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Abstract

We establish several interesting series associated with the ratio and the product

of central binomial coefficients, namely
(

2n
n

)

and
(

4n
2n

)

. Series involving the product of

central binomial coefficients can be found in the papers of Campbell, D’Aurizio, and

Sondow. In this paper, through the application of integration methods, we address

broad generalizations of both classes. The techniques involved in constructing the

integrals for the corresponding series are based on the use of the ordinary generating

functions of central binomial coefficients and Wallis’ well-known integral formulas.

1 Introduction

The central binomial coefficients
(

2n

n

)

=
(2n)!

(n!)2

for n ≥ 0 are the positive integers that appear exactly in the middle of the even-indexed
rows of the Pascal triangle. These numbers play an important role in various fields such
as analysis, number theory, and combinatorics. A number of facts about central binomial
coefficients were compiled by Gould [8]. Lehmer [10] gave diverse identities and interesting
results via specialization, integration, and differentiation tricks. Surprisingly, the coefficients
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appear in the infinite binomial series expansion of the function (1 − 4x)−1/2 for |x| < 1/4,
yielding the ordinary generating function as follows:

∞
∑

n=0

(

2n

n

)

xn =
1√

1− 4x
= 1 + 2x+ 6x2 + 20x3 + 70x4 + · · · . (1)

On the right-hand side of (1), we can observe the coefficients 1, 6, 70, 924, etc., are the
coefficients appearing at the even positions in the series. Considering the coefficients, we
notice that these numbers can be represented in binomial form, namely

(

4n
2n

)

, which mean
that they can be obtained by replacing n with 2n. It is easy to note that (1) allows us to
build the generating function of the coefficients

(

4n
2n

)

, which is

∞
∑

n=0

(

4n

2n

)

x2n =
1

2

(

1√
1− 4x

+
1√

1 + 4x

)

. (2)

However, further routine simplification of (2) produces

∞
∑

n=0

(

4n

2n

)

xn =
1√
2

√

1 +
√
1− 16x

1− 16x
, |x| < 1/16, (3)

which can be found in [1], including several other generating functions and related identities.
The study of these numbers has been of great interest for a long time. Many interesting series
associated with the central binomial coefficients, harmonic numbers, and Catalan numbers
can be found in [2, 4, 5, 6], and among those several interesting series, two beautiful identities
involving the square of central binomial coefficients and the harmonic numbers are

∞
∑

n=1

(

2n
n

)2

16n(2n− 1)2
Hn =

12− 16 ln 2

π

and
∞
∑

n=1

(

2n
n

)2

16n (2n− 1)2
H2n =

4G− 12 ln 2 + 12

π
.

Here Hn is the nth harmonic number, and G is Catalan’s constant. The identities mentioned
above exhibit mathematical beauty where one can observe the important mathematical con-
stants G, π, and ln 2 in their closed forms. We encourage interested readers to refer to
the papers given in [3, 7], and we suggest looking at the references given therein for more
identities.

Now focusing on the present aim of this paper, we study the series associated with the

product and the ratio of central binomial coefficients,
(

2n
n

)(

4n
2n

)

and
(

2n
n

)(

4n
n

)−1
, respectively.

Some motivating examples of the product of these coefficients can be found in the works
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of Campbell et al. [5], where those identities are obtained via generating functions and the
well-known Wallis integral formulas. For instance,

∞
∑

n=0

(

4n
2n

)(

2n
n

)

64n(2n+ 1)
=

4

π
log
(

1 +
√
2
)

, (4)

∞
∑

n=0

(

4n
2n

)(

2n
n

)

64n(3 + 2n)
=

4
√
2

15π
+

16

15π
log
(

1 +
√
2
)

. (5)

The techniques discussed in this paper are simple but powerful for evaluating non-trivial
series related to the product and the ratio of central binomial coefficients. Our general
results are expressed in terms of finite binomial sums, which include the incomplete beta
function, while other general results are expressed explicitly in terms of the beta function and
the incomplete beta function. When the obtained general results presented in this paper are
executed by the use of Mathematica or by direct evaluation of the corresponding integrals,
we find a large number of intriguing identities involving the ratio and the product of central
binomial coefficients. A few of them are Ramanujan-like series for 1/π. Some interesting
series related to the ratio of central binomial coefficients are as follows:

∞
∑

n=1

n 4n

(2n− 1)2(4n+ 1)

(

2n
n

)

(

4n
2n

) =
5
√
2− 4

9
, (6)

∞
∑

n=1

n(2n+ 1) 4n

(2n− 1)2(4n+ 1)(4n+ 3)

(

2n
n

)

(

4n
2n

) =
121

√
2− 104

450
. (7)

We state Wallis’ well-known integral formulas, namely
∫ π

2

0

sin2n y dy =
π

2

(

2n

n

)

1

4n
, (8)

∫ π

2

0

sin2n+1 y dy =
4n

(2n+ 1)
(

2n
n

) , (9)

that will be helpful in the course of the analysis of the results of in this paper. We organize
the remaining work into different sections. In Section 2, we introduce several series involving
the ratio of the central binomial coefficients. Series involving the product of the coefficients
are highlighted in Section 3, where we list a few series involving Ramanujan-like formulas
for 1/π. In Section 4, we highlight a number of miscellaneous series. As an additional check,
all the formulas were numerically verified by the use of Mathematica.

2 Interesting series of the ratio of central binomial co-

efficients

This section contains a number of series related to the ratio of central binomial coefficients.
We present our main results in terms of finite binomial sums and the incomplete beta func-
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tion. First, we mention some lemmas along with their proofs, and then we proceed to
construct our main results.

Lemma 1. If x ∈ [−1, 1], then

∞
∑

n=1

n

(2n− 1)24n

(

2n

n

)

x2n−1 =
sin−1 x

2
.

Proof. We recall the generating function of central binomial coefficients (1), and rewrite it
as follows:

∞
∑

n=1

(

2n

n

)

x2n−2

4n
=

1

x2
√
1− x2

− 1

x2
. (10)

By integrating (10), we obtain

∞
∑

n=1

(

2n

n

)

x2n−1

(2n− 1)4n
=

1−
√
1− x2

x
. (11)

The primitive of the integral of the latter quantity of (10) exists; it is x−1−x−1
√
1− x2+C,

where C is the integration constant. If x → 0, then C = 0 and hence (11) follows. Again,
dividing both sides of (11) by x and integrating, we get

∞
∑

n=1

(

2n

n

)

x2n−1

(2n− 1)24n
=

√
1− x2 + x sin−1 x− 1

x
. (12)

We observe that
∫

x−2(1−
√
1− x2) dx = x−1

√
1− x2 + sin−1 x − x−1 + K, which can be

easily deduced by applying linearity of integral and integration by parts to the latter integral,
∫

x−2
√
1− x2 dx, where K is the constant of integration. If x→ 0, then K = 0. Finally, we

multiply both sides of (12) by x, and differentiating with respect to x, we obtain

∞
∑

n=1

n

(2n− 1)24n

(

2n

n

)

x2n−1 =
1

2

d

dx

(√
1− x2 + x sin−1 x− 1

)

=
sin−1 x

2
.

Lemma 2. If x ∈ [−1, 1], then

∞
∑

n=1

n

(2n− 1)2 (2n+ 1) 4n

(

2n

n

)

x2n =
1

8

(√
1− x2 + 2x sin−1 x− sin−1 x

x

)

. (13)

Proof. Multiplying both sides of Lemma 1 by x, integrating, and some algebraic simplifica-
tion leads to the proposed result (13). Details are left to the reader.
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Lemma 3. If m is an odd positive integer, then

∫ π

2

0

sin4n+m y dy =
22n+m−1

(4n+m)
(

4n+m−1
2n+m−1

2

) .

Proof. Recall Wallis’ integral formula (9). First, we replace n with 2n, then n with n
4
, and

again, the obtained result on replacing n with n− 1 gives us

∫ π

2

0

sinn y dy =
2n−1

n
(

n−1
n−1

2

) . (14)

Further, replacing n with 4n+m in (14) yields the required result.

Lemma 4. For x ∈ [−1, 1], the following holds:

∞
∑

n=1

n2

(2n− 1)2(2n+ 1)4n

(

2n

n

)

x2n =
1

16

(

−
√
1− x2 +

sin−1 x

x
+ 2x sin−1 x

)

. (15)

Proof. The proof relies on Lemma 2. We leave the details to the reader.

Theorem 5. For positive odd integers m, the following equality holds:

∞
∑

n=1

n 4n

(2n− 1)2(4n+m)

(

2n
n

)

(

4n+m−1
2n+m−1

2

) =
√
2

m+1

2
∑

k=0

(−1)k

(2k + 1)2m−k

(

m+1
2

k

)

B(k), (16)

where B(k) = B 1

2

(

k + 1, 1
2

)

and Bx(a, b) =
∫ x

0
ta−1(1−t)b−1 dt is the incomplete beta function.

Proof. Rewrite Lemma 1 as follows:

∞
∑

n=1

n

(2n− 1)24n

(

2n

n

)

x4n+m =
x2+m sin−1(x2)

2
. (17)

Now set x = sin y in (17) and integrate from 0 to π/2. From Lemma 3 we get

∞
∑

n=1

n 4n

(2n− 1)2(4n+m)

(

2n
n

)

(

4n+m−1
2n+m−1

2

) =
1

2m

∫ π

2

0

sin2+m y sin−1(sin2 y) dy (18)

=
1

2m

∫ π

2

0

(

1− cos2 y
)

m+1

2 sin y sin−1
(

1− cos2 y
)

dy

=
1

2m

∫ 1

0

(

1− t2
)

m+1

2 sin−1
(

1− t2
)

dt (19)

=
1

2m

m+1

2
∑

k=0

(−1)k
(

m+1
2

k

)
∫ 1

0

t2k sin−1
(

1− t2
)

dt. (20)
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Employing Newton’s binomial formula, (a+ b)n =
∑n

k=0

(

n
k

)

an−kbk in (19) leads to (20) and
applying integration by parts in (20) gives

∫ 1

0

t2k sin−1
(

1− t2
)

dt =
sin−1 (1− t2) t2k+1

2k + 1

∣

∣

∣

∣

∣

1

0

+
2

2k + 1

∫ 1

0

t2k+2

√

1− (1− t2)2
dt

=
2

2k + 1

∫ 1

0

t2k+2 dt√
2t2 − t4

=
2

2k + 1

∫ 1

0

t2k+1 dt√
2− t2

=
2k+1

√
2(2k + 1)

∫ 1

2

0

tk dt√
1− t

=

√
2

2−k(2k + 1)
B 1

2

(

k + 1,
1

2

)

. (21)

Substituting the value of (21) into (20) proves (16).

Theorem 6. For positive odd integers, m ≥ 3, we have

∞
∑

n=1

n 4n

(2n− 1)2 (2n+ 1)(4n+m)

(

2n
n

)

(

4n+m−1
2n+m−1

2

) =
∞
∑

n=1

n 22n−1

(2n− 1)2(4n+m)

(

2n
n

)

(

4n+m−1
2n+m−1

2

) +
ϕ(m)

2m+2

− 1

23/2

m−3

2
∑

k=0

(−1)k

(2k + 1)2m−k

(

m−3
2

k

)

B(k), (22)

where ϕ(m) =
∫ 1

0
tm

√
1 + t2 dt.

Proof. Rewrite Lemma 2 in the following manner:

∞
∑

n=1

n 4n

(2n− 1)2 (2n+ 1)

(

2n

n

)

x4n+m =
xm

8

(√
1− x4 + 2x2 sin−1(x2)− sin−1(x2)

x2

)

. (23)

Substituting x = sin y in (23), integrating from 0 to π/2, and invoking Lemma 3, we get

∞
∑

n=1

n 4n

(2n− 1)2 (2n+ 1)(4n+m)

(

2n
n

)

(

4n+m−1
2n+m−1

2

) =
1

2m+1

∫ π

2

0

sin2+m y sin−1
(

sin2 y
)

dy (24)

+
1

2m+2

∫ π

2

0

sinm y

√

1− sin4 y dy (25)

− 1

2m+2

∫ π

2

0

sinm−2 y sin−1
(

sin2 y
)

dy. (26)

Since integral (24) is evaluated in (18), and the integral appears in (25), we write

∫ π

2

0

sinm y

√

1− sin4 y dy =

∫ π

2

0

sinm y cos y

√

1 + sin2 y dy =

∫ 1

0

tm
√
1 + t2 dt = ϕ(m).

(27)
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Similarly, integral (26) can be expressed as

∫ π

2

0

sinm−2 y sin−1
(

sin2 y
)

dy =

∫ 1

0

sin y
(

sin2 y
)

m−3

2 sin−1
(

sin2 y
)

dy

=

∫ 1

0

(

1− t2
)

m−3

2 sin−1
(

1− t2
)

dt

=

m−3

2
∑

k=0

(−1)k
(

m−3
2

k

)
∫ 1

0

t2k sin−1
(

1− t2
)

dt. (28)

Substituting the result (21) into (28) then back to (26) and combining (24), (25), (26), and
(27), we conclude (22).

2.1 Values of B(k) and ϕ(m)

We get B(k) and ϕ(m) from Theorem 5 and Theorem 6, which have integral representations,
∫ 1

2

0
tk√
1−t

dt and
∫ 1

0
tm

√
1 + t2 dt, respectively. It is easy to deduce the primitives of the inte-

grals for some particular values of k and m; however, we do not have compact closed forms
in terms of elementary functions that can easily generate an infinite number of solutions.
We now display a few values of B(k) and then ϕ(m).

B(0) = 2−
√
2, B(1) = 8− 5

√
2

6
, B(2) = 64− 43

√
2

60
,

B(3) = 256− 177
√
2

280
, B(4) = 4096− 2867

√
2

5040
.

Similarly, for positive odd integers m ≥ 3, we have

ϕ(3) =
2(1 +

√
2)

15
, ϕ(5) =

2(11
√
2− 4)

105
, ϕ(7) =

2(8 + 13
√
2)

315
.

Example 7. Invoking Theorem 5 and using the values of B(k) from Subsection 2.1 yields
(6), (7), and some more series as follows:

∞
∑

n=1

n(n+ 1)(2n+ 1) 4n

(2n− 1)2 (4n+ 1)(4n+ 3)(4n+ 5)

(

2n
n

)

(

4n
2n

) =
1559

√
2− 1216

29400
, (29)

∞
∑

n=1

n(n+ 1)(2n+ 1)(2n+ 3) 4n

(2n− 1)2(4n+ 1)(4n+ 3)(4n+ 5)(4n+ 7)

(

2n
n

)

(

4n
2n

) =
41161

√
2− 33664

1587600
, (30)

∞
∑

n=1

n(n+ 1)(n+ 2)(2n+ 1)(2n+ 3) 4n

(2n− 1)2(4n+ 1)(4n+ 3)(4n+ 5)(4n+ 7)(4n+ 9)

(

2n
n

)

(

4n
2n

) =
857977

√
2− 659968

153679680
. (31)
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Example 8. Similarly, applying Theorem 6 and values of ϕ(m) yields the following series
classes, in particular

∞
∑

n=1

n 4n

(2n− 1)2(4n+ 1)(4n+ 3)

(

2n
n

)

(

4n
2n

) =
4
(

1 +
√
2
)

225
, (32)

∞
∑

n=1

n(n+ 1) 4n

(2n− 1)2(4n+ 1)(4n+ 3)(4n+ 5)

(

2n
n

)

(

4n
2n

) =
137

√
2− 88

11025
, (33)

∞
∑

n=1

n(n+ 1)(2n+ 3) 4n

(2n− 1)2(4n+ 1)(4n+ 3)(4n+ 5)(4n+ 7)

(

2n
n

)

(

4n
2n

) =
1033

√
2− 592

198450
. (34)

In addition, in view of Theorem 5 and Theorem 6, we have

Theorem 9. For positive odd integers, m ≥ 3, we have

∞
∑

n=1

n 4n

(4n2 − 1)(4n+m)

(

2n
n

)

(

4n+m−1
2n+m−1

2

) =
1√
2

m−3

2
∑

k=0

(−1)k

(2k + 1)2m−k

(

m−3
2

k

)

B(k)− ϕ(m)

2m+1
.

Proof. The proof directly follows from (22).

Example 10. The immediate consequences of Theorem 9 are
∞
∑

n=1

n 4n

(2n+ 1)(2n− 1)(4n+ 3)

(

2n
n

)

(

4n+2
2n+1

) =
7
√
2− 8

60
,

∞
∑

n=1

n 4n

(2n+ 1)(2n− 1)(4n+ 5)

(

2n
n

)

(

4n+4
2n+2

) =
71
√
2− 64

5040
.

2.2 Propositions and their proofs

We mention some integral identities that play a crucial role when evaluating series based on
the ratio of central binomial coefficients. They are as follows:

Proposition 11. The following equality holds:
∫ π

2

0

sin−1
(

sin2 x
)

sin2 x
dx = 2 log

(

1 +
√
2
)

. (35)

Proof. Applying integration by parts, the above intergral boils down to
∫ π

2

0

sin−1(sin2 x)

sin2 x
dx = 2

∫ π

2

0

cos2 x
√

1− sin4 x
dx = 2

∫ π

2

0

cos2 x
√

(1− sin2 x)(1 + sin2 x)
dx

= 2

∫ π

2

0

cosx√
1 + sin2 x

dx = 2

∫ 1

0

dt√
1 + t2

= 2 sinh−1(1).

The latter integral in the second line is obtained by substituting sin x = t. Furthermore, we
can easily obtain (35) by noting that d

dt
sinh−1 t = 1√

1+t2
= log(t+

√
1 + t2).
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Proposition 12. If G denotes Catalan’s constant defined by
∑∞

n=0(−1)n/(2n + 1)2 and

ψ1(z) =
∑∞

n=0 1/(n + z)2 is the trigamma function for z > 0, then the following integral

equality holds:
∫ π

2

0

sin−1
(

sin2 x
)

sin x
dx = −2G− π2

2
√
2
+

1

8
√
2

(

ψ1

(

1

8

)

+ ψ1

(

3

8

))

. (36)

Proof. Substituting sin2 x = y and employing integration by parts leads to

∫ π

2

0

sin−1
(

sin2 x
)

sin x
dx =

1

2

∫ 1

0

sin−1(y)

y
√
1− y

dy =
1

2

∫ 1

0

log
(

1+
√
1−y

1−
√
1−y

)

√

1− y2
dy = −

∫ 1

0

log
(

1−y
1+y

)

√

2− y2
dy

= −
∫ π

4

0

log

(

1−
√
2 sin u

1 +
√
2 sin u

)

du = −
∫ π

4

0

log

(

1√
2
− sin u

1√
2
+ sin u

)

du = I.

The last integral is obtained by substituting y =
√
2 sin u. Furthermore, the last obtained

integral result can be expressed as

I = −
∫ π

4

0

log

(

tan
(u

2

) 1 + tan
(

u
2

)

1− tan
(

u
2

)

)

du = −2

∫ π

8

0

log

(

tan u
1 + tan u

1− tan u

)

du.

The key notion for the former integral is the identity, 1−
√
2 sinu

1+
√
2 sinu

= tan
(

π−4u
8

)

cot
(

π+4u
8

)

, which

is due to Kamel Benaicha (personal communication), and the latter is obtained by replacing
u/2 with u. Again, putting tan u = z and substituting 1−z

1+z
= t, we yield

I = −4

∫

√
2−1

0

log(t)

1 + t2
dt+ 2

∫ 1

0

log(t)

1 + t2
dt = −4

∫ π

8

0

log(tan t) dt+ 2

∫ π

4

0

log(tan t) dt.

It is well-known that the integral
∫ π

4

0
log(tan t) dt = −G (see [9, Entry 4.227.2]). To evaluate

the former integral, we use the Fourier series [9, Entry 1.442.2] of

log(tan t) = −2
∞
∑

n=0

cos((2n+ 1)2t)

2n+ 1
, 0 < t < π/2.

This leads to our original integral being

I = −2G− 4

∫ π

8

0

log(tan t) dt = −2G+ 8
∞
∑

n=0

1

2n+ 1

∫ π

8

0

cos((2n+ 1)2t) dt

= −2G+ 8
∞
∑

n=0

sin
(

π
4
(2n+ 1)

)

(2n+ 1)2
= −2G+

4√
2

∞
∑

n=0

sin
(

nπ
2

)

+ cos
(

nπ
2

)

(2n+ 1)2

= −2G+
4√
2

∞
∑

n=0

(

(−1)n

(4n+ 3)2
+

(−1)n

(4n+ 1)2

)

= −2G+
4

64
√
2

(

ψ1

(

3

8

)

− ψ1

(

7

8

))

+
4

64
√
2

(

ψ1

(

1

8

)

− ψ1

(

5

8

))

= −2G+
1

8
√
2

(

ψ1

(

3

8

)

+ ψ1

(

5

8

))

− π2

2
√
2
.
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In the last line, we make use of the reflection formula of the trigamma function, namely
ψ1(1 − z) + ψ1(z) = π2

sin2 πz
. Putting z = 1/8 and z = 3/8 in the reflection formula and

simplifying proves (36).

Proposition 13. The following relation holds:

∫ π

2

0

sin−1
(

sin2 x
)

dx =
7π2

24
− log2(2)

4
− 2 Li2

(

1√
2

)

, (37)

∫ π

2

0

x sin x√
1 + sin2 x

dx = Li2

(

1√
2

)

− π2

48
+

log2(2)

8
. (38)

Here, Li2(z) =
∑∞

n=1 z
n/n2 is a dilogarithm function with |z| ≤ 1.

Proof. Integration by parts results in

∫ π

2

0

sin−1(sin2 x) dx =
π2

4
− 2

∫ π

2

0

x sin x√
1 + sin2 x

dx =
π2

4
− 2

√
2

∫ 1
√

2

0

sin−1 x√
1− 2x2

dx

=
π2

4
−
∫ 1

√

2

0

∫ 1

0

2x
√

(1/2− x2)(1− y2x2)
dy dx

=
π2

4
−
∫ 1

0

∫ 1
√

2

0

2x
√

(1/2− x2)(1− y2x2)
dx dy

=
π2

4
−
∫ 1

0

log
(

y +
√
2
)

− log
(√

2− y
)

y
dy.

Now, by using the definition of the dilogarithm integral [11, p. 1] and the dilogarithm identity,

Li2(z) + Li2(−z) = Li2(z2)
2

(see [11, p. 6, Eqn. (1.15)]), we get

∫ π

2

0

sin−1(sin2 x) dx =
π2

4
−
(

Li2

(

1√
2

)

− Li2

(

− 1√
2

))

=
π2

4
− 2 Li2

(

1√
2

)

+
1

2
Li2

(

1

2

)

.

Using the well-known classical result [11, p. 6, Eqn. (1.16)]

Li2

(

1

2

)

=
π2

12
− log2(2)

2

in the last equality yields the announced results (37) and (38), respectively.

Clearly, Theorems 5, 6, and 9 hold good only for positive odd integers. With the excep-
tion of Examples 7, Example 8, and Example 10, the obtained corresponding integrals can
produce exotic and slightly different identities.

So, using propositions from Subsection 2.2 and integrals (18), (24), (25), and (26), we
get the following result.
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Theorem 14. The following relations hold:

∞
∑

n=1

4n

(2n− 1)2

(

2n
n

)

(

4n
2n

) = 4
(√

2− 1
)

, (39)

∞
∑

n=1

(4n− 1) 4n

(2n− 1)3

(

2n
n

)

(

4n
2n

) =
1

2
√
2

(

ψ1

(

1

8

)

+ ψ1

(

3

8

))

− 8G−
√
2π2, (40)

∞
∑

n=1

4n

(2n− 1)3

(

2n
n

)

(

4n
2n

) =
1

2
√
2

(

ψ1

(

1

8

)

+ ψ1

(

3

8

))

− 8G−
√
2π2 − 8

1 +
√
2
. (41)

Proof. Putting m = −1 in (18), and calculating the corresponding integral proves (39). In a
similar fashion, putting m = −3 in (18) and using (36) proves (40). Thus, (41) follows from
(39) and (40).

For some particular cases, even integers like m = 0, m = 2, and m = 4 in (18) give
∞
∑

n=1

4n

(2n− 1)2

(

2n
n

)

(

4n−1
2n− 1

2

) =
7π2

12
− log2(2)

2
− 4 Li2

(

1√
2

)

+ 2
√
2− 2 sinh−1(1),

∞
∑

n=1

n 4n

(2n− 1)2(2n+ 1)

(

2n
n

)

(

4n+1
2n+ 1

2

) =
7π2

128
− 3 log2(2)

64
− 3

8
Li2

(

1√
2

)

+
5

16
√
2
− 3 sinh−1(1)

32
,

∞
∑

n=1

n 4n

(2n− 1)2(n+ 1)

(

2n
n

)

(

4n+3
2n+ 3

2

) =
35π2

1536
− 5 log2(2)

256
− 5

32
Li2

(

1√
2

)

+
101

576
√
2
− 25 sinh−1(1)

384
.

Similarly, by inserting the same even integers in (24), (25), (26), and utilizing propositions
from Subsection 2.2, we end up having the conclusions:

∞
∑

n=1

4n

(2n− 1)(2n+ 1)

(

2n
n

)

(

4n−1
2n− 1

2

) = 3 log
(

1 +
√
2
)

−
√
2,

∞
∑

n=1

n 4n

(2n− 1)2(2n+ 1)2

(

2n
n

)

(

4n+1
2n+ 1

2

) =
1

4
√
2
− 7π2

768
+

log2(2)

128
+

1

16
Li2

(

1√
2

)

− sinh−1(1)

16
,

∞
∑

n=1

n 4n

(2n− 1)2(2n+ 1)(4n+ 4)

(

2n
n

)

(

4n+3
2n+ 3

2

) =
25

2304
√
2
+

7π2

12288
− log2(2)

2048
− 1

256
Li2

(

1√
2

)

+
sinh−1(1)

1536
.

Also, we have
∞
∑

n=1

n 4n

(2n− 1)2(2n+ 1)(4n+ 1)

(

2n
n

)

(

4n
2n

) =
G

4
+

π2

16
√
2
+

13

18
√
2
− 19

72

− 1

64
√
2

(

ψ1

(

1

8

)

+ ψ1

(

3

8

))

,
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which can easily be achieved by letting m = 1 in (24), (25), (26), and applying (36).

3 Some interesting series of the product of central bi-

nomial coefficients and some Ramanujan-like series

In this section, we establish various series involving the product of central binomial coef-
ficients and associated Ramanujan-like series for 1/π via simple techniques. Most of the
interesting series are deduced via general formulas provided here. Some other sorts of series
involving the product of the coefficients are obtained by computing their corresponding ele-
mentary integrals. Using Lemma 1, Lemma 2, and some other intermediate results we have
acquired, we can produce

Theorem 15. If p ∈ Z, then we have

∞
∑

n=1

1

(2n− 1) 64n

(

2n

n

)(

4n+ 4p

2n+ 2p

)

=

(

4p

2p

)

+
i · 16p
π

B−1

(

2p+
1

2
,
3

2

)

,

where i =
√
−1 and Bx(a, b) =

∫ x

0
ta−1(1− t)b−1 dt is the incomplete beta function.

Proof. We start with (11) where we replace x by sin2 y, multiply both sides by sin4p y, and
integrating from 0 to π/2 gives

∞
∑

n=1

1

(2n− 1) 64n

(

2n

n

)(

4n+ 4p

2n+ 2p

)

=
2 · 16p
π

∫ π

2

0

sin4p y

(

1− cos y

√

1 + sin2 y

)

dy. (42)

Apply linearity and (8), the latter integral boils down to

(

4p

2p

)

− 2 · 16p
π

∫ π

2

0

=

(

4p

2p

)

− 2 · 16p
π

∫ π

2

0

sin y cos y(sin y)4p−1

√

1 + sin2 y dy

=

(

4p

2p

)

− 16p

π

∫ 1

0

t2p−1/2
√
1 + t dt. (43)

Replacing t with −t in (43) and, by definition of the incomplete beta function and
√
−1 = i,

gives the value of integral equal to −iB−1 (2p+ 1/2, 3/2), and hence putting the final result
of (43) back to (42) completes the proof.

Example 16. As stated, Theorem 15 enables us to construct an infinite number of solutions.

12



Some immediate consequences are as follows:
∞
∑

n=1

1

(2n− 1) 64n

(

2n

n

)(

4n

2n

)

= 1−
√
2

π
− sinh−1(1)

π
,

∞
∑

n=1

n

(4n− 3)(4n− 1) 64n

(

2n

n

)(

4n

2n

)

=

√
2

6π
,

∞
∑

n=1

(4n+ 1)(4n+ 3)

(2n− 1)(n+ 1)(2n+ 1) 64n

(

2n

n

)(

4n

2n

)

= 3− 7
√
2

3π
− sinh−1(1)

π
.

Taking rational numbers p into account in (42) allows us to construct a variety of other
types of identities. For example,

∞
∑

n=1

1

(2n− 1) 64n

(

2n

n

)(

4n− 1

2n− 1
2

)

=
1

π
−

√
2

π
+

sinh−1(1)

π
,

∞
∑

n=1

1

(2n− 1) 64n

(

2n

n

)(

4n+ 1

2n+ 1
2

)

=
16

3π
− 8

√
2

3π
,

∞
∑

n=1

n

(2n− 1)(4n− 1) 64n

(

2n

n

)(

4n

2n

)

=
1√
2π

− sinh−1(1)

2π
,

∞
∑

n=1

4n+ 1

(2n− 1)(2n+ 1) 64n

(

2n

n

)(

4n

2n

)

= 1− 3√
2π

+
sinh−1(1)

2π
.

Putting p = −1/8 in (42) produces an exotic series

∞
∑

n=1

1

(2n− 1) 64n

(

2n

n

)(

4n− 1
2

2n− 1
4

)

=
Γ2
(

1
4

)

2π3/2
− 4

3π
−

√
2π

3Γ2
(

3
4

) .

Here, Γ(z) is the gamma function defined by
∫∞

0
xz−1e−x dx for ℜ(z) > 0.

Theorem 17. If p is a real number, then we have

∞
∑

n=1

n

(2n− 1)2 64n

(

2n

n

)(

4n+ 4p

2n+ 2p

)

=
16p

π

∫ π

2

0

(sin y)4p+2 sin−1
(

sin2 y
)

dy.

Proof. The result can be easily verified by using the Lemma 1 and (8).

Example 18. Inserting p = 0, p = −3/4 in Theorem 17, and using propositions from
Subsection 2.2, we arrive at

∞
∑

n=1

n

(2n− 1)2 64n

(

2n

n

)(

4n

2n

)

=
7π

48
+

1√
2π

− log2(2)

8π
− 1

π
Li2

(

1√
2

)

− sinh−1(1)

2π
,

∞
∑

n=1

n

(2n− 1)2 64n

(

2n

n

)(

4n− 3

2n− 3
2

)

= − G

4π
− π

16
√
2
+

1

64π
√
2

(

ψ1

(

1

8

)

+ ψ1

(

3

8

))

.
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Similarly, for p = −1/2, p = 1

∞
∑

n=1

n2

(2n− 1)2(4n− 1) 64n

(

2n

n

)(

4n

2n

)

=
7π

96
− 1

2π
Li2

(

1√
2

)

− log2(2)

16π
,

∞
∑

n=1

n(4n+ 3)(4n+ 1)

(2n− 1)2(n+ 1)(2n+ 1) 64n

(

2n

n

)(

4n

2n

)

=
35π

48
+

101

18
√
2π

− 5 log2(2)

8π
− 5

π
Li2

(

1√
2

)

− 25 sinh−1(1)

12π
,

∞
∑

n=1

n

(2n− 1)2(2n+ 1) 64n

(

2n

n

)(

4n

2n

)

=
7π

96
− log2(2)

16π
+

3

4
√
2π

− 1

2π
Li2

(

1√
2

)

− 5 sinh−1(1)

8π
.

The last identity is a particular case of Lemma 2. Via specialization, several more series
involving the product of central binomial coefficients can be deduced. Next, we investigate
more series involving the product of central binomial coefficients, yielding the Ramanujan-
type series for 1/π.

Lemma 19. For x ∈ [−1, 1], the following holds:

∞
∑

n=0

1

(2n+ 1) 16n

(

4n

2n

)

x2n =

√
1 + x−

√
1− x

x
.

Proof. The proof directly follows from the generating function (2), which on integration
yields the desired result.

Theorem 20. For all integers k > 0, we have

∞
∑

n=0

1

(2n+ 1) 64n

(

2n+ 2k

n+ k

)(

4n

2n

)

=
2 · 4k
π

(

B

(

2k,
1

2

)

− (−1)2kB−1

(

2k,
1

2

))

, (44)

where Bx(a, b) =
∫ x

0
ta−1(1− t)b−1 dt is the incomplete beta function and at x = 1, it is beta

function.

Proof. We multiply both sides of Lemma 19 by x2k. Assigning x = sin y, integrating from 0
to π/2, and using (8), we have
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∞
∑

n=0

1

(2n+ 1) 64n

(

2n+ 2k

n+ k

)(

4n

2n

)

=
2 · 4k
π

∫ π

2

0

(sin y)2k−1
(

√

1 + sin y −
√

1− sin y
)

dy

=
2 · 4k
π

∫ 1

0

t2k−1

√
1− t2

(√
1 + t−

√
1− t

)

dt

=
2 · 4k
π

∫ 1

0

t2k−1

(

1√
1− t

− 1√
1 + t

)

dt (45)

=
2 · 4k
π

(

B

(

2k,
1

2

)

− (−1)2k
∫ −1

0

t2k−1

√
1− t

dt

)

.

Using the definition of the beta and the incomplete beta function, the proof is completed.

In particular, Theorem 20 gives us Ramanujan-type series for 1/π.

Theorem 21. The following relations hold:

∞
∑

n=0

1

(n+ 1) 64n

(

2n

n

)(

4n

2n

)

=
8

3
·
√
2

π
,

∞
∑

n=0

2n+ 3

(n+ 1)(n+ 2) 64n

(

2n

n

)(

4n

2n

)

=
144

35
·
√
2

π
,

∞
∑

n=0

(2n+ 5)(2n+ 3)

(n+ 1)(n+ 2)(n+ 3) 64n

(

2n

n

)(

4n

2n

)

=
4832

693
·
√
2

π
,

∞
∑

n=0

(2n+ 7)(2n+ 5)(2n+ 3)

(n+ 1)(n+ 2)(n+ 3)(n+ 4) 64n

(

2n

n

)(

4n

2n

)

=
79424

6435
·
√
2

π
,

∞
∑

n=0

(2n+ 9)(2n+ 7)(2n+ 5)(2n+ 3)

(n+ 1)(n+ 2)(n+ 3)(n+ 4)(n+ 5) 64n

(

2n

n

)(

4n

2n

)

=
5174656

230945
·
√
2

π
.

In terms of the Pochhammer symbol, k(n) = k(k + 1)(k + 2) . . . (k − n + 1) for n ≥ 1,
we notice (2n+ 1)(2n+ 3)(2n+ 5) · · · (2n+ 2k − 1) = 2k(n+ 1/2)k and (n+ 1)(n+ 2)(n+
3) · · · (n+ k) = (n+1)k, then in view of Theorem 21, Theorem 20 can be compactly written
as follows:

∞
∑

n=0

2k (n+ 1/2)k
(2n+ 1)(n+ 1)k 64n

(

2n

n

)(

4n

2n

)

= bk ·
√
2

π
,

where bk = i/j, i, and j are positive integers.
The general form of i/j is easily deducible by comparing the left- and right-hand quanti-

ties of Theorem 20. The aforementioned Ramanujan-like series are merely the consequences
of Theorem 20, which are obtained by putting k = 1, k = 2, k = 3, k = 4, and k = 5
respectively. Details are left to the reader.
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Example 22. In a similar fashion, one can easily find several interesting series by evaluating
the integrals obtained for any rational number k in (45).

∞
∑

n=0

1

(2n+ 1) 64n

(

2n

n

)(

4n

2n

)

=
4

π
sinh−1(1),

∞
∑

n=0

1

(2n+ 1) 64n

(

2n+ 1

n+ 1
2

)(

4n

2n

)

=
8

π

(

2−
√
2
)

,

∞
∑

n=0

1

(2n+ 1) 64n

(

2n+ 1
2

n+ 1
4

)(

4n

2n

)

= 2
√
2

(

1− 2 sinh−1(1)

π

)

,

∞
∑

n=0

1

(2n+ 1) 64n

(

2n+ 3
2

n+ 3
4

)(

4n

2n

)

=
4

π

(

−2 +
π√
2
+
√
2 sinh−1(1)

)

.

Details are left to the reader.

4 Some additional series

Employing the identity (13) and the identity (21) given in [2, pp. 5–6], respectively, we arrive
at slightly different conclusions:

∞
∑

n=1

1

n 64n

(

2n

n

)(

4n

2n

)

= 6 log(2)−
√
2π +

1

2
√
2π

(

ψ1

(

5

8

)

+ ψ1

(

7

8

))

, (46)

∞
∑

n=1

1

(n+ 1)2 64n

(

2n

n

)(

4n+ 4

2n+ 2

)

= 58− 64
√
2

π
+ 32

√
2π − 64 sinh−1(1)

π
− 192 log(2)

− 8
√
2

π

(

ψ1

(

5

8

)

+ ψ1

(

7

8

))

, (47)

where ψ1(z) =
∑∞

n=0 1/(n+z)
2 for z > 0 is the trigamma function. Identity (46) can also be

proved using [1, Thm. 3.1, p. 3]. Using the proposition established in [2, p. 9] and calculating
the corresponding integrals obtained for the particular values m = 1, m = 2, and m = 3, we
conclude some fascinating Ramanujan-like series as follows:

∞
∑

n=0

1

(n+ 2) 64n

(

2n

n

)(

4n

2n

)

=
152

105
·
√
2

π
, (48)

∞
∑

n=0

1

(n+ 3) 64n

(

2n

n

)(

4n

2n

)

=
10568

10395
·
√
2

π
, (49)

∞
∑

n=0

1

(n+ 4) 64n

(

2n

n

)(

4n

2n

)

=
178328

225225
·
√
2

π
. (50)
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These series have quite simple appearances in their closed form, which include rational
number p/q, and also

√
2 and 1/π. Based on the patterns observed in the first equation of

Theorem 21, and equations (48), (49), and (50), for m ∈ N ∪ {0}, we conjecture that

∞
∑

n=0

1

64n

(

2n

n

)(

4n

2n

)

1

n+m+ 1
= am ·

√
2

π
,

where am = p/q, p, and q are positive integers. The problem of determining the general
expression of am remains open. Furthermore, utilizing Lemma 4, we have

∞
∑

n=1

n2

(2n− 1)2(2n+ 1) 64n

(

2n

n

)(

4n

2n

)

=
7π

192
+

1

8π
√
2
−

Li2

(

1√
2

)

4π
− log2(2)

32π
+

sinh−1(1)

16π
,

∞
∑

n=1

n24n

(2n− 1)2(2n+ 1)(4n+ 1)

(

2n
n

)

(

4n
2n

) = −G
8
− 13

144
+

7

36
√
2
− π2

32
√
2

+
1

128
√
2

(

ψ1

(

1

8

)

+ ψ1

(

3

8

))

.

Moreover, applying the lemmas introduced in the recent paper, we can easily deduce some
more variety of series involving the square of the central binomial coefficients, yielding exotic
results such as

∞
∑

n=1

n2

(2n− 1)2(2n+ 1) 16n

(

2n

n

)2

=
G

4π
+

1

8π
,

∞
∑

n=1

n

(2n− 1)2(n+ 1) 16n

(

2n

n

)2

=
4

9π
,

∞
∑

n=1

n

(2n− 1)2(2n+ 1)(2n+ 3) 16n

(

2n

n

)2

=
31

128π
− 13G

64π
.

We encourage interested readers to pursue the results and to investigate more series.
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