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Abstract

In this paper, we study merging-free partitions and run-sorted permutations. We
give a combinatorial proof of a conjecture of Nabawanda, Rakotondrajao, and Ba-
munoba. We describe the distribution of the statistics of runs and right-to-left minima
over the set of run-sorted permutations, and we give the exponential generating func-
tion for their joint distribution. We show that the distribution of right-to-left minima is
the shifted distribution of the Stirling numbers of the second kind. We also prove that
the number of non-crossing merging-free partitions is a power of 2. We use one of the
constructive proofs given in the paper to implement an algorithm for the exhaustive
generation of run-sorted permutations by the number of runs.
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1 Introduction

Given a non-empty finite subset A of positive integers, a set partition P of A is a collection
of disjoint, non-empty subsets of A, called blocks of A, such that every element of A belongs
to exactly one subset [3, 7]. We shall use the notation [n] := {1, 2, . . . , n}, where n is a fixed
positive integer. It is well known that the set partitions over [n] and set partitions over [n]
having k blocks are counted by the Bell numbers, bn, and Stirling numbers of the second
kind, S(n, k), respectively [3, 12, 16]. Mansour [7] defined the block representation of a set
partition where the elements in a block are arranged in increasing order, and the blocks are
arranged in increasing order of their first elements. Mansour also gave a way to encode a
set partition (in its block representation) by its canonical form, i.e., every integer is encoded
by the number of the block it belongs to. We note that canonical forms of set partitions
coincide with the so-called restricted growth functions (RGF).

Callan [4] introduced the “flattening” operation (Flatten) on set partitions, which acts
in such a way that a permutation σ is obtained from a set partition P by removing the
separators enclosing the different blocks of P in its block representation. For example, the
block representation of the set partition P = {1, 2, 6}, {3}, {4, 8}, {5, 7} is P = 126/3/48/57,
and so we remove the separators “/” and obtain the permutation σ = 12634857. As a result
of Callan’s work, such objects have been receiving attention from different researchers, and
several new findings are emerging [1, 8, 10].

In the literature, permutations obtained this way are sometimes called “flattened par-
titions”. We found this term somewhat confusing because these objects are permutations
and not partitions; consequently, since the runs of the resulting permutations are sorted
by the increasing values of their respective minima, we chose to adopt the term run-sorted
permutations already used by Alexandersson and Nabawanda [1]. Run-sorted permutations
are counted by the shifted Bell numbers [10].

The same permutation can be obtained by flattening several set partitions. For instance,
the permutation σ = 12634857 can also be obtained by flattening the set partition P ′ =
126/348/57. Among all the set partitions having the same Flatten, we distinguish the only
one whose number of blocks is the same as the number of runs of the permutation obtained
by flattening it (this is the set partition P ′ for the permutation σ). For obvious reasons we
named these objects merging-free partitions. The Flatten operation clearly becomes injective
and hence is a bijection if restricted to the set of merging-free partitions.

In this article, we study some properties of run-sorted permutations as well as of merging-
free partitions and their canonical forms, we compute the distribution of the number of runs
and the number of right-to-left minima on these sets, we relate these classes to the class
of separated partitions, we study non-crossing merging-free partitions, and we provide an
exhaustive generation algorithm for the run-sorted permutations partitioned by the number
of runs. In particular, in Section 2, we give a characterization of the canonical forms of
merging-free partitions, and we show that they can be bijectively related to RGFs of one
size smaller.

In Section 3, we give a combinatorial bijective proof of a recurrence relation in Theorem
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25 satisfied by run-sorted permutations over [n] having k runs, a recurrence relation that
was conjectured by Nabawanda et al. [10]. We also give the interpretation of the proof of
the same result by working on the canonical forms of merging-free partitions.

In Section 4.1, we prove that the distribution of right-to-left minima over run-sorted
permutations is the same as the distribution of the number of blocks over set partitions of
one size smaller (and also given by the shifted Stirling number of the second kind). We
refine the recurrence relation satisfied by the number of run-sorted permutations over [n]
having k runs by counting these permutations by the number of runs and by the number
of right-to-left minima simultaneously, and we obtain an exponential generating function
for the associated three-variables formal series. Munagi [9] proved that the set partitions
over [n] having k blocks such that no two consecutive integers are in the same block are
also counted by the shifted Stirling numbers of the second kind. So, in this section, we also
show that these partitions bijectively correspond to run-sorted permutations over [n] having
k right-to-left minima.

The set of non-crossing partitions is a Catalan enumerated object introduced in the
founding work of Becker [2] and later deeply studied by different eminent scholars, such
as Kreweras and Simion [5, 14]. In Section 5, we present the non-crossing merging-free
partitions. We enumerate them according to their number of blocks, and we show that the
total number of such partitions is a power of 2.

Finally, Section 6 presents an exhaustive generation algorithm for the run-sorted per-
mutations partitioned by the number of runs, based on the recurrence relation proved in
Theorem 25 and using the classical dynamic programming techniques.

1.1 Definitions, notation, and preliminaries

Definition 1. A set partition P of [n] is defined as a collection B1, . . . , Bk of nonempty
disjoint subsets [n] such that ∪ki=1Bi = [n]. The subsets Bi are referred to as “blocks”.

Definition 2. The block representation of a set partition P is P = B1/ · · · /Bk, where the
blocks B1, . . . , Bk are sorted in such way that min(B1) < min(B2) < · · · < min(Bk) and the
elements of every block are arranged in increasing order.

We always write set partitions in their block representations. We let SP(n) denote the
set of all set partitions over [n] and bn = | SP(n)|, the n-th Bell number.

Definition 3. The canonical form of a set partition of [n] is an n-tuple indicating the block
in which each integer occurs, i.e., f = f(1)f(2) · · · f(n) such that j ∈ Bf(j) for all j ∈ [n].

Example 4. If P = 138/2/47/56 ∈ SP(n), then its canonical form is f = 12134431.

Definition 5. A restricted growth function (RGF) over [n] is a function f : [n] 7→ [n], where
f = f(1) · · · f(n) such that f(1) = 1 and f(i) ≤ 1 + max{f(1), . . . , f(i−1)} for 2 ≤ i ≤ n,
or equivalently, such that the set {f(1), f(2), . . . , f(i)} is an integer interval for all i ∈ [n].

3



The canonical forms of set partitions are exactly the restricted growth functions (RGF).
We let RGF(n) denote the set of all restricted growth functions over [n]. We write f ∈
RGF(n) as a word f1f2 · · · fn over the alphabet [n], where fi = f(i). We define the set of
left-to-right maxima of f by

LrMax(f) = {i : fi > fj, 1 ≤ i ≤ n, j < i},

and the set of weak left-to-right maxima of f by

WLrMax(f) = {i : fi ≥ fj, 1 ≤ i ≤ n, j < i},

We also use the notation lrmax(f) := |LrMax(f)| and wlrmax(f) := |WLrMax(f)|.

Example 6. Take f = 121132342 ∈ RGF(9). We have LrMax(f) = {1, 2, 5, 8} and
WLrMax(f) = {1, 2, 5, 7, 8}.

A permutation π over [n] is a bijective map π : [n] 7→ [n]. From now on, we use the
one-line notation to represent π, i.e., we write π = π1π2 · · · πn, where πi = π(i),∀i ∈ [n]. In
particular, every permutation can be considered as a word of length n, with letters in [n].
We define the set of right-to-left minima of π by

RlMin(π) = {πi : πi < πj, j > i},

and we use the notation rlmin(π) := |RlMin(π)|.

Definition 7. A maximal increasing subsequence of consecutive letters of a permutation π
is called a run.

Definition 8. [4] A flattening of a set partition is an operation by which we obtain a
permutation from the set partition P = B1/ · · · /Bk by concatenating its blocks. We denote
the resulting permutation by π = Flatten(P ).

If a permutation is obtained by flattening a set partition, then its runs are ordered in
such a way that the minima of the runs are increasing, therefore, we call all permutations
in Flatten(SP(n)) run-sorted permutations. We let RsP(n) := Flatten(SP(n)) and rn :=
|RsP(n)|.

Definition 9. A merging-free partition is a set partition P = B1/ · · · /Bk such that max(Bi) >
min(Bi+1) for 1 ≤ i ≤ k − 1 .

Remark 10. Merging-free partitions over [n] and run-sorted permutations over [n] are in
bijection, because the restriction of Flatten to the merging-free partitions is a bijection.

Proposition 11. [10, Section 4] The number of set partitions over [n] and the number of
run-sorted permutations over [n + 1] (and therefore, the number of merging-free partitions
over [n+ 1]) are equal. That is, rn+1 = bn for all n ≥ 0.

4



To prove the above result, the authors provided a bijection α : SP(n) 7→ RsP(n + 1),
which can be described as follows. Let P = B1/ · · · /Bk ∈ SP(n). Then π = α(P ) is
constructed as follows: move each minimum element of the block to the end of its block,
remove the slashes, increase every integer by 1, and finally attach the integer 1 at the front.
Conversely, we construct the set partition over [n] corresponding to a run-sorted permutation
π ∈ RsP(n + 1) as follows. Put a slash after each right-to-left minimum of π, then delete
the integer 1, decrease the remaining integers by 1, and finally arrange the elements of each
block in increasing order.

Example 12. If P = 14/258/37/6 ∈ SP(8), then we have π = 152693847 ∈ RsP(9).
Conversely, for π = 152693847 ∈ RsP(9) we have RlMin(π) = {1, 2, 3, 4, 7}. So by putting a
slash after each right-to-left minimum we obtain 1/52/693/84/7 −→ 14/258/37/6 = P .

2 Canonical forms of merging-free partitions

In this section, we characterize the RGFs corresponding to merging-free partitions and we
present some results related to these canonical forms.

Remark 13. Let f = f1 · · · fn be the canonical form of a set partition P = B1/ · · · /Bk over
[n] having k blocks. We have i ∈ LrMax(f) if and only if i = min(Bfi).

If i ∈ LrMax(f), then we call fi the left-to-right maximum letter. We let Tn denote
the set of all RGFs f = f1f2 · · · fn over [n] satisfying the condition that every left-to-right
maximum letter s > 1 of f has at least one occurrence of s−1 on its right.

Proposition 14. Let P ∈ SP(n) and let f ∈ RGF(n) be the canonical form of P . Then P
is merging-free if and only if f ∈ Tn.

Proof. If P = B1/B2/ · · · /Bk is a merging-free partition having k blocks, then min(Bs−1) <
min(Bs) and max(Bs−1) > min(Bs), s = 2, . . . , k. Note that every leftmost occurrence of
a letter in f is a left-to-right maximum letter. The positions of the leftmost and rightmost
occurrences of the letter s in f correspond to the minimum and the maximum elements of
the block Bs, respectively. Thus, if 1 < s ≤ k, then fmin(Bs) = s and fmax(Bs−1) = s − 1.
Conversely, consider f ∈ Tn. Let i ∈ LrMax(f), where fi > 1. Then, by definition, there
is at least one integer j > i such that fj = fi−1. Let us choose j as the maximum of such
integer(s). Thus, Bfj = Bfi−1 and j = max(Bfi−1). Since i = min(Bfi), we have j > i and
hence the corresponding set partition P is merging-free.

Definition 15. Let f = f1f2 · · · fn ∈ RGF(n). If the occurrence of the letter fi in f has
no repetition, then we say that fi is unique in f , i.e., fi is unique if and only if i forms a
singleton block in the partition. A weak left-to-right maximum i in f for which there exists
i0 < i such that fi = fi0 is called a non-strict left-to-right maximum.

We shall translate a combinatorial proof of Proposition 11 in terms of canonical forms.
For each i ∈ [n] we define ui as the number of unique left-to-right maximum letters of f in the
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positions 1, . . . , i− 1 that are smaller than fi. We let u = (u1, . . . , un). Let δ = (δ1, . . . , δn),
where

δi =

{
1, if fi is a non-unique left-to-right maximum letter of f ;

0, otherwise.

Define a mapping α : RGF(n) 7→ Tn+1, where Tn+1 is the set of canonical forms of
merging-free partitions over [n+ 1], by α(f) = 1 · f ′, i.e., a concatenation of 1 and f ′, where
f ′ = f ′1 · · · f ′n is obtained from f as follows:

f ′ = f − u+ δ.

Example 16. If f = 1213124 ∈ RGF(7), then f1 = 1 and f2 = 2 are non-unique left-to-right
maximum letters, while f4 = 3 and f7 = 4 are the unique ones. So u = (0, 0, 0, 0, 0, 0, 1) and
δ = (1, 1, 0, 0, 0, 0, 0). Thus, f ′ = f − u+ δ = 2313123 and α(f) = 1 · f ′ = 12313123 ∈ T8.

Lemma 17. If f ∈ RGF(n) and f ′ is obtained from f as in the above construction, then
LrMax(f) ⊆WLrMax(f ′).

Proof. Let LrMax(f) = {i1, . . . ik}. For j = 2, . . . , k, we have fij = fij−1
+ 1 and

uij =

{
uij−1

+ 1, if fij−1
is unique;

uij−1
, otherwise.

If fij is unique, then δij = 0, and in either case we have

f ′ij = fij − uij = f ′ij−1
.

If fij is non-unique, then δij = 1, and in either case we have

f ′ij = fij − uij + 1 = f ′ij−1
+ 1.

Therefore, in all of the cases we have f ′ij ≥ f ′ij−1
. Consider the intermediate values (if any),

i.e., ij−1 < i < ij. We show that f ′i < f ′ij−1
. There is some i` < i such that fi = fi` and then

ui = ui` . Thus f ′i = fi − ui = f ′i` − 1 < f ′i` because δi = 0 and δi` = 1. Since f ′i` ≤ f ′ij−1
, we

have f ′i < f ′ij−1
. Therefore, ij’s are the weak left-to-right maxima of f ′.

Remark 18. The above lemma implies that the set of left-to-right maxima of f ′ is the set of
non-unique left-to-right maxima of f .

Lemma 19. For all f ∈ RGF(n) we have that α(f) ∈ Tn+1.

Proof. By construction f ′i ≤ fi+1,∀i ∈ [n]. Thus, 1 ·f ′ ∈ RGF(n+1), where f ′ = f ′1f
′
2 · · · f ′n.

If f ′i > 1 is a left-to-right maximum letter in 1 · f ′, then by Remark 18 fi is a non-unique
left-to-right maximum letter in f . This implies that there is some j > i such that fi = fj.
Thus ui = uj and δj = 0. So α(f)(i) = f ′i = fi − ui + 1 = f ′j + 1. Therefore, every
left-to-right maximum letter s > 1 of 1 · f ′ has some occurrence s− 1 from its right. Hence
1 · f ′ ∈ Tn+1.
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We now define a map β : Tn+1 7→ RGF(n) which associates each 1 ·g = 1 ·g1 · · · gn ∈ Tn+1

with a function g′ = β(1 · g) = g′1g
′
2 · · · g′n, where g′ is obtained from g as follows. For each

i ∈ [n], we let vi denote the number of non-strict left-to-right maximum letters in g that are
less than or equal to gi in the positions 1, . . . , i − 1. We let v = (v1, . . . , vn). Further, let
δ′ = (δ′1, . . . , δ

′
n), where

δ′i =

{
1, if gi is a left-to-right maximum of g;

0, otherwise.

Then
g′ = g + v − δ′.

For instance, if 1 · g = 122134321 ∈ T9, then g = 22134321, v = (0, 0, 0, 1, 1, 1, 1, 0), and
δ′ = (1, 0, 0, 1, 1, 0, 0, 0). Thus, g′ = 12134431 ∈ RGF(8). Note that β = α−1. As a result,
we have the following proposition.

Proposition 20. The mapping α from the set RGF(n) to the set Tn+1 is a bijection.

Corollary 21. If f ∈ RGF(n) and α(f) = 1 · f ′, then LrMax(f) = WLrMax(f ′).

We now evaluate the number `n of f ∈ RGF(n) having the sequence u = 0, i.e., if
f = f1f2 · · · fn, then for each i ∈ [n] there is no unique left-to-right maximum letter smaller
than fi on its left. The set partitions corresponding to such functions are exactly those
satisfying the condition that their blocks have a size of at least two except for the last block,
which may be a singleton. The sequence (`n)n≥0 is the same as the OEIS sequence A346771.

Theorem 22. For all n ≥ 2 we have

`n =
n−1∑
k=1

(
n− 1

k

)
`n−k−1, `0 = `1 = 1.

Proof. Let f ∈ RGF(n) satisfy the above condition. Since f1 = 1 is the smallest integer,
every such function has at least two 1’s. Suppose that f has k + 1 occurrences of 1’s. If
we delete all the 1’s and decrease each of the remaining integers by 1, then we obtain an
RGF over [n−k−1], with the same condition as f . So there are `n−k−1 such functions. We

now choose k positions from {2, 3, . . . , n} where to insert 1, and this is possible in

(
n− 1

k

)
ways. Therefore, by applying the product rule and then taking the sum over all possible k,
we have the right hand side.

3 Run distribution in run-sorted permutations

The following table presents the first few values rn,k of the number of run-sorted permutations
over [n] having k runs (presented in OEIS entry number A124324, counting the number of
set partitions in SP(n−1) by the number of non-singleton blocks).
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n\k 1 2 3 4 5 6 7
1 0
2 1 0
3 1 1 0
4 1 4 0 0
5 1 11 3 0 0
6 1 26 25 0 0 0
7 1 57 130 15 0 0 0

Table 1: The values of rn,k for 1 ≤ k, n ≤ 7.

Remark 23. The number k of runs of a run-sorted permutation over [n] satisfies the condition

1 ≤ k ≤ dn/2e, n ≥ 1,

because each run except the last has length at least 2.

Remark 24. By Theorem 22 and Remark 23, the set of merging-free partitions is a subset of
those set partitions having canonical forms with sequence u = 0.

The following result was conjectured by Nabawanda et al. (personal communication),
who also gave a justification of the first term of the right-hand side of (1). We were able
to provide a combinatorial bijective proof to justify the second term and thus to prove
the conjecture in our preliminary version of this article, entitled ‘Exhaustive generation
algorithm for flattened set partitions’. Nabawanda et al. referred to this original proof in
[10] and provided an alternative full proof of their own. Here we present that original proof,
employing our bijection.

Theorem 25. The number rn,k of run-sorted permutations of [n] having k runs satisfies the
recurrence relation

rn,k = krn−1,k + (n− 2)rn−2,k−1, n ≥ 2, k ≥ 1, (1)

where r0,0 = 1, r1,0 = 0, r1,1 = 1.

To prove this result, we partition the set RsP(n, k) of run-sorted permutations over [n]
having k runs into two subsets: RsP(1)(n, k) and RsP(2)(n, k), where RsP(1)(n, k) is the set of
elements of RsP(n, k) in which the removal of the integer n does not decrease the number of
runs, and RsP(2)(n, k) is the set of elements of RsP(n, k) in which the removal of the integer
n decreases the number of runs; this happens when the integer n occurs between two integers
x and y with x < y. For example, 12435 ∈ RsP(1)(5, 2) and 15234 ∈ RsP(2)(5, 2). We denote

the cardinalities of these subsets by r
(1)
n,k and r

(2)
n,k, respectively.

Let φ : [k]×RsP(n−1, k) 7→ RsP(1)(n, k) associating each element (i, σ) ∈ [k]×RsP(n−
1, k) with the permutation σ′ = φ(i, σ) obtained from σ by inserting n at the end of the i-th
run of the permutation σ. It is easy to see that φ is a bijection [10, p. 6].
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We now define the mapping ψ : [n−2]×RsP(n−2, k−1) 7→ RsP(2)(n, k), associating each
element (i, π) ∈ [n− 2]×RsP(n− 2, k− 1) with the permutation π′ = ψ(i, π) obtained from
π by increasing all integers greater than i by 1 and inserting the subword n i+1 immediately
after the rightmost of the integers of the set {1, 2, . . . , i}.

Example 26. Let i = 3 and π = 13524 ∈ RsP(5, 2). We construct ψ(i, π) as follows: increase
each integer greater than 3 in π by 1 to get 13625, then insert the subword 7 (3+1) = 7 4
into the position after the rightmost of the integers 1, 2, 3, thus the subword must be inserted
between 2 and 5; hence, ψ(3, 13524) = π′ = 1362745 ∈ RsP(2)(7, 3).

Lemma 27. For all (i, π) ∈ [n− 2]× RsP(n− 2, k − 1), we have ψ(i, π) ∈ RsP(2)(n, k).

Proof. Since π ∈ RsP(n−2, k−1) and the procedure inserts the subword n i+1 immediately
after the rightmost integer of the set {1, . . . , i}, all integers to the right of i + 1 are greater
than i+ 1 and i+ 1 is the first element of a new run. Thus the resulting permutation is run-
sorted with the number of runs increased by 1. Furthermore, in the resulting permutation,
the integer n is immediately preceded by some integer in the set {1, . . . , i} and immediately
followed by i+ 1; hence its removal decreases the number of runs, so π′ ∈ RsP(2)(n, k).

Proposition 28. The map ψ defined above is a bijection.

Proof. We prove that ψ is both injective and surjective. First let us assume that (i1, π1) 6=
(i2, π2) for i1, i2 ∈ [n−2] and π1, π2 ∈ RsP(n−2, k−1). Let ψ(i1, π1) = π′1 and ψ(i2, π2) = π′2.
Then π′1 and π′2 are run-sorted permutations in RsP(2)(n, k) by the previous lemma. We
consider two cases. If i1 6= i2, then in one of the two resulting permutations n is followed
by i1 + 1 while in the other n is followed by i2 + 1. If i1 = i2 and π1 6= π2, then the
two run-sorted permutations π1 and π2 have at least two entries in which they differ. Thus
inserting n i1+1 = n i2+1 after the rightmost element of the set {1, 2, . . . , i1 = i2}, produces
two different permutations π′1 and π′2. Thus, in both cases, π′1 = ψ(i1, π1) 6= ψ(i2, π2) = π′2,
and hence ψ is injective. Next, consider any π′ ∈ RsP(2)(n, k). Then n does not appear
in the last position. Let j > 1 be the integer following n in π′. We exhibit a pair (i, π) ∈
[n− 2]×RsP(n− 2, k− 1) such that ψ(i, π) = π′. Define π to be the run-sorted permutation
obtained from π′ by deleting the subword n j and by decreasing by 1 every integer greater
than or equal to j + 1 in the resulting word. Note that if n follows the integer i in π′, then
i < j, and hence deleting the subword n j from π′ reduces the number of runs by 1 and the
size of the partition by 2, whence π ∈ RsP(n− 2, k − 1) and ψ(j + 1, π) = π′. Therefore, ψ
is a bijection.

We are now ready to present the proof of Theorem 25.

Proof. The left-hand side counts the number of run-sorted permutations in RsP(n, k). The
first term of the right-hand side counts the number of elements in RsP(1)(n, k). Since φ is a

bijection, we have r
(1)
n,k = krn−1,k. We show that the second term of the right-hand side counts

the number of elements in RsP(2)(n, k). By Proposition 28 the sets [n−2]×RsP(n−2, k−1)
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and RsP(2)(n, k) have the same cardinality, i.e., (n − 2)rn−2,k−1 = r
(2)
n,k. Thus by combining

the two parts we obtain rn,k = r
(1)
n,k + r

(2)
n,k, and hence the recurrence relation in (1).

We also provide a bijective proof of Theorem 25 in terms of canonical forms. Let Tn,k =
{f ∈ Tn : lrmax(f) = k}, so |Tn,k| = rn,k. Recall that Tn,k is the set of the canonical forms
of merging-free partitions over [n] having k blocks.

Proof. Firstly, if f = f1f2 · · · fn−1 ∈ Tn−1,k, then by concatenating any integer i ∈ [k] at the
end of f we obtain a f ′ ∈ Tn,k. This is because, f ′ satisfies the condition of Proposition 14
if and only if f does. This construction obviously produces krn−1,k functions of Tn,k having
the property that by erasing the last value fn we obtain a function in Tn−1,k.

Secondly, if f = f1f2 · · · fn−2 ∈ Tn−2,k−1, let i ∈ [n− 2], and let m = max1≤j≤i{fj}, then
we construct f ′ = f ′1f

′
2 · · · f ′n ∈ Tn,k associated with (i, f) as follows: increase by 1 all fjs

such that fj ≥ m, j > i, insert m + 1 at the position i + 1, and append m at the end. The
functions obtained with the second construction are all different from those obtained using
the former one. Indeed, by erasing the last integer from f ′ we do not obtain a function in
Tn−1,k. The reason is that the value m + 1 in the position i + 1 is a left-to-right maximum
letter because of the choice of m. Now, by construction, the only occurrence of m in f ′ is
at position n. By erasing this value, the left-to-right maximum letter m+ 1 in the position
i+ 1 is left without an occurrence of m on its right. Therefore, f ′1f

′
2 · · · f ′n−1 does not satisfy

the property characterizing canonical forms of merging-free partitions. So this contributes
(n − 2)rn−2,k−1 to the number rn,k as there are n − 2 possibilities for i and the number of
image values of f ′ increases by 1.

Example 29. Take f = 12132 ∈ T5,3 and let i = 3. We construct (i, f) 7→ f ′ as follows: we
have m = max1≤j≤3{fj} = max1≤j≤3{1, 2, 1} = 2, and f ′1 = f1 = 1, f ′2 = f2 = 2, f ′3 = f3 =
1, f ′4 = m+ 1 = 3, f ′5 = f4 + 1 = 4, f ′6 = f5 + 1 = 3, f ′7 = m = 2. Thus, f ′ = 1213432 ∈ T7,4.

4 Right-to-left minima in run-sorted permutations

4.1 The distribution of right-to-left minima over the set of run-
sorted permutations

The following proposition gives us the relation between the statistics of right-to-left minima
of run-sorted permutations and the weak left-to-right maxima of the canonical forms of the
corresponding merging-free partitions.

Proposition 30. The set of right-to-left minima of a run-sorted permutation over [n] and
the set of weak left-to-right maxima of the canonical form of the corresponding merging-free
partition are the same.

Proof. Let Flatten(P ) = π = π(1) · · · π(n) ∈ RsP(n), where P is a merging-free partition
over [n]. Let f = f1 · · · fn be the canonical form of P and let {i1, . . . , ir} be the set of
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the positions of the right-to-left minima of π, then by definition of right-to-left minima
RlMin(π) = {1 = π(i1) < π(i2) < · · · < π(ir) = π(n)}. Furthermore, if 1 ≤ j1 < j2 ≤ r and
we let Bq1 be the block of P containing π(ij1) and Bq2 the block of P containing π(ij2), then
q1 ≤ q2 and by the definition of canonical form we have fπ(i1) ≤ fπ(i2) ≤ · · · ≤ fπ(ir). Assume
that π(j) /∈ RlMin(π), then there exists some integer s such that π(j) > π(s), s > j. Hence
fπ(s) > fπ(j) and π(j) /∈WLrMax(f). Thus, {π(i1), . . . , π(ik)} ⊆WLrMax(f).

Conversely, if WLrMax(f) = {i1, . . . , is}, then for each ij we have fij ≥ ft, t < ij, that
is, all integers t < ij belong either to fij -th block or to a preceding block of P , therefore,
in π there is no integer smaller than ij on the right of ij. Hence ij ∈ RlMin(π). Therefore,
RlMin(π) = WLrMax(f).

Example 31. If P = 149/238/57/6, then its canonical form is f = 122134321 and π =
Flatten(P ) = 149238576. Thus, we have RlMin(π) = {1, 2, 3, 5, 6} = WLrMax(f).

Let hn,r denote the number of run-sorted permutations over [n] having r right-to-left
minima.

Proposition 32. For all positive integers n and r with 2 ≤ r ≤ n we have

hn,r = hn−1,r−1 + (r − 1)hn−1,r, h1,1 = 1. (2)

Proof. A run-sorted permutation π′ over [n] can be obtained from a run-sorted permuta-
tion π over [n − 1] either by appending n at its end or by inserting n before any of its
right-to-left minima that is different from 1. Otherwise, the resulting permutation would
not be run-sorted. In the former case, the number of right-to-left minima increases by 1,
and hence this contributes hn−1,r−1 to the number hn,r. In the latter case, if RlMin(π) =
{π(i1), π(i2), . . . , π(ir)}, then 1 = π(i1) < π(i2) < · · · < π(ir). So, inserting n before any
π(ij) for j 6= 1 makes π(ij) to be the minimum element of its run in π′. Thus the permutation
π′ is run-sorted having the same number of right-to-left minima as π, and this contributes
(r − 1)hn−1,r as there are r−1 right-to-left minima different from 1.

We also give the interpretation of the bijective proof of the recursion formula in (2) for
the corresponding set of canonical forms of merging-free partitions using Proposition 30. We
interpret hn,r as the number of canonical forms in Tn having r weak left-to-right maxima, i.e.,
hn,r = |{f ∈ Tn : wlrmax(f) = r}|. All the elements of the set {f ∈ Tn : wlrmax(f) = r}
are obtained in a unique way

1. either from an f = f1f2 · · · fn−1 ∈ Tn−1,r−1 by concatenating max
1≤j≤n−1

fj at its end;

2. or from an f = f1f2 · · · fn−1 ∈ Tn−1,r with weak left-to-right maxima {i1, i2, . . . , ir} as
follows. For each j = 2, . . . , r:

- if fij is a non-strict left-to-right maximum letter of f , then increase by 1 every
integer fs such that fs ≥ fij and s ≥ ij, and

11



- concatenate fij−1
at the end of the resulting function.

Thus, the recurrence relation in (2) follows.
Recall that the recurrence relation satisfied by the Stirling numbers of the second kind is

S(n, r) = S(n− 1, r− 1) + rS(n− 1, r). It is easy to see that from Corollary 21 of Section 2
and Proposition 30, the number of blocks in a set partition over [n− 1] is one less than the
number of right-to-left minima of the corresponding run-sorted permutation over [n] under
the bijection in Proposition 11. So, the values of hn,r given in (2) are the shifted values of
the Stirling numbers of the second kind, i.e., hn,r = S(n− 1, r − 1), for all n ≥ r ≥ 1.

4.2 The joint distribution of run and rlmin over the set of run-
sorted permutations

The statistics run and rlmin of a run-sorted permutation are related. In particular, each
minimum element of a run is always a right-to-left minimum, so run(π) ≤ rlmin(π), ∀π ∈
RsP(n). We are interested in the joint distribution of these statistics. Let an,k,r denote the
number of run-sorted permutations over [n] having k runs and r right-to-left minima. If
n = 0, then the only nonzero term is a0,0,0 = 1; if n ≥ 1, then an,k,r = 0, where k > dn

2
e, r >

n, r < k, k < 1, r < 1, or r > n− k + 1.

Proposition 33. For all integers n, k, r such that 1 ≤ k, r ≤ n, the numbers an,k,r of run-
sorted permutations over [n+ 2] having k runs and r right-to-left minima satisfy

an+2,k,r = an+1,k,r−1 +
n∑
i=1

(
n

i

)
an+1−i,k−1,r−1.

Proof. Let π ∈ RsP(n + 2). Let us suppose that the integers 1 and 2 are in the same
run of π. Let π′ be the permutation obtained from π by deleting 1 and then decreasing
each of the remaining integers by 1, then π′ ∈ RsP(n + 1) and run(π) = run(π′) and
rlmin(π) = rlmin(π′) + 1. This implies that

|{π ∈ RsP(n+ 2) : run(π) = k, rlmin(π) = r, 1 and 2 are in the same run}| = an+1,k,r−1.

Let us suppose now that 1 and 2 are in different runs of π and that the first run (containing
1) has length i + 1, i ≥ 1. Then we can choose i elements from the set {3, 4, . . . , n + 2}

to include in the first run. There are

(
n

i

)
ways to do so. The remaining part of π is a

run-sorted permutation over n+ 1− i letters and thus there are an+1−i of them. In this case,
the number of runs and the number of right-to-left minima of π each increase by 1. This
completes the proof.

Theorem 34. We have

an,k,r = an−1,k,r−1 + (k − 1)an−1,k,r + (n− 2)an−2,k−1,r−1, n ≥ 2, k, r ≥ 1 (3)

with the initial conditions a0,0,0 = 1, a1,1,1 = 1.
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Proof. The proof is based on the technique used in the proof of Theorem 25. Let π′ be a
run-sorted permutation over [n] obtained from π ∈ RsP(n−1) by inserting n at the end of
any of its runs. This operation preserves the number of runs. It also preserves the number
of right-to-left minima except when n is inserted at the end of the last run of π, in which
case the number of right-to-left minima increases by 1. So we get the first two terms of
the right-hand side of (3). Again, if π′ ∈ RsP(n) is obtained from π ∈ RsP(n−2) by the
operation defined in Lemma 27, i.e., π′ = ψ(i, π), where i ∈ [n − 2], then the number of
runs and the number of right-to-left minima each increase by 1. We showed already that
this is true for the number of runs, let us show it for the number of right-to-left minima.
The operation increases each integer greater than i in π by 1 and inserts the subword n i+1
immediately after the rightmost position of the integers of the set {1, 2, . . . , i}. Then the
newly created run beginning at i+ 1 contributes one more right-to-left minimum, since the
minima of the runs form an increasing subsequence. Thus, we have the last term on the
right-hand side of the recurrence.

Remark 35. If we use the interpretation with set partitions, an,k,r counts the number of set
partitions in SP(n−1) having r−1 blocks in which k−1 of them are non-singleton blocks.

Theorem 36. The exponential generating function

A(x, y, z) =
∑

n,k,r≥0

an,k,r
xn

n!
ykzr

satisfies the differential equation

∂A

∂x
= yzexz−yz(1+x−e

x) (4)

with the initial condition ∂A
∂x
|x=0 = yz.

Proof. By (3) we have∑
n≥2,k,r≥1

an,k,r
xn

n!
ykzr =

∑
n≥2,k,r≥1

an−1,k,r−1
xn

n!
ykzr +

∑
n≥2,k,r≥1

(k − 1)an−1,k,r
xn

n!
ykzr+

∑
n≥2,k,r≥1

an−2,k−1,r−1
xn

n!
ykzr.

Using the notation Ay = ∂A
∂y

and expressing the above equation in terms of A we obtain

A = z

(∫
Adx− x

)
+

∫
yAydx−

(∫
Adx− x

)
+ xyz

∫
Adx−

2yz

∫ ∫
Adxdx+ 1 + xyz

=

∫
yAydx− (1− z − xyz)

∫
Adx+ x− xz − 2yz

∫ ∫
Adxdx+ 1 + xyz. (5)
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By differentiating both sides of (5) with respect to x we obtain the following:

Ax = yAy − (1− z − xyz)A+ 1− z − yz
∫
Adx+ yz.

Again by differentiating the above equation with respect to x we obtain

Axx = yAyx − (1− z − xyz)Ax. (6)

By letting B = Ax in (6) we obtain

Bx − yBy + (1− z − xyz)B = 0. (7)

Then the characteristic equation is dy
dx

= −y
1

or ln y + x = k with k constant. We make
the transformation with ε = x, µ = ln y + x, ζ = z, and w(ε, µ, ζ) = B(x, y, z). Using the
substitution we find that (7) transforms to

wε +
(
1− ζ − εζeµ−ε

)
w = 0.

By the integrating factor method we have

∂

∂ε

(
e
∫
(1−ζ−εζeµ−ε)dεw

)
= 0

and then integrating the above equation with respect to ε and simplifying

w(ε, µ, ζ) = g(µ, ζ)e
∫
(−1+ζ+εζeµ−ε)dε

= g(µ, ζ)eε(−1+ζ)−ζe
µ−ε(1+ε)+h(µ,ζ),

where g and h are any differentiable functions of two variables. Using the initial condition
B(0, y, z) = yz we have x = 0, ε = 0, µ = ln y, ζ = z, w(ε = 0, µ = ln y, ζ = z) = yz, and

yz = g(ln y, z)e−yz+h(ln y,z)

yzeyz = g(ln y, z)eh(ln y,z).

Thus, we obtain g(t, z) = h(t, z) = zet. Therefore, we back the transformation in terms of
x, y, z so that

B(x, y, z) = g(ln y + x, z)e−x+xz−yz(1+x)+h(ln y+x,z)

= yzexz−yz(1+x−e
x).

By specializing z = 1 in (4) we obtain the result about the exponential generating function
counting run-sorted permutations by the number of runs [10]. Recall that rn,k is the number
of run-sorted permutations over [n] having k runs.
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Corollary 37. If A(x, y) =
∑

n,k≥1 rn,k
xn

n!
yk, then A satisfies

∂A

∂x
= yex−y(1+x−e

x)

with the initial condition ∂A
∂x
|x=0 = y.

By specializing y = z = 1 in (4) we obtain the well-known result about the exponential
generating function counting the number of run-sorted permutations (merging-free parti-
tions) [3, 16].

Corollary 38. The exponential generating function A(x) of the number of run-sorted per-
mutations has the closed differential form

A′(x) = ee
x−1.

Corollary 39. For all positive integer n ≥ 1, the number an of run-sorted permutations
over [n] is given by

an =
1

e

∑
m≥0

mn−1

m!
.

4.3 A bijection with separated partitions

We now consider set partitions with no two consecutive integers in the same block. Such
partitions have been studied, for instance, by Munagi [9], who called them “separated”
partitions and proved that separated partitions over [n] having k blocks are counted by the
shifted Stirling numbers of the second kind (A008277), like the run-sorted permutations over
[n] having k right-to-left minima.

It is then natural to provide a bijection between these two equisized classes of objects.
Let Pn denote the set of all separated partitions over [n]. Let P = B1/B2/ · · · /Bk ∈ Pn with
k blocks. Define a map θ : Pn 7→ RsP(n) given by π = θ(P ), where π is obtained as follows:

- for i = 2, . . . , k:

if b ∈ Bi, b 6= min(Bi) and b− 1 ∈ Bj such that j < i, then

move b to Bi−1 and rearrange the elements of Bi−1 in increasing order;

- flatten the resulting partition and set it to π.

Example 40. If P = 1358/26/47, then 1358/26/47 → 13568/2/47 → 13568/27/4 →
13568274 = π.

Theorem 41. The map θ is a bijection.
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Proof. We first prove that π ∈ RsP(n), for every P ∈ Pn. The procedure never moves
min(Bi) for all i. Thus, the minima remain in increasing order, and hence π is a run-sorted
permutation. We now show that if P has k blocks, then π has k right-to-left minima.
Obviously, the minimum of each block of P becomes a right-to-left minimum of π. Let b be
in the block Bi with b 6= min(Bi). The integer b− 1 is in a different block, say Bj. If j < i,
then the procedure moves b to the block Bi−1 leaving min(Bi) on its right in π. Therefore, b
cannot be a right-to-left minimum of π. Suppose that j > i. Since b− 1 ≥ min(Bj) we have
b > min(Bj), so the procedure moves neither b nor min(Bj) which implies that b cannot
be a right-to-left minimum of π. Therefore, b is a right-to-left minimum of π if and only
if b = min(Bi), i = 1, . . . , k. We next prove that θ is one-to-one. Suppose that P 6= P ′,
where P, P ′ ∈ Pn. If the number of blocks of P and the number of blocks of P ′ are different,
then we are done since θ(P ) and θ(P ′) have different number of right-to-left minima. Let
P = B1/ · · · /Bk and P ′ = B′1/ · · · /B′k, and assume that there exists an element b ∈ Bi and
b ∈ B′j such that Bi is the block of P and B′j is the block of P ′ with i 6= j. We take the
minimal of these elements. Up to exchanging of P and P ′ we can suppose i < j.

1. If b = min(Bi), then b is the i-th right-to-left minimum of θ(P ) and it would not be
the case for θ(P ′).

2. Let b 6= min(Bi) and let b − 1 ∈ Bm. Note that b − 1 ∈ B′m for the minimality of b.
Three sub-cases are possible:

• if m < i < j, then θ moves b to the block Bi−1 of P and moves b to the block
B′j−1 of P ′;

• if i < m < j, then θ leaves b in the block Bi in P while it moves b to the block
B′j−1 in P ′. Note that j − 1 6= i, because i � m � j;

• if i < j < m, then θ leaves b in the block Bi in P and leaves b in the block B′j in
P ′.

In all cases we have θ(P ) 6= θ(P ′). Therefore, θ is a bijection.

We now present the inverse of θ. Let π ∈ RsP(n) having k right-to-left minima. We construct
P = θ−1(P ′) as follows:

– insert a slash before each right-to-left minimum of π and let B1/ · · · /Bk be the resulting
partition;

– for i = k, . . . , 1:

for b in Bi \ {min(Bi)} taken in increasing order

if b− 1 ∈ Bj, j ≤ i, then

move b to Bi+1 and rearrange the elements in each block in increasing order.

It can be easily checked that θ−1 constructs a separated partition. For instance, if π =
13625784, then by inserting slashes before each right-to-left minimum we have the partition
136/2578/4, and we move 7 to B3 since 6 ∈ B1. So P = 136/258/47.
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5 Non-crossing merging-free partitions

Let P = B1/ · · · /Bk ∈ SP(n). The standard representation of P is the graph on the vertex
set [n] whose edge set consists of arcs connecting the elements of each block in numerical
order [7, Definition 3.50]. A non-crossing partition of a set A = [n] is a partition in which
no two edges in its standard representation “cross” each other, i.e., if a and b belong to one
block and x and y to another, where a < b, x < y, then they cannot be arranged in the order
axby. If one draws an arc connecting a and b, and another arc connecting x and y, then the
two arcs cross each other if the order is axby but not if it is axyb or abxy. In the latter two
orders the partition {{a, b}, {x, y}} is non-crossing [14].

Example 42. In the following figure, the diagrams of P = 1 2 5 7/ 3 9 10/ 4 6 8 and of
P ′ = 1 2 3 9 10/ 4 6 7 8/ 5, respectively, are crossing and non-crossing partitions.

Figure 1: Crossing and non-crossing merging-free partitions.

We are interested in non-crossing merging-free partitions over [n]. We letMn denote the
set of all non-crossing merging-free partitions over [n] and Mn,t := {P ∈ Mn : bl(P ) = t},
where bl(P ) denote the number of blocks of the partition P .

Theorem 43. For all integers n ≥ 1 we have

∑
P∈Mn

qbl(P ) =

bn+1
2
c∑

t=1

(
n− 1

2(t− 1)

)
qt. (8)

Proof. We use a strong induction on n, and provide a recursive construction for the merging-
free partitions of Mn. For n = 1, the assertion is trivially true (initial condition). Assume
that n ≥ 2, and the assertion is true for all integers smaller than n. We distinguish two
cases: depending on if n is in the same block of a merging-free partition P as n−1 or not.
Suppose that P has t blocks.

Case 1. If n is in the same block as n−1, then we delete n and obtain a non-crossing
merging-free partition P ′ in Mn−1,t. Conversely, for any P ′ ∈Mn−1,t, we obtain P from P ′

by inserting n in the same block as n−1. Thus the construction P 7→ P ′ is a bijection. The
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induction hypothesis implies that∑
P∈Mn

n and n−1 are in
the same block of P

qbl(P ) =
∑

P ′∈Mn−1

qbl(P
′)

=

bn
2
c∑

t=1

(
n− 2

2(t− 1)

)
qt. (9)

Case 2. Suppose that n is not in the same block as n−1 in P and, that n is in the same
block as certain i, with i < n−1. Let i be the maximum of such elements. In this case, as we
shall see, all the integers 1, 2, . . . , i, n are in the first block of P . Assume for a contradiction
that there is j ∈ {1, 2, . . . , i − 1} such that j is not in the same block as i. We can choose
j such that j + 1 is in the same block as i. Let s be the index of the block containing n.
We show that s = 1. Otherwise, if s > 1, then let a1 = min(Bs−1), a2 = max(Bs−1), and
b = min(Bs). Then a1 < a2 and a2 > b because P is merging-free. Thus a1, b, a2, n is a
crossing, which is impossible. So s = 1. Hence j + 1 ∈ B1 as well. Since 1 ∈ B1, there must
be an arc from j + 1 that points to the left.

If j is not the maximum element of its block, then the arc relating it to its successor in the
partition creates a crossing. If instead j is the maximum element of its block, then there is
an integer k > i such that k is in the same block as an integer j′ < j (and hence creates
a crossing with the arc (i, n)), because otherwise, the block containing j should be merged
with one of the blocks containing integers of [i+ 1, n− 1] and hence the partition would not
be merging-free.

Thus, the first block is uniquely determined by the integer i, and the remaining n − i − 1
integers must form a non-crossing merging-free partition. So let P ′′ be the partition obtained
by deleting the first block of P and then standardizing the resulting partition, i.e., subtracting
i from each of the remaining integers, so we have P ′′ ∈Mn−i−1,t−1. Conversely, we increase
every integer in P ′′ by i and add a new block consisting of the integers 1, 2, . . . , i, n. Thus
the construction P 7→ P ′′ is a bijection. Hence, by the induction hypothesis and taking the
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sum over all possible i, we have

∑
P∈Mn

n and n−1 are not
in the same block of P

qbl(P ) =
n−2∑
i=1

q
∑

P ′′∈Mn−i−1

qbl(P
′′)

=
n−2∑
i=1

q

bn−i+2
2
c∑

t=2

(
n− i− 2

2(t− 2)

)
qt−1. (10)

Therefore, putting (9) and (10) together we have

∑
P∈Mn

qbl(P ) =

bn
2
c∑

t=1

(
n− 2

2(t− 1)

)
qt +

n−2∑
i=1

q

bn−i+2
2
c∑

t=2

(
n− i− 2

2(t− 2)

)
qt−1

=

bn
2
c∑

t=1

(
n− 2

2(t− 1)

)
qt +

bn+1
2
c∑

t=2

qt
n−2t+2∑
i=1

(
n− i− 2

2t− 4

)

=

bn
2
c∑

t=1

(
n− 2

2(t− 1)

)
qt +

bn+1
2
c∑

t=2

(
n− 2

2t− 3

)
qt

= q +

bn+1
2
c∑

t=2

[(
n− 2

2t− 2

)
+

(
n− 2

2t− 3

)]
qt =

bn+1
2
c∑

t=1

(
n− 1

2t− 2

)
qt.

Corollary 44. The number mn of non-crossing merging-free partitions over [n] is equal to
2n−2, where n ≥ 2 and m1 = m2 = 1.

Proof. This follows from putting q = 1 in (8) and using the well-known identity∑
k≥0

(
n

2k

)
= 2n−1.

A function f ∈ RGF(n) is said to avoid a pattern 212 if there do not exist some indices
a < b < c such that fa = fc > fb. Let f be the canonical form of a set partition P over [n],
then P is non-crossing if and only if f is 212-avoiding [6, 13]. A function f = f1f2 · · · fn is
said to be weakly uni-modal if there exists a value m ≤ n for which it is weakly increasing
for i ≤ m and weakly decreasing for i ≥ m, i.e., f1 ≤ f2 ≤ · · · ≤ fm ≥ fm+1 ≥ · · · ≥ fn.
Thus, we have the following result.

Proposition 45. Let f be the canonical form of a merging-free partition P , then f is 212-
avoiding if and only if it is weakly uni-modal.
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Proof. Consider the forward implication. Since f is an RGF, if it is not weakly uni-modal,
although it is 212-avoiding, then it contains either a pattern 312 or 213. If f contains a 312,
then before the 3 there is a 2 and hence it contains 212. This is a contradiction. Suppose that
f contains a pattern 213 in the positions a < a+ 1 < b, where b is the smallest such integer.
If fb is a left-to-right maximum letter in f , then there exists some integer c > b such that
fc = fb − 1 because P is merging-free. Since f is an RGF there exists an integer d ≤ a such
that fd = fc because of the choice of b. Thus, f contains the pattern 212 in d < a + 1 < c
and this is a contradiction. If fb is not a left-to-right maximum letter, then we have some
integer e < a such that fe = fb, and hence f contains the pattern 212 in e < a + 1 < b and
this is also a contradiction. Therefore, f is weakly uni-modal. The converse implication is
clearly true.

6 The exhaustive generation

We used the results presented here—and in particular, the construction in the proof of the
recurrence relation for the sets RsP(n, k)—to implement an algorithm to generate these
objects, i.e., an algorithm which, for any fixed integer n, solves the following problem:

Problem: Run-Sorted-Permutations-Generation

Input: an integer n

Output: the set of all run-sorted permutations RsP(n), partitioned into the subsets RsP(n, k).
Compared to previous, more naive algorithms, this algorithm has allowed some re-

searchers to extend the range of calculations performed in an acceptable time and confirm
various conjectures for a larger value of n. Rather than implementing recursive algorithms,
we made use of dynamic programming and obtained iterative algorithms. All algorithms
implement a run-permutation as a list of integers and a set of run-sorted permutations as a
list of run-sorted permutations and hence as a list of lists of integers. Algorithm 1 generates
run-sorted permutations in RsP(1)(n, k) ⊆ RsP(n, k) from RsP(n − 1, k) based on the idea
presented in Section 3.

The exhaustive generation of run-sorted permutations in RsP(2)(n, k) starts from the set
[n − 2] × RsP(n − 2, k − 1), i.e., from a pair (i, π) ∈ [n − 2] × RsP(n − 2, k − 1) we obtain
a run-sorted permutation π′ ∈ RsP(2)(n, k) using Algorithm 2. The idea is based on the
operation given in Section 3.
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Algorithm 1 Exhaustive Generation of Run-Sorted Permutations in RsP(1)(n, k) from the
partitions of RsP(n− 1, k).

Procedure: FUNCTION ONE(RsP, n)
Ensure: RsP is a list of lists whose elements represent run-sorted permutations of size n−1

and n is the integer to be inserted so that the number of runs remains the same.
L←− [ ]
for π in RsP do

for t in Range(Length(π)− 1) do
if π[t] > π[t+ 1] then
π′ ←− π.Insert(t+ 1, n)
L.Append(π′)

end if
end for
π′ ←− π.Append(n)
L.Append(π′)

end for
return L

Algorithm 2 Generation of a run-sorted permutation in RsP(2)(n, k) from an element of
[n− 2]× RsP(n− 2, k − 1).

Procedure: RUN SORTED PERMUTATION SIZE INC BY TWO((π, p))
Ensure: π is a run-sorted permutation in RsP(n− 2, k − 1) and p is an integer in [n− 2].

for t in Range(Length(π)) do
if π[t] > p then
π[t]←− π[t] + 1

end if
end for
pos = Length(π)− 1
while π[pos] > p do
pos←− pos− 1

end while
π.Insert(pos+ 1, Length(π) + 2)
π.Insert(pos+ 2, p+ 1)
return (π)

Algorithm 3 calls Algorithm 2 and gives us the exhaustive generation algorithm for the
set of run-sorted permutations in RsP(2)(n, k).
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Algorithm 3 Exhaustive Generation of Run-sorted Permutations in RsP(2)(n, k).

Procedure: FUNCTION TWO(RsP)
Ensure: RsP is a list of lists whose elements represent run-sorted permutations in RsP(n−

2, k − 1).
L← [ ]
for π in RsP do

for p in Range(1, Length(π) + 1) do
π′ ←− RUN SORTED PERMUTATION SIZE INC BY TWO(π, p)
L.Append(π′)

end for
end for
return L

We now present the main exhaustive generation algorithm that generates all and only
those run-sorted permutations in RsP(n) for all possible n. The algorithm returns a list
of lists of lists of integers, namely the list RsP(n) = [RsP(n, 1),RsP(n, 2), . . . ,RsP(n, n)],
where each element RsP(n, k) is the list of all run-sorted permutations over [n] having k
runs. Since RsP(n, k) = ∅ if k > dn

2
e, the algorithm can be optimized by computing only

those sets RsP(n, k) that are not empty. As we said, the algorithm is based on the dynamic
programming. We stock the values of the lists RsP(n− 1) and RsP(n− 2), and use them to
compute the list RsP(n). To save memory, only the last two lists are kept at any time: the
list RsP(n−1) is stored in a variable called LastRow; the list RsP(n−2) is stored in a variable
called RowBeforeLast; and the list RsP(n) is stored in a variable called CurrentRow. At the
end of each iteration, the three variables are shifted.

Algorithm 4 Exhaustive Generation of Run-Sorted Permutations.

Procedure: RUN SORTED PERMUTATIONS(n)
Ensure: RsP is a list of lists whose elements represent run-sorted permutation in RsP(n−

2, k − 1).
RowBeforeLast←− [[[1]]]
LastRow←− [[[1, 2]], [ ]]
for i in Range(3, n+ 1) do
CurrentRow←− [ ]
CurrentRow.Append(FUNCTION ONE(LastRow[0], i))
for j in Range(1, d i

2
e) do

CurrentRow.Append(FUNCTION ONE(LastRow[j], i)
CurrentRow.Append(FUNCTION TWO(RowBeforeLast[j − 1]))

end for
RowBeforeLast←− LastRow

LastRow←− CurrentRow

end for
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All these algorithms have been implemented in Python.

Example 46. When RUN SORTED PERMUTATIONS(n) is executed for n = 5 we get the list
RsP(5):

[[[1, 2, 3, 4, 5]],

[[1, 3, 4, 5, 2], [1, 3, 4, 2, 5], [1, 3, 5, 2, 4], [1, 3, 2, 4, 5], [1, 4, 5, 2, 3], [1, 4, 2, 3, 5], [1, 2, 4, 5, 3],

[1, 2, 4, 3, 5], [1, 5, 2, 3, 4], [1, 2, 5, 3, 4], [1, 2, 3, 5, 4]],

[[1, 5, 2, 4, 3], [1, 4, 2, 5, 3], [1, 3, 2, 5, 4]],

[ ]].

Observe that a5,1 = 1, a5,2 = 11, a5,3 = 3, a5,4 = 0, and a5 = 1 + 11 + 3 + 0 = 15.
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