, 16, 32, 64, · · · [30, Prop. 7]

213, 132, 123 2 Fibonacci: 1, 2, 3, 5, 8, 13, 21, · · · [30, Prop. 15]
231, 213, 321 8 n = 1, 2, 3, 4, 5, 6, 7, · · · [30, Prop. 16*]
312, 132, 213 4 n = 1, 2, 3, 4, 5, 6, 7, · · · [30, Prop. 16*]
312, 321, 123 4 1, 2, 3, 1, 0, 0, 0, · · ·
321, 213, 123 4 1, 2, 3, 1, 0, 0, 0, · · ·
321, 213, 132 2 n = 1, 2, 3, 4, 5, 6, 7, · · · [30, Prop. 16*]

Table 1: Sequences of (2-)permutations avoiding small patterns. The second column
(#TWE) indicates the number of trivially Wilf-equivalent patterns.

3.2 Exhaustive enumeration of small pattern-avoiding 3-permutations

Here we investigate the different small pattern sets for 3-permutations. We start with com-
binations of small patterns of dimension 3. The results are presented in Table 2.
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In dimension 3, there are four patterns of size 2 that are trivially Wilf-equivalent to the
pattern (12, 12). The class S2

n((21, 12)) corresponds intervals in the weak-Bruhat poset (see
Prop. 5). An inversion in a permutation π is a pair (i, j) such that i < j and π(i) > π(j).
We say that that a permutation π1 is smaller than a permutation π2, π1 ≤b π2 in the weak
Bruhat order if the set of inversions of π1 is included in the set of inversions of π2. An interval
is a pair of comparable permutations. No explicit formula is known for the enumeration of
intervals in the weak-Bruhat poset. This is in contrast with the 2-dimensional case, where
almost everything is known for the set of patterns of size at most 4.

Patterns #TWE Sequence Comment

(12, 12) 4 1, 3, 17, 151, 1899, 31711, · · · Prop. 5,A007767
(12, 12), (12, 21) 6 n! = 1, 2, 6, 24, 120 · · · Prop. 4
(12, 12), (12, 21),

(21, 12)
4 1, 1, 1, 1, 1, 1, · · · Prop. 4

(12, 12), (12, 21),
(21, 12), (21, 21)

1 1, 0, 0, 0, 0, 0, · · ·

(123, 123) 4 1, 4, 35, 524, 11774, 366352, 14953983, · · · new
(123, 132) 24 1, 4, 35, 524, 11768, 365558, 14871439, · · · new
(132, 213) 8 1, 4, 35, 524, 11759, 364372, 14748525, · · · new

(12, 12), (132, 312) 48 (n+ 1)n−1 = 1, 3, 16, 125, 1296 · · · A000272 [4, 5]
(12, 12), (123, 321) 12 1, 3, 16, 124, 1262, 15898, · · · Prop. 5,A190291
(12, 12), (231, 312) 8 1, 3, 16, 122, 1188, 13844, · · · A295928? [28]

Table 2: Sequences of 3-permutations avoiding patterns of dimension 3: one, two, or three
patterns of size 2 or one pattern of size 3. The “?” after a sequence ID means that the
sequence matches the first terms and that we conjecture that the sequences are the same.

Avoiding two patterns of size 2 also leads to a unique Wilf equivalence class that has
cardinality n!:

Proposition 4. For n ≥ 1, we have

|S2
n((12, 12), (12, 12))| = n!,

|S2
n((12, 12), (12, 21), (21, 12))| = 1.

Proof. Let us consider the pattern set {(12, 21), (21, 12)}, which is trivially Wilf equivalent to
{(12, 12), (12, 12)}. Let (σ1, σ2) ∈ S2

n{(12, 21), (21, 12)}. For all i, j, σ1(i) < σ1(j) if and only
if σ1(i) < σ1(j). This implies that σ1 = σ2. Hence S2

n((12, 21), (21, 12)) = {(σ, σ), σ ∈ Sn},
and |S2

n((12, 21), (21, 12))| = n!. In this set, if we avoid a third pattern (21, 21), the only
permutation that remains is (Idn, Idn), hence |S2

n((12, 21), (21, 12), (21, 21))| = 1. Since every
set of three patterns of size 2 is trivially Wilf equivalent to every other, we get the second
equality.
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As opposed to classical permutations avoiding one pattern of size 3, which are all enu-
merated by Catalan numbers, the patterns of size 3 are not all Wilf-equivalent in dimension
3. Surprisingly, the three different classes of Wilf-equivalent patterns of size 3 lead to new
integer sequences. In contrast, the combination of patterns of size 2 and 3 already give
known sequences (the link with the last one being only conjectural).

Let us start with the pattern set {(12, 12), (132, 312)}. This pattern set is sent to the

pattern set {(12, 21), (321, 132)} by the symmetry
( 0 0 −1
0 −1 0
1 0 0

)
.

The set S2
n((12, 21), (321, 132)) is exactly the set of allowable pairs sorted by a priority

queue, as shown in [4]. Moreover Atkinson and Thiyagarajah [5] proved that this set is of
size (n+1)n+1. A bijection between these permutations and labeled trees has been described
in [4].

Proposition 5. For n ≥ 1, we have

1. S2
n((12, 12)) is in bijection with the intervals in the weak-Bruhat poset on Sn.

2. S2
n((12, 12), (123, 321)) is in bijection with the intervals in the weak-Bruhat on Sn that

are distributive lattices.

Proof. 1. Observe that i1, i2 is an inversion in π1 but not in π2. Hence, i1, i2 is an instance
of the pattern (12, 12) in (π1, π2). Hence the class S2

n((21, 12)) corresponds to the
intervals in the weak-Bruhat poset. We conclude by observing that the symmetry( −1 0 0

0 1 0
0 0 −1

)
maps bijectively S2

n((21, 12)) to S2
n((12, 12)).

2. As shown in [31, Proposition 2.3], the sub-poset defined by the interval σ1, σ2 is isomor-
phic to the sub-poset of permutations smaller than σ−11 σ2. Moreover, as shown in [31,
Theorem 3.2], this sub-poset is a distributive lattice if and only if σ−11 σ2 ∈ Sn(321).
Let Gn be the set of 3-permutations σ ∈ S2

n((21, 12)) such that σ−11 σ2 ∈ Sn(321).
We will now show that S2

n((21, 12), (123, 321)) = Gn. If i1 < i2 < i3 is an occur-
rence of (123, 321) in a permutation σ, then it is also an occurrence of 321 in σ−11 σ2.
Hence Gn ⊆ S2

n((21, 12), (123, 321)), so let us focus on the second inclusion. Con-
sider (σ1, σ2) ∈ S2

n((21, 12)) such that i1 < i2 < i3 is an occurrence of 321 in σ−11 σ2.
If σ1(i1) < σ1(i2), then i1, i2 is an occurrence of (21, 12) in σ, which is impossible.
Hence σ1(i1) > σ1(i2). Applying the same argument to i2 and i3, we get that i1, i2, i3
is an occurrence of 123 in σ1. Now, σ−11 σ2 and σ1 fully determine σ2 and we have
π2(i1) > π2(i2) > π2(i3). Hence i1, i2, i3 is an occurrence of (123, 321) in σ, which
yields the second inclusion.

We conclude by observing that the symmetry
( −1 0 0

0 1 0
0 0 −1

)
sends S2

n((21, 12), (123, 321))

bijectively to S2
n((12, 12), (123, 321)).

Now, let us focus on 3-permutations that avoid patterns of dimension 2. Table 3 syn-
thesizes the results. We start by some considerations on the trivially d-Wilf-equivalence of
patterns (and pattern sets) of smaller dimension.
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Remark 6. Let σ ∈ S2
n with n ≥ 2. One can observe that if projx,y(σ) ∈ Sn(21) and

projx,z(σ) ∈ Sn(21), then projy,z(σ) contains the pattern 21. Hence |S2
n(21)| = 0 for n ≥ 2.

On the other hand, one can check that S2
n(21) = {(Idn, Idn)}. More generally, two patterns

of dimension d can be trivially d-Wilf-equivalent but not d′-Wilf-equivalent for d′ > d. For
instance, 12 and 21 are trivially 2-Wilf-equivalent but not 3-Wilf-equivalent. In fact, any
symmetry of the 3-cube other than the identity sends the pattern 12 into the pattern set
{12, 21}.

Given a symmetry s ∈ d − Sym and an increasing sequence of indices i1 < i2 · · · id′ , we
define si as an element of d′ − Sym obtained from s by keeping the rows whose index is
in i, and the columns containing a non-zero value in one of these rows. For instance, if

s =
( 0 0 −1
0 −1 0
1 0 0

)
and i = 1, 3, then si =

(
0 −1
1 0

)
. Given s ∈ d − Sym and π ∈ Sd′−1n , we make

the following definition, if π is a d′-multipermutation: s̃({π}) := {si(π), i = i1, . . . , id′} and
if π1, . . . ,πk is a set, s̃({π1, . . . ,πk}) := ∪ki=1s̃({πi}).

In general s̃(s̃−1(π)) 6= π. For instance, as we saw above, for d = 3 and s the identity

matrix of size 3, s̃−1(s̃({12})) = {12, 21}.

Proposition 7. Two pattern sets π1, . . . ,πk and τ 1, . . . , τ
′
k are trivially d-Wilf-equivalent if

there exists s ∈ d−Sym such that s̃(π1, . . . ,πk) = τ 1, . . . , τ
′
k and π1, . . . ,πk = s̃−1(τ 1, . . . , τ

′
k).

Proof. Let π1, . . . ,πk, τ 1, . . . , τ
′
k and s be as in the proposition. Let us first show that

|Sn(π1, . . . ,πk)| ≥ |Sn(τ 1, . . . , τ k)| and then we will show the other inequality.
Let σ 6∈ Sdn(π1, . . . ,πk) and let i, k be such that proji(σ) contains πk. Then si(proji(σ)))

contains si(πk). Let j be the set of indices of the rows of s that contain a non-zero entry in the
columns of index in i. Since projj(s(σ)) = si(proji(σ)) and si(πk) ∈ s̃(πk) ⊂ {τ 1, . . . , τ

′
k},

we have s(σ) 6∈ Sdn(τ 1, . . . , τ k). Hence |Sn(π1, . . . ,πk)| ≥ |Sn(τ 1, . . . , τ k)|.
We proceed similarly for the other inequality. Let σ 6∈ Sdn(τ 1, . . . , τ k) and let i, k be such

that proji(σ) contains τ k. Then s−1i (proji(σ)) contains s−1i (τ k). Let j be the indices of the
rows that contain a non-zero entry in the columns of s−1 of index in i. Since projj(s

−1(σ)) =

s−1i (proji(σ)) and s−1i (τ k) ∈ s̃−1(τ k) ⊂ {π1, . . . ,π
′
k}, we have s(σ) 6∈ Sdn(π1, . . . ,πk). Hence

|Sn(π1, . . . ,πk)| ≤ |Sn(τ 1, . . . , τ k)|.

What is very surprising is that all the classes composed of a single pattern of size 3
lead to new sequences and that four of the five classes composed of pairs of patterns of
size 3 seem to match with known sequences. For the known sequences, we did not find any
simple interpretations. If we now consider combinations of patterns of dimension 2 and 3
(see Table 4), we find several finite sets, two new sequences, and five sequences that seem
to match with known sequences. Three of the four couples of patterns of size 2 are in fact
equivalent to a single pattern (12 or 21), since any instance of the pattern of dimension 3 is
also an instance of the pattern of dimension 2.

We conclude this section with sets of patterns that are invariant under all symmetries.
Given a d-permutation σ, we write Sym(σ) := {s(σ))|s ∈ d-Sym}.

10



Patterns #TWE Sequence Comment

12 1 1, 0, 0, 0, 0, · · · Remark 6
21 1 1, 1, 1, 1, 1, · · · Remark 6
123 1 1, 4, 20, 100, 410, 1224, 2232, · · · new
132 2 1, 4, 21, 116, 646, 3596, 19981, · · · new
231 2 1, 4, 21, 123, 767, 4994, 33584, · · · new
321 1 1, 4, 21, 128, 850, 5956, 43235, · · · new

123, 132 2 1, 4, 8, 8, 0, 0, 0, · · ·
123, 231 2 1, 4, 9, 6, 0, 0, 0, · · ·
123, 321 1 1, 4, 8, 0, 0, 0, 0, · · ·
132, 213 1 1, 4, 12, 28, 58, 114, 220, · · · new
132, 231 4 1, 4, 12, 32, 80, 192, 448, · · · A001787?
132, 321 2 1, 4, 12, 27, 51, 86, 134, · · · A047732?
231, 312 1 1, 4, 10, 28, 76, 208, 568, · · · A026150?
231, 321 2 1, 4, 12, 36, 108, 324, 972, · · · A003946?

Table 3: Sequences of 3-permutations avoiding at most two patterns of size 2 or three of
dimension 2. The “?” after a sequence ID means that the first terms of the sequences match
and that we conjecture that the sequences are the same.

Patterns #TWE Sequence Comment

12, (12, 12) 1 1, 0, 0, 0, 0, · · · 12
12, (21, 12) 3 1, 0, 0, 0, 0, · · · 12
21, (12, 12) 1 1, 0, 0, 0, 0, · · ·
21, (21, 12) 3 1, 1, 1, 1, 1, · · · 21
123, (12, 12) 1 1, 3, 14, 70, 288, 822, 1260, · · · new
123, (12, 21) 3 1, 3, 6, 6, 0, 0, 0, · · ·
132, (12, 12) 2 1, 3, 11, 41, 153, 573, 2157, · · · A281593?
132, (12, 21) 6 1, 3, 11, 43, 173, 707, 2917, · · · A026671?
231, (12, 12) 2 1, 3, 9, 26, 72, 192, 496, · · · A072863?
231, (12, 21) 4 1, 3, 11, 44, 186, 818, 3706, · · · new
231, (21, 12) 2 1, 3, 12, 55, 273, 1428, 7752, · · · A001764?
321, (12, 12) 1 1, 3, 2, 0, 0, 0, 0, · · ·
321, (12, 21) 3 1, 3, 11, 47, 221, 1113, 5903, · · · A217216?

Table 4: Sequences of 3-permutations avoiding a permutation of size 2 and dimension 3 with
a pattern of dimension 2 of size 2 or 3. The “?” after a sequence ID means that the first
terms of the sequences match and that we conjecture that the sequences are the same.

11

https://oeis.org/A001787
https://oeis.org/A047732
https://oeis.org/A026150
https://oeis.org/A003946
https://oeis.org/A281593
https://oeis.org/A026671
https://oeis.org/A072863
https://oeis.org/A001764
https://oeis.org/A217216


Figure 3 describes all the symmetric 2-permutations obtained from (132, 213). This sym-
metric pattern plays an important role in separable d-permutations and Baxter d-permutations,
as we will see in Section 4.

Remark 8. A convenient way to describe this pattern is the following: a permutation σ
contains the pattern Sym((132, 213)) if its diagram contains three points p1, p2, p3 and three
axes such that p1 and p2 are in the same quadrant of p3 in the plane generated by the first
two axes and p3 is between p1 and p2 on the third axis.

1 2 3 1 2 3

1
2
3

[[2, 1, 3], [1, 3, 2]]

1 2 3 1 2 3

1
2
3

[[2, 1, 3], [3, 1, 2]]

1 2 3 1 2 3

1
2
3

[[1, 3, 2], [2, 1, 3]]

1 2 3 1 2 3

1
2
3

[[3, 1, 2], [2, 1, 3]]

1 2 3 1 2 3

1
2
3

[[2, 3, 1], [1, 3, 2]]

1 2 3 1 2 3

1
2
3

[[1, 3, 2], [2, 3, 1]]

1 2 3 1 2 3

1
2
3

[[2, 3, 1], [3, 1, 2]]

1 2 3 1 2 3

1
2
3

[[3, 1, 2], [2, 3, 1]]

Figure 3: The eight 3-permutations of Sym((132, 213)).

Patterns | Sym(π)| Sequence Comment

Sym((123, 123)) 4 1, 4, 32, 368, 4952, 68256, · · · new
Sym((123, 132)) 24 1, 4, 12, 4, 4, 4, · · · Prop. 9
Sym((132, 213)) 8 1, 4, 28, 256, 2704, 31192, · · · new

Table 5: Sequences of 3-permutations avoiding a pattern of size 3 with all its symmetries.
The second column indicates the number of forbidden patterns.

The number of permutations avoiding Sym((123, 132)) becomes a constant (equal to 4)
for sizes greater than 4. In fact, it can be shown that these permutations are four diagonals
of the cube.
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Proposition 9. For n ≥ 1, we have

S2
n(Sym((123, 132))) =


S2
n, if n ≤ 2;

S2
3 \ Sym((123, 132)), if n = 3;

Sym((Idn, Idn)), otherwise.

Proof. For n ≤ 4 the proposition can be easily checked manually. For n ≥ 4, we will show
that S2

n(Sym((123, 132))) = Sym((Idn, Idn)) = {(Idn, Idn), (Idn, rev(Idn)), (rev(Idn), Idn),
(rev(Idn), rev(Idn))}. Clearly, Sym((Idn, Idn)) ⊆ S2

n(Sym((123, 132))), so we only have to
show the other inclusion.

Suppose that the proposition is true until some n ≥ 4 and let us show that it is still true
for n+ 1. Let σ ∈ S2

n+1(Sym((123, 132))). Let σ′ be the permutation obtained by removing
the point (x, y, z) such that z = n + 1. If σ avoids a pattern π, σ′ also avoids π. Hence
σ′ ∈ S2

n(Sym((123, 132))). By our inductive hypothesis, σ′ ∈ Sym((Idn, Idn)). Now we only
have to show that if σ′ = (Idn, Idn), then σ = (Idn+1, Idn+1), the three other cases being
equivalent. Let us consider all the different possible positions for the point (x, y, n+1). Here
we only consider cases where x ≤ y, the other cases being deduced from the first ones by
symmetry:

• x = y = n+ 1. In this case σ = (Idn+1, Idn+1).

• x = y = 1: the permutation will be σ = (Idn+1, (n+ 1) 1 · · ·n) which contains the
pattern (123, 312) ∈ Sym((123, 132)), which is a contradiction.

• x = 1, y > 1: (y 1 · · · y − 1 y + 2 · · ·n+ 1, n+ 1 1 · · ·n) which contains (123, 312) ∈
Sym((123, 132)), which is a contradiction.

• 1 < x < n + 1, y = x. σ = (Idn+1, 1 · · · (x− 1) (n+ 1) x · · ·n) which contains the
pattern (123, 132) ∈ Sym((123, 132)), which is a contradiction.

• 1 < x < n + 1, y > x. σ = (1 · · · (x− 1) y x · · · (n+ 1), 1 · · · (y − 1) (n+ 1) y · · ·n)
contains (132, 132) ∈ Sym((123, 132)), which is a contradiction.

• x = n + 1, y < n + 1. σ = (1 · · · (y − 1)(y + 1) · · · (n+ 1) y, Idn+1) which contains
(231, 123) ∈ Sym((123, 132)). Contradiction.

So if σ′ = (Idn, Idn), then σ = (Idn+1, Idn+1). By symmetry, we conclude that

Sym((Idn+1, Idn+1)) = S2
n+1(Sym((123, 132))).

Hence the property is true for all n ≥ 4.

In the Appendix, we give sequences corresponding to larger patterns. At the date of
writing, none of these sequences appear in OEIS [26].
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4 Baxter d-permutations

In this section we consider separable d-permutations and Baxter d-permutations. We first
recall the definitions and properties in the classical case (d = 2). Then we recall the defini-
tion and characterization of separable d-permutations given in [3], and after that we propose
a definition of Baxter d-permutation and show how some of the properties of Baxter permu-
tations are generalized to higher dimensions. Finally, we show that we can also extend the
notion of complete Baxter permutation and anti-Baxter permutation.

4.1 Separable permutations and Baxter permutations

Let σ and π be two permutations respectively of size n and k. Their direct sum and skew
sum are the permutations of size n+ k defined by

σ ⊕ π := σ(1), . . . , σ(n), π(1) + n, . . . , π(k) + n and

σ 	 π := σ(1) + k, . . . , σ(n) + k, π(1), . . . , π(k).

A permutation is separable if it is of size 1 or it is the direct sum or the skew sum of two
separable permutations. Let Sepn denote the set of separable permutations of size n. These
permutations are enumerated by large Schröder numbers as shown in [29]:

| Sepn | =
1

n− 1

n−2∑
k=0

(
n− 1

k

)(
n− 1

k + 1

)
2n−k−1.

The characterization of separable permutations with patterns has been given in [10]:

Sepn = Sn(2413, 3142).

A related class of permutations are the Baxter permutations. Baxter permutations have
been widely studied because they are related to numerous other combinatorial objects [9,
18, 20]. To introduce them, we first need to define a more general type of pattern.

A vincular pattern is a pattern where some entries must be consecutive in the permu-
tation. More formally, a vincular pattern π|X is composed of π ∈ Sk, a permutation, and
X ⊆ [k − 1], a set of (horizontal) adjacencies. A permutation σ ∈ Sn contains the vincular
pattern π|X if there exist indices i1 < · · · < ik such that σi1 , σi2 · · ·σik is an occurrence of π
in σ and ij+1 = ij + 1 for each j ∈ X. A vincular pattern π|X is classically represented as
a permutation with dashes between the entries without adjacency constraints. For instance,
the vincular pattern 2413|2 is represented by 2-41-3. We stick to our notation so that it can
be generalized to d-permutations.

Baxter permutations (introduced by Baxter [7]) are exactly the permutations that avoid
2413|2 and 3142|2 (see Figure 5):

Bn := Sn(2413|2, 3142|2).

|Bn| =
n∑
k=1

(
n+1
k−1

)(
n+1
k

)(
n+1
k+1

)(
n+1
1

)(
n+1
2

) .
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[[6, 4, 3, 5, 1, 2]]
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[[4, 1, 3, 5, 2, 6]]

1 2 3 4 5 6
x

2

4

1

5

3

6

y

[[2, 4, 1, 5, 3, 6]]

Figure 4: On the left the separable permutation 643512 = 1 	 ((1 	 1) ⊕ 1) 	 (1 ⊕ 1).
In the middle a Baxter permutation that is not a separable permutation. On the right a
permutation that is not a Baxter permutation.
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Figure 5: Baxter permutation forbidden vincular patterns: 2413|2 and 3142|2. The adjacency
is indicated by a vertical (green) strip.

The first few terms of (Bn) are 1, 2, 6, 22, 92, 422, 2074 (sequence A001181).
Figure 6 and the first two permutations of Figure 4 give examples of Baxter permutations.

4.2 Separable d-permutations

A d-direction (or simply a direction) dir is a word on the alphabet {+,−} of length d such
that its first entry is positive.

Let σ and π be two d-permutations and dir a direction. The d-sum with respect to dir
is the d-permutation

σ ⊕dir π := σ2 ⊕dir
2 π2, . . . , σd ⊕dir

d πd,

where ⊕dir
i is ⊕ if diri = + and 	 if diri = −.

A separable d-permutation is a d permutation of size 1 or the d-sum of two separable
d-permutations. These definitions are illustrated in Figure 7.
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Figure 6: An example of a Baxter permutation. At each ascent (resp., descent) we associate a
blue (resp., red) vertical rectangle, called slice, and we associate a blue (resp., red) horizontal
rectangle to each ascent (resp., descent) of the inverse permutation.

As we have seen previously, for d = 2, every permutation of size at most 3 is separable
and these permutations are characterized by the avoidance of 2 patterns of size 4. For d = 3,
it is no longer true that all 3-permutations of size 3 are separable. The eight 3-permutations
of size 3 that are not separable are Sym((132, 213)) (see Figure 3). In fact, these eight
permutations together with the two patterns of length 4 exactly characterize the separable
d-permutations for any d ≥ 3, as shown in [3]. We restate their result with our formalism:

Theorem 10. [3] Let Sepd−1n be set of separable d-permutations of size n.

Sepd−1n = Sd−1n (Sym((132, 213)), 2413, 3142).

The following explicit formulas were established in [3]:

| Sepd−1n | = 1

n− 1

n−2∑
k=0

(
n− 1

k

)(
n− 1

k + 1

)
(2d−1 − 1)k(2d−1)n−k−1.

Now we give a new characterization of separable d-permutations (Theorem 11). This
makes it simpler to check whether a d-permutation is separable: we only need to check
whether it avoids the dimension 3 patterns and then whether it avoids the dimension 2
patterns only on d− 1 projections instead of on (d− 1)× (d− 2)/2 projections.

Theorem 11. For n ≥ 1, we have

Sepd−1n = Sn(2413, 3142)d−1 ∩ Sd−1n (Sym((132, 213))).
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Figure 7: A permutation p1 = (132, 132) (on the left) and a permutation p2 = (12, 21) (in
the middle). p1 and p2 are separable 3-permutations because p1 = (1, 1)⊕(+++) ((1, 1)⊕(+−−)

(1, 1)) and p2 = (1, 1) ⊕(+−+) (1, 1). On the right, their d-sum with respect to (+ + +) is
(132, 132)⊕(+++) (21, 21) = (13254, 13254) which is still separable.

n\d 2 3 4 5

1 1 1 1 1
2 2 4 8 16
3 6 28 120 496
4 22 244 2248 19216
5 90 2380 47160 833776
6 394 24868 1059976 38760976
7 1806 272188 24958200 1887736816

Table 6: Values of | Sepd−1n | for the first few values of n and d.

Proof. To prove this result, we only need to prove that for any σ ∈ Sd−1n (Sym((132, 213)))
and any 1 < i < j ≤ n, if proji,j(σ) contains one of the patterns 2413, 3142, then σj does
also.

So let σ ∈ Sd−1n (Sym((132, 213))) and 1 < i, j ≤ n be such that proji,j(σ) contains the
pattern 2413 (the other case being identical). Let p1, p2, p3, p4 ∈ Pσ be an occurrence of this
pattern such that x(p1) < x(p2) < x(p3) < x(p4). The projection of p1 and p2 in the plane
(xi, xj) are in the same quadrant as the projection of p3 since σ avoids Sym((132, 213)) and
by Remark 8, x(p3) is not between x(p1) and x(p2).

Applying the same argument to the three other triplets of points, we get that x(p1) is
not between x(p2) and x(p4), x(p3) is not between x(p1) and x(p2), and x(p4) is not between
x(p1) and x(p3).

There are only two orders that satisfy these four constraints: x(p1) < x(p2) < x(p3) <
x(p4) and x(p4) < x(p3) < x(p2) < x(p1). In the first case, the four points induce the pattern
2413 on proj1,j. In the second case, they induce 3142.

Hence, if proji,j(σ) contains a forbidden pattern, so does proj1,j(σ) = σj.
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4.3 Baxter d-permutations

We now generalize the notion of a Baxter permutation to higher dimensions. To do so, we
introduce a formalism that will facilitate the definition of Baxter d-permutations.

Given Pσ the diagram of a d-permutation σ, two points pi, pj of Pσ are k-adjacent if
they differ by one in their kth coordinate, and k is said to be the type of the adjacency. The
direction of pi, pj is the sequence of the signs of xk(pj)−xk(pi) (for k ∈ [d]) if x1(pi) < x1(pj),
otherwise it is the direction of pj, pi. Given two adjacent points pi and pj, the slice of pi, pj
is the d-dimensional box with pi and pj as corners. A slice pi, pj is of type k is pi, pj are
k-adjacent. The direction of a slice pi, pj is the direction of pi, pj. A cell is a unit cube whose
corners are in [n]d. A single slice can have multiple types. For instance, if a slice is a cell, it
is of all possible types.

For d = 2, an ascent in a permutation corresponds to an adjacency of type 1 (which
corresponds to the x-axis) with direction (++); a descent is an adjacency of type 1 with
direction (+−). An adjacency of type 2 (which corresponds to the y-axis) with direction
(+−) corresponds to an ascent in the inverse permutation.

In Figure 6, slices of direction (++) are represented in blue and those of type (+−) in
blue.

Definition 12. A d-permutation is well-sliced if each slice intersects exactly one slice of
each type and two intersecting slices have the same direction.

One can observe that the Baxter permutation in Figure 6 is well-sliced.

Definition 13. A Baxter d-permutation is a d-permutation such that each of its d′ ≤ d
projections is well-sliced.

By definition, if a d-permutation is Baxter, this is also the case for all its projections
of smaller dimensions. On the other hand, a d-permutation can be well-sliced and have
projections that are not well-sliced. Take, for instance, the 3-permutation (342651, 156243).
Its projection on the plane (y, z) is 361542, which is not well-sliced since it is not a Baxter
permutation (see Figure 8).

Table 7 gives the first few values of |Bd−1
n |.

In order to characterize the Baxter d-permutations, let us introduce the notion of gener-
alized vincular patterns.

Definition 14. A generalized vincular pattern π|X1,...,Xd
is a permutation π together with

a list of subsets of [k − 1] X1, . . . , Xd called adjacencies. Given σ a d-permutation, we say
that p1, . . . , pk ∈ Pσ is an occurrence of the pattern π|X1,...,Xd

if p1, . . . , pk is an occurrence
of π and if it satisfies the adjacency constraints: for each k and each i ∈ Xk: the ith and
(i + 1)th points with respect to the order along the axis k are k-adjacent. We say that
σ, a d-permutation, contains the pattern π|X1,...,X′d

(of dimension d′) if at least one direct
projection of dimension d′ of σ contains an occurrence of the pattern π|X1,...,X′d

.
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n\d 2 3 4 5

1 1 1 1 1
2 2 4 8 16
3 6 28 120 496
4 22 260 2440 20816
5 92 2872 59312 1035616
6 422 35620
7 2074 479508

Table 7: Values of |Bd−1
n | for the first few values of n and d.
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Figure 8: On the left, (342651, 156243), an example of a 3-permutation that is well-sliced
but not Baxter since its projection on the plane (y, z) (361542) on the right is not well-sliced.

It is well known that Sn(2413|2) = Sn(2413|2,2) and Sn(3142|2) = Sn(3142|2,2) (see Fig-
ure 10). Every occurrence of 2413|2,2 is clearly an occurrence of 2413|2. The converse is
obtained due to the following observation: if i1, i2, i3, i4 is an occurrence of 2413|2 in σ,
let i′1 be such that i′1 < i2 and σ(i1) ≤ σ(i′1) < σ(i4), such that σ(i′1) is maximal. Let
i′4 = σ−1(σ(i′1) + 1). We have that i′1, i2, i3, i

′
4 is an occurrence of 2413|2,2.

It follows that
Bn = Sn(2413|2,2, 3142|2,2).

As a warm-up for the rest of this section, let us reprove that our definition of Baxter
d-permutations coincides with the classical one.

Proposition 15. A permutation is a Baxter permutation if and only if it is well-sliced.

Proof. As shown above, Bn = Sn(2413|2,2, 3142|2,2). If a permutation contains one of the
above patterns, then it contains 2 intersecting slices of different directions, hence it is not
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Figure 9: (14386527, 47513268): an example of a Baxter 3-permutation, together with its
slices of different types.

well-sliced. Now let consider a permutation σ that is not well-sliced and let us show that it
contains a forbidden pattern. As it is not well-sliced, it contains (i) a pair of intersecting
slices of different directions, (ii) it contains a slice that intersects two other slices or (iii) it
contains a slice that does not intersect any other slices.

(i): Any occurrence of two slices of different directions is an occurrence of one of the two
forbidden patterns.

(ii): Let p1, p
′
1, p2, p3, p4, p

′
4 be such that p2, p3 is a vertical slice, and p1, p4 and p′1, p

′
4 are

two horizontal slices intersecting the slice p2, p3. Since we have treated the case (i) we can
assume that the 3 slices are of the same type and, without loss of generality, we can assume
that this type is (++). Observe that p1, p

′
1, p4, p

′
4 are four different points but this set of

points may intersect the point set {p2, p3}. Nevertheless we can assume that p1 and p′1 are
on the left of p3 and p4 and p′4 are on the right of p2. We can also assume, without loss of
generality, that p′1 and p′4 are below p1 and p4. Hence p1, p2, p3, p

′
4 are four different points

and we can then observe that this point set is an occurrence of 3142|2, hence σ contains
3142|2,2.
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Figure 10: Baxter permutations can also be characterized by these two generalized vincular
forbidden patterns: 2413|2,2 and 3142|2,2.

(iii): Let us show this case cannot occur. In other words, let us show that every vertical
slice intersects at least one horizontal slice. Without loss of generality, we may restrict
ourselves to the case of an ascent. Let i1 be such that σ(i1) < σ(i1 + 1). Let i2 be such
that i2 ≤ i1 such that σ(i1) ≤ σ(i2) < σ(i1 + 1) and such that σ(i2) is maximal. Let
i3 = σ−1(σ(i2) + 1). By construction, i3 ≥ i2. Hence, the vertical slice pi1 , pi1+1 intersects
the horizontal slice pi2 , pi3 , which is a contradiction.

The action of the symmetries of the hypercube extends naturally to the generalized
vincular patterns. We can remark that Sym(2413|2,2) = {2413|2,2, 3142|2,2}, and hence Bn =
Sn(Sym(2413|2,2)).

Theorem 16. For n ≥ 1, we have

Bd−1
n = Sd−1n ( Sym(2413|2,2), Sym((312, 213)|1,2,.),

Sym((3412, 1432)|2,2,.), Sym((2143, 1423)|2,2,.)).

Figure 11 depicts an occurrence of each class of forbidden patterns of dimension 3. The
list of all symmetries of these patterns is given in Appendix A.

Proof. Let us start with the easy inclusion:
⊆: Let σ be a d-permutation that contains one of the forbidden patterns. If a d-

permutation contains one of the forbidden patterns

Sym(2413|2,2) (resp., Sym((2143, 1423)|2,2,.)),

then at least one of its 2-dimensional (resp., 3-dimensional) projection is not well sliced since
these patterns are witnesses of the intersections of two slices of different directions. Hence
σ is not Baxter.

If p1, p2, p3 (resp., p1, p2, p3, p4) is an occurrence of the pattern (312, 213)|1,2,. (resp.,
(3412, 1432)|2,2,.) in one of the 3-dimensional projection of σ := σ3, then the slices p1, p2
and p1, p3 (resp., p1, p4 and p2, p3) do not intersect. We remark that in projx,y(σ3), the
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corresponding slices intersect. Hence, either there is no other intersection of the slices p1, p2
(resp., p1, p4) in σ3 and σ3 is not well sliced, or the slice intersects another slice in σ3 and
in this case the slice p1, p2 (resp., p1, p4) intersects two slices in projx,y(σ3). In either case,
σ is not Baxter. We can apply the same reasoning to all symmetries of (312, 213)|1,2,.and
(3412, 1432)|2,2,.. Now let us consider the other inclusion.

123 123

1
2
3

123 123

1
2
3

1234 1234
12
34

1234 1234
12
34

1234 1234
12
34

1234 1234
12
34

Figure 11: On the left, the three 3-dimensional vincular pattern forbidden in Baxter d-
permutations: (312, 213)|1,2,.,(3412, 1432)|2,2,.,(2143, 1423)|2,2,.. The adjacency constraints
are materialized by boxes orthogonal to the concerned axes. On the right the corresponding
3-permutations with all its slices. One can observe that it is not well-sliced because the first
two have a lack of slice intersections and the last one a bad intersection.

⊇: Let σ be a d-permutation that is not Baxter. We will now prove that it contains one
of the forbidden patterns. Consider the three following sub-cases:

• (i) there are two intersecting slices of different directions. We may assume, without
loss of generality, that the slice p2, p3 of type x intersects the slice p1, p4 of type y. If
the signs of the direction of the slices are different for x or y, then p1, p2, p3, p4 is an
occurrence of a forbidden pattern in Sym(2413|2,2) in projxy(σ). So now let us assume
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that the directions of these two slices share the same signs on the coordinates x and
y but differ on a third coordinate. Without loss of generality, we may assume that
the third coordinate is z and in projxyz(σ) the direction for the first one is (+ + +)
and (+ + −) for the second. First observe that since these two slices intersect each
other and are of different types, p1, p2, p3, p4 are four different points and we have
x(p1) < x(p2) < x(p3) < x(p4) and y(p2) < y(p1) < y(p4) < y(p3). Moreover we
have z(p2) < z(p3) and z(p4) < z(p1). If z(p1) and z(p4) are between z(p2) and
z(p3), then projxz(σ) contains a forbidden pattern in Sym(2413|2,2). If z(p2) and
z(p3) are between z(p4) and z(p1), then projyz(σ) contains a forbidden pattern in
Sym(2413|2,2). If this is not the case, then either z(p2) < z(p4) < z(p3) < z(p1) or
z(p4) < z(p2) < z(p1) < z(p3). In these last two cases, p1, p2, p3, p4 is an occurrence of
a forbidden pattern of Sym((2143, 1423)|2,2,.) in projxyz(σ).

• (ii) there is a slice that intersects two slices of the same type. Assume that there is
a slice p1, p6 of type y that intersect two slices of type x, p2, p3 and p4, p5, such that
x(p1) < x(p2) < · · · < x(p6). Since we have already treated the case of intersections
of different directions, we can assume that these three slices share the same direction
and, without loss of generality, we can assume that this is the direction (+ + +). This
implies that y(p3), y(p5) > y(p6) and y(p2), y(p4) < y(p1). Hence p1, p3, p4, p6 is an
occurrence of 3142|.,2 in projxy(σ). Hence σ contains a pattern of Sym(2413|2,2).

• (iii) there is a slice that intersects no slice of a given type. Without loss of generality,
let us consider the direction (+ + +). Assume there is an x-slice (p2, p3) that does
not intersect any y-slice. Let us consider projxy(σ). If σ is not Baxter, projxy(σ)
contains a forbidden pattern Sym(2413|2,2). Otherwise, in projxy(σ), the slice (p2, p3)
intersects exactly one slice. Let p2, p3 be such that the slice (p1, p4) intersects the
slice (p2, p3) in projxy(σ). Note that the p1 may be equal to p2. Since these two
slices do not intersect in σ, there must be a third coordinate, say z, such that either
z(p1), z(p4) ≤ z(p2) or z(p1), z(p4) > z(p3). If p1 = p3, then the three points form an
occurrence of a forbidden pattern in Sym((312, 213)|1,2,.). Otherwise, the four points
form an occurrence of a forbidden pattern in Sym((3412, 1432)|2,2,.).

As all the patterns involved in the previous theorem are of dimension 2 or 3, we get the
following corollary:

Corollary 17. A d-permutation is Baxter if and only if all its projections of dimensions 2
or 3 are well-sliced.

4.4 Anti- and complete Baxter d-permutations

In a Baxter permutation σ, each vertical slice intersects exactly one horizontal slice. These
intersections are cells (squares of width 1). (See, for instance, Figure 12). Let P ′σ be the set of
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Figure 12: The Baxter permutation 5 3 4 9 7 8 10 6 1 2 (square points) together with its as-
sociate anti-Baxter permutation (circle points) 4 3 5 8 7 9 6 2 1. The corresponding complete
Baxter permutation (all points together) is 9 8 5 6 7 10 17 16 13 14 15 18 19 12 11 4 1 2 3.

centers of these cells. If we combine Pσ and P ′σ, we obtain the diagram of a permutation of size
2n+ 1 (on a finer grid). These permutations are often called complete Baxter permutations,
and were introduced by Baxter and Joichi [8] under the name w-admissible permutations.
What we call here Baxter permutations are sometimes called reduced Baxter permutations.

The permutations corresponding to P ′σ are called anti-Baxter permutations. These per-
mutations are exactly the ones avoiding 2143|2,. and 3412|2,., as shown in [2]. As with Baxter
patterns, Sn(2143|2,., 3412|2,.) = Sn(2143|2,2, 3412|2,2) (see [2, Lemma 3.5] and Figure 13).
The enumeration of this class of permutation was given in [2].
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2

y

Figure 13: Forbidden patterns in anti-Baxter permutations: 2143|2,2 and 3412|2,2.

We will now generalize these definitions of anti-Baxter and complete Baxter to higher
dimensions. For this purpose, we will start with the following property.

Proposition 18. Let σ be a well-sliced d-permutation. Given a slice p1, p
′
1 of type 1, let

(pi, p
′
i) be the slices of type i ∈ [d] that intersect p1, p

′
1. The intersection of all these slices is
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the cell q, q′, where xi(q) := xi(pi) and xi(q
′) := xi(p

′
i).

Proof. First observe that the cell q, q′ is included in each slice pi, p
′
i. Hence the cell q, q′ is

included in the intersection of all slices pi, p
′
i.

Since every slice pj, p
′
j intersects the slice pi, p

′i, we have

max(min(xi(pi), xi(p
′
i)),min(xi(pj), xi(p

′
j))) < min( max(xi(pi), xi(p

′
i)),

max(xi(pj), xi(p
′
j))).

Moreover, since pi, p
′
i is of width 1 with respect to axis i and all the others have a width

greater than or equal to one, we have

min(xi(pj), xi(p
′
j)) ≤ min(xi(pi), xi(p

′
i)) and max(xi(pj), xi(p

′
j)) ≥ max(xi(pi), xi(p

′
i)).

Hence the intersection of the projections of the slices on the axis i is the interval

[min(xi(pi), xi(p
′
i)),max(xi(pi), xi(p

′
i))].

Hence the intersection of the considered slices is included in the slice q, q′.

With a Baxter d-permutation σ, for every slice of type 1, we associate the intersecting
cell defined by Property 18 (see Figure 14). Let P ′σ be the set of centers of intersecting
cells. Since every slice of any type contains exactly one intersecting cell, P ′σ defines a d-
permutation, and we call the d-permutations obtained this way anti-Baxter d-permutations
(see Figure 14). Again, this definition coincides with the classical one. If we combine Pσ and
P ′σ, we obtain the diagram of a d-permutation of size 2n+ 1 (on a finer grid). We naturally
call these d-permutations complete Baxter d-permutations.

As with Baxter d-permutations, a projection of an anti-Baxter (resp., a complete Baxter)
d-permutation is also an anti-Baxter (resp., a complete Baxter) d′-permutation. We let Ad−1n

denote the set of anti-Baxter d-permutations of size n. The first few values of Ad−1n are given
in Table 8.

n\d 2 3 4 5

1 1 1 1 1
2 2 4 8 16
3 6 36 216 1296
4 22 444 7096
5 88 5344
6 374 64460
7 1668

Table 8: Values of |Ad−1n | for the first few values of n and d.
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Figure 14: On the left, the complete Baxter 3-permutation (14386527, 47513268) with its
cell (circle) points. Each cell point corresponds to the triple intersection of slices of the
same type (see Figure 9). On the right, the anti-Baxter 3-permutation (1347526, 4631257)
associated with the Baxter permutation of Figure 14.

5 Conclusion and perspectives

In this paper we have started to consider pattern-avoidance in d-permutations and we have
generalized the notion of a Baxter permutation to this context. These first steps give rise to
a large number of open problems, some probably hard, but some probably very tractable.

The enumeration of d-permutations avoiding the smallest patterns is quite open, starting
from the smallest one: (12, 12). Moreover, as has been presented, many known enumeration
sequences seem to match several permutation families. Clearly, there are several bijections
to find.

Considering Baxter d-permutations, a large field of research is opening up.
Let us mention several examples of questions related to Baxter permutations. Clearly,
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the first expected result would be the enumeration of the Baxter d-permutations. As men-
tioned in the Introduction, Baxter permutations are in bijection with several interesting
combinatorial objects. A very natural question would be: which of these bijections can
be extended to d-Baxter permutations. For instance, Baxter permutations are in bijection
with boxed arrangements of axis-parallel segments in R2 [18]. In [19], the authors studied
boxed arrangements of axis-parallel segments in R3. Are there some links between Baxter
d-permutations boxed arrangements in R2d−1

?
We were able to characterize Baxter d-permutations with forbidden vincular patterns.

This question remains open for anti-Baxter d-permutations.
In addition, several classes related to Baxter permutations have received some attention:

doubly alternating Baxter permutations [22], Baxter involutions [21], semi and strong Baxter
permutations [11], as well as twisted Baxter permutations [32]. Once again, can some of these
classes be extended and enumerated in higher dimensions?

We have developed a module based on Sage to work with d-permutations:
https://plmlab.math.cnrs.fr/bonichon/multipermutation .

We hope that this tool will help the community to investigate the problems above.
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A All symmetries of Baxter patterns

Sym(2413|2,2) = 2413|2,2, 3142|2,2.

Sym((312, 213)|1,2,.) = (312, 213)|1,.2,., (312, 231)|1,.2,., (132, 213)|1,.1,., (132, 231)|1,.1,.,
(213, 312)|2,.2,., (213, 132)|2,.2,., (231, 312)|2,.1,., (231, 132)|2,.1,.,
(213, 312)|1,.,2, (213, 132)|1,.,1, (231, 312)|1,.,2, (231, 132)|1,.,1,
(312, 213)|2,.,2, (312, 231)|2,.,1, (132, 213)|2,.,2, (132, 231)|2,.,1,
(213, 132)|.,1,2, (213, 312)|.,1,1, (231, 132)|.,2,2, (231, 312)|.,2,1,
(312, 231)|.,1,2, (312, 213)|.,1,1, (132, 231)|.,2,2, (132, 213)|.,2,1.

Sym((3412, 1432)|2,2,.) = (2341, 4123)|.,2,2, (2143, 3214)|2,2,., (4123, 3214)|.,2,2,
(3412, 3214)|2,2,., (3214, 4123)|.,2,2, (2341, 1432)|.,2,2, (1432, 3214)|.,2,2,
(2143, 1432)|2,2,., (3412, 1432)|2,2,., (2143, 4123)|2,2,., (1432, 2143)|2,.,2,
(4123, 2341)|.,2,2, (3214, 1432)|.,2,2, (3412, 4123)|2,2,., (3412, 2341)|2,2,.,
(1432, 3412)|2,.,2, (2143, 2341)|2,2,., (2341, 3412)|2,.,2, (4123, 2143)|2,.,2,
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(4123, 3412)|2,.,2, (3214, 3412)|2,.,2, (1432, 2341)|.,2,2, (3214, 2143)|2,.,2,
(2341, 2143)|2,.,2.

Sym((2143, 1423)|2,2,.) = (3241, 2143)|2,.,2, (3412, 2314)|2,2,., (1423, 3412)|2,.,2,
(2314, 2143)|2,.,2, (1342, 3124)|.,2,2, (3124, 1342)|.,2,2, (1342, 2431)|.,2,2,
(3241, 3412)|2,.,2, (4132, 3412)|2,.,2, (2431, 4213)|.,2,2, (2143, 3241)|2,2,.,
(4213, 2431)|.,2,2, (3412, 3241)|2,2,., (3412, 1423)|2,2,., (4213, 3124)|.,2,2,
(2143, 4132)|2,2,., (3124, 4213)|.,2,2, (2431, 1342)|.,2,2, (2314, 3412)|2,.,2,
(2143, 1423)|2,2,., (1423, 2143)|2,.,2, (4132, 2143)|2,.,2, (2143, 2314)|2,2,.,
(3412, 4132)|2,2,..

B Other patterns

Here we give the beginning of sequences of permutations avoiding some larger patterns or
combination of patterns.

Patterns #TWE Sequence Comment

1234 1 1, 4, 36, 506, 9032, 181582, 3836372, · · · new
1243 2 1, 4, 36, 507, 9089, 185253, 4017231, · · · new
1324 1 1, 4, 36, 507, 9087, 185455, 4053668, · · · new
1342 4 1, 4, 36, 507, 9102, 185920, 4059355, · · · new
1432 2 1, 4, 36, 507, 9119, 188501, 4230523, · · · new
2143 1 1, 4, 36, 507, 9121, 187799, 4163067, · · · new
2341 2 1, 4, 36, 507, 9105, 187502, 4191192, · · · new
2413 2 1, 4, 36, 507, 9141, 189810, 4291658, · · · new
2431 4 1, 4, 36, 507, 9124, 188197, 4197349, · · · new
3412 1 1, 4, 36, 507, 9135, 190457, 4368455, · · · new
3421 2 1, 4, 36, 507, 9133, 190307, 4355801, · · · new
4231 1 1, 4, 36, 507, 9119, 189363, 4318292, · · · new
4321 1 1, 4, 36, 507, 9147, 192181, 4482267, · · · new

Table 9: Patterns of size 4 and dimension 2.

Patterns #TWE Sequence Comment

1234, 1243 2 1, 4, 36, 440, 5880, 75968, · · · new
1234, 1324 1 1, 4, 36, 440, 5872, 77616, · · · new
1234, 1342 4 1, 4, 36, 441, 5692, 68500, · · · new
1234, 1432 2 1, 4, 36, 440, 5056, 46446, · · · new
1234, 2143 1 1, 4, 36, 440, 5064, 45030, · · · new
1234, 2341 2 1, 4, 36, 441, 5730, 68040, · · · new
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1234, 2413 2 1, 4, 36, 441, 5173, 49501, · · · new
1234, 2431 4 1, 4, 36, 441, 5180, 46360, · · · new
1234, 3412 1 1, 4, 36, 440, 5096, 44026, · · · new
1234, 3421 2 1, 4, 36, 441, 5205, 42991, · · · new
1234, 4231 1 1, 4, 36, 440, 5068, 43906, · · · new
1234, 4321 1 1, 4, 36, 440, 5168, 34784, · · · new
1243, 1324 2 1, 4, 36, 444, 6002, 79964, · · · new
1243, 1342 4 1, 4, 36, 444, 6015, 81001, · · · new
1243, 1432 2 1, 4, 36, 444, 5817, 73686, · · · new
1243, 2134 1 1, 4, 36, 444, 5353, 53256, · · · new
1243, 2143 2 1, 4, 36, 444, 6060, 82396, · · · new
1243, 2314 4 1, 4, 36, 444, 5647, 65690, · · · new
1243, 2341 4 1, 4, 36, 444, 5649, 65566, · · · new
1243, 2413 4 1, 4, 36, 444, 5700, 69626, · · · new
1243, 2431 4 1, 4, 36, 444, 5679, 66392, · · · new
1243, 3214 2 1, 4, 36, 444, 5278, 51226, · · · new
1243, 3241 4 1, 4, 36, 444, 5339, 54622, · · · new
1243, 3412 2 1, 4, 36, 444, 5336, 54613, · · · new
1243, 3421 4 1, 4, 36, 444, 5336, 51612, · · · new
1243, 4231 2 1, 4, 36, 444, 5296, 52363, · · · new
1243, 4321 2 1, 4, 36, 444, 5324, 47835, · · · new
1324, 1342 4 1, 4, 36, 444, 6036, 82584, · · · new
1324, 1432 2 1, 4, 36, 444, 5827, 73608, · · · new
1324, 2143 1 1, 4, 36, 444, 5650, 65194, · · · new
1324, 2341 2 1, 4, 36, 444, 5468, 59406, · · · new
1324, 2413 2 1, 4, 36, 444, 5726, 70540, · · · new
1324, 2431 4 1, 4, 36, 444, 5710, 68014, · · · new
1324, 3412 1 1, 4, 36, 444, 5304, 52359, · · · new
1324, 3421 2 1, 4, 36, 444, 5317, 53022, · · · new
1324, 4231 1 1, 4, 36, 444, 5276, 52016, · · · new
1324, 4321 1 1, 4, 36, 444, 5304, 50792, · · · new
1342, 1423 2 1, 4, 36, 442, 5978, 82076, · · · new
1342, 1432 4 1, 4, 36, 444, 6056, 84402, · · · new
1342, 2143 4 1, 4, 36, 444, 5692, 68333, · · · new
1342, 2314 2 1, 4, 36, 444, 5710, 69187, · · · new
1342, 2341 4 1, 4, 36, 444, 6080, 84954, · · · new
1342, 2413 4 1, 4, 36, 444, 5952, 80102, · · · new
1342, 2431 4 1, 4, 36, 444, 5726, 70904, · · · new
1342, 3124 2 1, 4, 36, 444, 5507, 62078, · · · new
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1342, 3142 4 1, 4, 36, 444, 6148, 88944, · · · new
1342, 3214 4 1, 4, 36, 444, 5334, 54125, · · · new
1342, 3241 4 1, 4, 36, 444, 5733, 70753, · · · new
1342, 3412 4 1, 4, 36, 444, 5738, 71301, · · · new
1342, 3421 4 1, 4, 36, 444, 5715, 68527, · · · new
1342, 4123 4 1, 4, 36, 444, 5483, 60355, · · · new
1342, 4132 4 1, 4, 36, 444, 5734, 70864, · · · new
1342, 4213 4 1, 4, 36, 444, 5364, 56948, · · · new
1342, 4231 4 1, 4, 36, 444, 5706, 68457, · · · new
1342, 4312 4 1, 4, 36, 444, 5356, 56450, · · · new
1342, 4321 4 1, 4, 36, 444, 5324, 51799, · · · new
1432, 2143 2 1, 4, 36, 444, 5931, 77775, · · · new
1432, 2341 4 1, 4, 36, 444, 5348, 57776, · · · new
1432, 2413 4 1, 4, 36, 444, 5766, 73833, · · · new
1432, 2431 4 1, 4, 36, 444, 6126, 87630, · · · new
1432, 3214 1 1, 4, 36, 444, 5587, 63160, · · · new
1432, 3241 4 1, 4, 36, 444, 5536, 63590, · · · new
1432, 3412 2 1, 4, 36, 444, 5444, 63144, · · · new
1432, 3421 4 1, 4, 36, 444, 5761, 72105, · · · new
1432, 4231 2 1, 4, 36, 444, 5485, 62074, · · · new
1432, 4321 2 1, 4, 36, 444, 5981, 79272, · · · new
2143, 2341 2 1, 4, 36, 444, 5349, 56637, · · · new
2143, 2413 2 1, 4, 36, 444, 6146, 88824, · · · new
2143, 2431 4 1, 4, 36, 444, 5730, 70097, · · · new
2143, 3412 1 1, 4, 36, 444, 5476, 62504, · · · new
2143, 3421 2 1, 4, 36, 443, 5357, 56583, · · · new
2143, 4231 1 1, 4, 36, 444, 5322, 53529, · · · new
2143, 4321 1 1, 4, 36, 444, 5464, 58437, · · · new
2341, 2413 4 1, 4, 36, 444, 5731, 72541, · · · new
2341, 2431 4 1, 4, 36, 444, 6122, 87944, · · · new
2341, 3412 2 1, 4, 36, 443, 5864, 77512, · · · new
2341, 3421 2 1, 4, 36, 444, 5922, 80471, · · · new
2341, 4123 1 1, 4, 36, 444, 5441, 56318, · · · new
2341, 4132 4 1, 4, 36, 444, 5329, 54619, · · · new
2341, 4231 2 1, 4, 36, 444, 5894, 78113, · · · new
2341, 4312 2 1, 4, 36, 444, 5342, 56655, · · · new
2341, 4321 2 1, 4, 36, 444, 5371, 60374, · · · new
2413, 2431 4 1, 4, 36, 444, 6164, 89724, · · · new
2413, 3142 1 1, 4, 36, 444, 6252, 94588, · · · new
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2413, 3241 4 1, 4, 36, 444, 5962, 80566, · · · new
2413, 3412 2 1, 4, 36, 444, 6162, 90477, · · · new
2413, 3421 4 1, 4, 36, 444, 5746, 72759, · · · new
2413, 4231 2 1, 4, 36, 444, 5760, 72775, · · · new
2413, 4321 2 1, 4, 36, 443, 5359, 58000, · · · new
2431, 3241 2 1, 4, 36, 444, 6137, 88439, · · · new
2431, 3412 4 1, 4, 36, 444, 5758, 73920, · · · new
2431, 3421 4 1, 4, 36, 444, 6149, 89342, · · · new
2431, 4132 2 1, 4, 36, 442, 5662, 70024, · · · new
2431, 4213 2 1, 4, 36, 444, 5565, 65925, · · · new
2431, 4231 4 1, 4, 36, 444, 6134, 88594, · · · new
2431, 4312 4 1, 4, 36, 444, 5754, 73295, · · · new
2431, 4321 4 1, 4, 36, 444, 5978, 82140, · · · new
3412, 3421 2 1, 4, 36, 444, 6196, 91640, · · · new
3412, 4231 1 1, 4, 36, 444, 5726, 72248, · · · new
3412, 4321 1 1, 4, 36, 444, 5496, 66138, · · · new
3421, 4231 2 1, 4, 36, 444, 6152, 90102, · · · new
3421, 4312 1 1, 4, 36, 444, 5655, 70866, · · · new
3421, 4321 2 1, 4, 36, 444, 6228, 93468, · · · new
4231, 4321 1 1, 4, 36, 444, 6176, 92820, · · · new

Table 10: Pairs of patterns of size 4 and dimension 2.

Patterns #TWE Sequence Comment

123, (123, 123) 1 1, 4, 20, 100, 410, 1224, 2232, · · · 123
123, (123, 132) 6 1, 4, 20, 100, 410, 1224, 2232, · · · 123
123, (123, 231) 6 1, 4, 20, 100, 410, 1224, 2232, · · · 123
123, (123, 321) 3 1, 4, 20, 100, 410, 1224, 2232, · · · 123
123, (132, 213) 6 1, 4, 19, 91, 358, 1005, 1601, · · · new
123, (132, 312) 12 1, 4, 19, 79, 231, 407, 354, · · · new
123, (231, 312) 2 1, 4, 19, 83, 262, 514, 527, · · · new
132, (123, 123) 2 1, 4, 20, 100, 490, 2366, 11334, · · · new
132, (123, 132) 6 1, 4, 21, 116, 646, 3596, 19981, · · · 132
132, (123, 213) 6 1, 4, 20, 102, 518, 2618, 13194, · · · new
132, (123, 231) 6 1, 4, 20, 100, 486, 2302, 10690, · · · new
132, (123, 312) 6 1, 4, 20, 104, 544, 2846, 14880, · · · new
132, (123, 321) 6 1, 4, 20, 99, 477, 2252, 10480, · · · new
132, (132, 213) 12 1, 4, 21, 116, 646, 3596, 19981, · · · 132
132, (132, 312) 12 1, 4, 21, 116, 646, 3596, 19981, · · · 132
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132, (213, 231) 12 1, 4, 20, 100, 488, 2335, 11016, · · · new
132, (231, 312) 4 1, 4, 20, 105, 559, 2990, 16021, · · · new
231, (123, 123) 2 1, 4, 20, 97, 431, 1758, 6669, · · · new
231, (123, 132) 4 1, 4, 20, 104, 544, 2855, 15056, · · · new
231, (123, 213) 4 1, 4, 20, 106, 573, 3127, 17173, · · · new
231, (123, 231) 4 1, 4, 21, 123, 767, 4994, 33584, · · · 231
231, (123, 312) 4 1, 4, 20, 105, 564, 3094, 17329, · · · new
231, (123, 321) 4 1, 4, 20, 106, 581, 3273, 18851, · · · new
231, (132, 123) 4 1, 4, 20, 105, 564, 3092, 17289, · · · new
231, (132, 213) 4 1, 4, 21, 123, 767, 4994, 33584, · · · 231
231, (132, 231) 2 1, 4, 21, 123, 767, 4994, 33584, · · · 231
231, (132, 312) 4 1, 4, 20, 108, 611, 3575, 21455, · · · new
231, (132, 321) 4 1, 4, 20, 108, 607, 3504, 20638, · · · new
231, (213, 132) 4 1, 4, 20, 109, 629, 3793, 23669, · · · new
231, (213, 231) 4 1, 4, 21, 123, 767, 4994, 33584, · · · 231
231, (213, 312) 2 1, 4, 20, 111, 654, 4013, 25380, · · · new
231, (213, 321) 4 1, 4, 21, 123, 767, 4994, 33584, · · · 231
231, (231, 123) 4 1, 4, 21, 123, 767, 4994, 33584, · · · 231
231, (231, 213) 4 1, 4, 21, 123, 767, 4994, 33584, · · · 231
231, (231, 312) 2 1, 4, 21, 123, 767, 4994, 33584, · · · 231
231, (312, 132) 4 1, 4, 20, 111, 659, 4102, 26435, · · · new
231, (312, 231) 2 1, 4, 21, 123, 767, 4994, 33584, · · · 231
231, (321, 123) 2 1, 4, 20, 112, 673, 4243, 27696, · · · new
321, (123, 123) 1 1, 4, 20, 76, 108, 52, 0, · · ·
321, (123, 132) 6 1, 4, 20, 103, 527, 2714, 14274, · · · new
321, (123, 231) 6 1, 4, 20, 110, 644, 3934, 24770, · · · new
321, (123, 321) 3 1, 4, 21, 128, 850, 5956, 43235, · · · 321
321, (132, 213) 6 1, 4, 20, 113, 687, 4389, 29046, · · · new
321, (132, 312) 12 1, 4, 21, 128, 850, 5956, 43235, · · · 321
321, (231, 312) 2 1, 4, 20, 117, 745, 5006, 34873, · · · new

Table 11: Pairs of patterns of size 3 respectively of dimension 2 and 3.

Patterns #TWE Sequence Comment

(123, 123), (123, 132) 24 1, 4, 34, 480, 9916, 277730, 10023010, · · · new

(123, 123), (123, 231) 24 1, 4, 34, 477, 9681, 262606, 9038034, · · · new

(123, 123), (123, 321) 6 1, 4, 34, 472, 9324, 241616, 7793548, · · · new

(123, 123), (132, 213) 24 1, 4, 34, 476, 9618, 259274, 8857074, · · · new

(123, 123), (132, 312) 48 1, 4, 34, 472, 9321, 241306, 7769550, · · · new

(123, 123), (231, 312) 8 1, 4, 34, 472, 9286, 237532, 7466512, · · · new
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(123, 132), (123, 213) 12 1, 4, 34, 478, 9758, 267578, 9366032, · · · new

(123, 132), (123, 231) 12 1, 4, 34, 480, 9916, 277792, 10032960, · · · new

(123, 132), (123, 312) 12 1, 4, 34, 476, 9622, 259720, 8895656, · · · new

(123, 132), (132, 123) 24 1, 4, 34, 480, 9912, 277304, 9987248, · · · new

(123, 132), (132, 213) 48 1, 4, 34, 476, 9617, 259152, 8846076, · · · new

(123, 132), (132, 312) 48 1, 4, 34, 474, 9463, 249551, 8249751, · · · new

(123, 132), (213, 123) 24 1, 4, 34, 476, 9633, 260990, 9007402, · · · new

(123, 132), (213, 132) 48 1, 4, 34, 480, 9900, 275992, 9874628, · · · new

(123, 132), (213, 231) 48 1, 4, 34, 475, 9555, 255962, 8679070, · · · new

(123, 132), (231, 132) 48 1, 4, 34, 476, 9608, 258290, 8782799, · · · new

(123, 132), (231, 213) 24 1, 4, 34, 474, 9462, 249440, 8240370, · · · new

(123, 132), (231, 312) 48 1, 4, 34, 474, 9441, 247195, 8060190, · · · new

(123, 132), (231, 321) 24 1, 4, 34, 476, 9603, 257690, 8728931, · · · new

(123, 132), (321, 132) 24 1, 4, 34, 472, 9332, 242344, 7844248, · · · new

(123, 132), (321, 213) 24 1, 4, 34, 472, 9316, 240804, 7731538, · · · new

(132, 213), (132, 231) 12 1, 4, 34, 476, 9618, 259364, 8871444, · · · new

(132, 213), (213, 132) 4 1, 4, 34, 478, 9730, 264334, 9076864, · · · new

(132, 213), (213, 312) 12 1, 4, 34, 474, 9450, 248156, 8137074, · · · new

Table 12: Pairs of patterns of size 3 and of dimension 3.

Patterns #TWE Sequence Comment

(1234, 1234) 4 1, 4, 36, 575, 14291, 508161, 24385927, · · · new
(1234, 1243) 24 1, 4, 36, 575, 14291, 508155, 24384283, · · · new
(1234, 1324) 12 1, 4, 36, 575, 14291, 508149, 24382888, · · · new
(1234, 1342) 24 1, 4, 36, 575, 14291, 508144, 24381346, · · · new
(1234, 1423) 24 1, 4, 36, 575, 14291, 508144, 24381396, · · · new
(1234, 1432) 24 1, 4, 36, 575, 14291, 508155, 24384181, · · · new
(1234, 2143) 12 1, 4, 36, 575, 14291, 508153, 24383579, · · · new
(1234, 2413) 12 1, 4, 36, 575, 14291, 508132, 24378096, · · · new
(1243, 1324) 48 1, 4, 36, 575, 14291, 508135, 24379128, · · · new
(1243, 1423) 48 1, 4, 36, 575, 14291, 508144, 24381329, · · · new
(1243, 2134) 24 1, 4, 36, 575, 14291, 508151, 24383081, · · · new
(1243, 2314) 48 1, 4, 36, 575, 14291, 508142, 24380642, · · · new
(1243, 2413) 48 1, 4, 36, 575, 14291, 508129, 24377368, · · · new
(1324, 1342) 48 1, 4, 36, 575, 14291, 508142, 24380847, · · · new
(1324, 2143) 24 1, 4, 36, 575, 14291, 508131, 24377763, · · · new
(1342, 1423) 16 1, 4, 36, 575, 14291, 508131, 24378031, · · · new
(1342, 2143) 24 1, 4, 36, 575, 14291, 508132, 24378046, · · · new
(1342, 2314) 16 1, 4, 36, 575, 14291, 508128, 24377163, · · · new
(1342, 2413) 48 1, 4, 36, 575, 14291, 508128, 24377001, · · · new
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(1342, 2431) 24 1, 4, 36, 575, 14291, 508139, 24379797, · · · new
(1432, 2143) 24 1, 4, 36, 575, 14291, 508143, 24380822, · · · new

Table 13: Patterns of size 4 and dimension 3.
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