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Abstract

In this paper, we give some properties of generalized hyper-Fibonacci numbers in
order to obtain a Cassini-like formula for them.

1 Introduction

In this paper, we consider the generalized Fibonacci sequence (wy,),>o defined by

wo = a,w; = b;
Wpio = QWi + Pwy, (n>0)
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where a,b,, and ( are integers. Several authors [3,7,8, 12] studied properties of these
numbers. If o + 43 # 0, then we have

wy, = asy + (b —asy) (2::), n >0, (1)

where s; = (a+ /o +483)/2 and sy = (a — /o + 43) /2 are the roots of 2> —ax — 3 = 0. If

A =b—asy and B = b— asy, then the identity (1) is equivalent to the well-known Binet-like
formula
_ Ast — Bsy

51— 52

n > 0.

n

If B# 0 and o® + 43 # 0, then the generalized Fibonacci numbers for negative subscripts
are defined, using Identity (1), by w_,, = a(s;" + s3") — (=) "w, for n > 0. If 5 # 0 and
a? 448 =0, then o = 2t and 8 = —t2, where t is the double root of 22 — ax — 3 = 0. Thus,
wy, = ((2ba™ —a)n + a)t™ and w_,, = ((a — 2ba™ )n + a)t™™, for n > 0.

We introduce the generalized hyper-Fibonacci numbers associated with the sequence
(wy)n>0 as follows:

wlr D = Zanfkwl(:% w® =w,, w’=a " =aar+b (2)
k=0

where 7 is a nonnegative integer.
The aim of this paper is to extend the well-known Cassini formula [5, 10, 14]

FoFpy— F2 = (=1)"*! (3)

n

to the generalized hyper-Fibonacci numbers (2), where (F},),, denotes the classical Fibonacci
sequence. The identity (3) can be written in a determinant form as

Fn Fn+1

— _1 n—i—l' 4
o Fop ~ 0 (4)

In [11], Stakhov generalized the Cassini formula (3) to the p-Fibonacci numbers and devel-
oped a new coding theory based on the (),-matrices. By analogy, one can use the compagnon
matrices given bellow in the formula (19) instead of the (),-matrices. Halici [6] established
the Cassini formula for the Fibonacci quaternions. Martinjak and Urbiha [9] extended the
Cassini formula (4) to the hyper-Fibonacci numbers defined in [2,4] as

n

Fr=N"F", FO=F, F’=0, F"=1,
k=0

where r is a nonnegative integer. The number F") is called the nth hyper-Fibonacci num-
ber of the rth generation. The hyper-Fibonacci numbers satisfy many interesting number-
theoretical and combinatorial properties, e.g., [2]. Martinjak and Urbiha [9] defined the
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matrix

ROOR e R
F(T) F(T) . F(T)
Ar L= n+1 n+2 n—+r+2
o) 0 o)
Fn—i—r-{—l Fn—i—r-‘,—? e Fn+2r+2
and proved that
det(Am) _ (_1)n+L(r+3)/2j’ (5)

where n and r are nonnegative integers. It is clear that for r = 0, we obtain (4). Recently,
in [1], the authors generalized the identity (5) to the (a, b)-hyper-Fibonacci numbers.

If (bn)n>0 and (¢,)n>0 are two sequences satisfying the relation a9 = a1 + Ba,, then
we have the identity [13]

bncn—l - bn—lcn - (_B)n_l(blco - b[)cl)- (6)

If we take b, = F,, 12 and ¢, = F, 11, then the identity (6) reduces to (3). For b, = w, o and
Cpn = Wpy1, the identity (6) reduces to

WnWn42 — w721+1 = (_5)71(5&2 + aab — 62)' (7)
Cassini formula (7) can also be expressed as a determinant in the following way

Wy, wn+1

= (=B)"1(BY — aBab — F*a?).

Wp41 Wpi2

For n,r € Z such that n > 0 and r > 0, let us define the (r + 2) x (r + 2) matrix

(r) (r) (r)
Wn wn+1 o wn+r+1
T RN
n+1 n+2 n+r+2
Wr,n - . . . .
(r) (r) (r)
Wyirr1 Whipyo 0 Wpionyo

In Section 2, we establish some combinatorial properties involving the generalized hyper-
Fibonacci sequence (wﬁf))nzo. In Section 3, we evaluate the determinant of the matrix W, ,,,
which gives the identity (5) fora=0andb=a==1. Fora=2andb=a=0=1, we
deduce the determinant of the matrix

£ B
Lnr—l-l LnT+2 T Lnr+7‘+2
Lf;)wﬂ Lﬁrw Y Lf;)r2r+2



involving the hyper—Lucas numbers given by [2,4]

We let ( ) denote the binomial coefficient which is defined for a nonnegative integer n

and an integer k by
n!

Y ifo<k<m
(”): Hn—pp 0sksm

k 0, otherwise,

and for a negative integer n and an integer k by

( — —
(—U’“( ”*,f 1), if i > 0;

(Z> N (—1)“’“(‘1C - 1), it k< n:

n—k
L0, otherwise.

In Sections 2 and 3 we assume that 5 # 0.

2 Properties of the sequences (fwﬁf) Jn>0

In this section, we give some properties satisfied by the generalized hyper-Fibonacci sequence
(w50 given by the formula (2).

Lemma 1. Let n > 0 be an integer. Then

1 n+1
w® @

gt B
Proof. We prove the lemma by induction on n > 0. For n = 0, the identity (8) is trivially
checked. Now assume that (8) holds for an integer n > 0. Then

n+1

E : n+1— k
n+1_ Q

b. (8)

1 an—i—l
=« (Bwnw - —b) + Wny1

1 an+2

= Bwn+3 - T
We conclude that (8) holds for all n > 0. O



The following proposition expresses a generalized hyper-Fibonacci number of any gener-
ation r > 1 in terms of the Oth generation.

Proposition 2. Let r > 1 be an integer. Then

r—1

1 n+r—10—1\wys
(ry — — _n+l +
Wy~ = Br Wp42r — & ;_0: ( r—1—1 ) ﬁl-‘,—l , nZz 0. (9>

Proof. We prove the proposition by induction on > 1. We deduce from Lemma 1 that (9)
holds for » = 1. Now assume that (9) holds for an integer » > 1. Then

:Zanfkwl(g)
k=0
n r—1
_ 1 k+T—l—1 Waor+41
_ n—=k o k1 4
_Za (ﬁrw’f”’” o Z( r—1—1 )5l+1

=0
n r—1
R LT WM (M e
Br r—I1—1 gl
k=0 1=0
n+2r n+12r 1

n+2r r— n = - k+r—1-1
:6Tza+21 Zaz -1y, _a+1;122ll++11kz:0( ril_l)

r—1
1w amtt (1) n+1 2 : n+r— 1\ wyp
- 671 wn+27‘ 57« w27’—1 Q r —l ﬁH—l

=0

1 antl it -1 W41
= o7 Wpyor+2 — 7 Wory1 — & E
[+ prt r—1 5l+1
1=0

1 " nr =1\ wy
_ n-+1 +1
= an+2r+2 -« Z ( r—1 ) [t

=0

We deduce that (9) holds for all » > 1. O

To go further, we need to define the generalized hyper-Fibonacci numbers of negative
subscripts. To do this, we first study the particular case a = 0 and b = 1 of the sequence
(wp)n > 0. Thus, let (u,), denote this particular sequence. The definition given by (2)
reduces to

ulr ) = Za" Al w0 =, w? =0, W7 =1. (10)

Proposition 3. Let r > 0 be an integer. Then

1 , 1 +1
Loy Lo <n+7“+ )04

n > 0. (11)

n _/3 n+2 r



Proof. We prove the proposition by induction on r > 0. We deduce from Lemma 1 that (11)
holds for » = 0. Now assume that (11) holds for an integer » > 0. Then

Zank(T+1
_ZO‘ < ") <k+r+1)ak+1>
U\ v )78
. E+r+1\ ,
Bza kk+2 Z( ) +1
n+2 n+2
l—l—fr—l)
n+2l n+1
- 52(
1 n+2 1 n+2 l4r—1
_ n+21 n+1 - n+l _ n+l
_B(Za ) 5<l:1< i )a o
r+21) HZH<Z+T_1> nt1
Up 4

B lu(r_,_l) n+r-+2
_ﬁ n—+2 T+1 B

We deduce that (11) holds for all » > 0. O

(]

The following corollary allows us to extend the sequence (u,),>0 to negative subscripts.

Corollary 4. Let r > 0 and n > 0 be integers. Then
. r , n+r+1\ ,
U£l++21) = 7(1:11 + Bu Y + ( r )a . (12)

Proof. According to (10), we have

S;)rl = Ugjll) Ofu(rﬂ)a (13)

where n > 0 and r > 0. From (11) and (13) we get

iy Loy @y (n +r+ 1) a™t!

Uy, - Bun—i—Q - ﬁu’n—l—l r B
We deduce that .
r r n+r+ n
U£L++21) = au1(1+1 + Buy, W < T )a +1



Now we give a linear relation between the sequences (wy,),>0 and (uy,)n>o0-

Lemma 5. Let n > 0 be an integer. Then
Wha1 = bUpy1 + Pau,. (14)

Proof. We prove the lemma by induction on n > 0. For n = 0,1 and 2, the identity (14) is
trivially checked. Now assume that (14) holds up to some order n > 1. Then

Wnio = QWpy1 + fwy
= a (bups1 + Bauy,) + B (bu, + Pau, 1)
- b (aun+1 + ﬁun) + B(I (aun + ﬂun—l)

= by 12 + Batyg1.

We conclude that (14) holds for all n > 0. O

In the following lemma, we give a relation between the sequences (wg))nzo and (ug))nzo.

Lemma 6. Let n > 0 be an integer. Then

wl = bull) + ﬂaui},)l + aa™. (15)
Proof. We prove the lemma by induction on n > 0. Since u(()l) = u(_lf = 0, the identity (15)
holds for n = 0. Now assume that (15) holds for an integer n > 0. Then

n+1

1 n+l—k
Wy = E o Wy,
k=0

n
= Wpy1 + E A" Fwy
k=0

= Wpy1 + ozwﬁbl)

= bupyr + Bau, + a(bul) + ﬁaugzl + aa™)
= b(tny1 + ouD) + Balu, + aufllzl) + aa"*

= bugr1 + Baull + a1,

1

We conclude that (15) holds for all n > 0. O

Now we derive a relation between the sequences (wy))nzo and (ug))nzo, for any generation

r > 1.
Proposition 7. Let r > 1 be an integer. Then

n+r—1

w = bl + Bau” | + a(
r—1

Jarnzo (16)
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Proof. We prove the proposition by induction on n > 0. We deduce from Lemma 6 that
Identity (16) holds for » = 1. Now assume that (16) holds for an integer > 1. Then

wr ) = Z o Py,
k=0
. r r k -1
= Za"‘k (bu,(C )+ ﬂau,(gzl —I—a( o ] )ozk>
r —
k=0

n . n . n k o 1
= Z oz”_"‘ugf ) + ﬁaz a"_ku,gzl + aa” ( o 1 )
k=0 k=0 =0 N T

n—1
_ buq(frl) + ﬁaza(n—l)—lul(r) i (n + T) ao
r
1=0

= bl + Baul D + (n N T) aa™.
r

We conclude that (16) holds for all n > 0. O

Remark 8. Using Identity (12), we extend, for » > 1 and a # 0, the sequence (uy,),>0 to
negative subscripts as follows:

@ _ 1w o —n+r\a "t
U—n—gu—nw_gu—nﬂ_ < 1 > 3 n 2 0.

It is easy to see that

1 /-1\"
u(—Tr)L:Ou for 0 <n <r and u@il:— — ] #o.
b6\ «

Now, using Identity (16), we define, for » > 1 and « # 0, the generalized hyper-Fibonacci
numbers for negative subscripts by

T (s T - - 1 _
w(_%:bu(_zl—l—ﬂau(_%ﬂ—l—a( n—l—rl )a " n > 0.
r —
We deduce that
w@lzo for1 <n<r.
If « = 0, we have respectively from (2) and (10) that w? = w, and v\ = u, for n > 0.

Thus,
w@L —w., and u")=wu_,, n>0.

-—n

The following theorem is the key assertion behind the computation of the generalized
Cassini formula.



Theorem 9. Assume that o # 0 and let r > 0 be an integer. Then

r+1
T r4l—k r— r+1 T r
a0 et (G 1) (1)) it ez 0

k=0

Proof. Let us proceed by induction on r. For r = 0, the identity (17) holds by definition of
the sequence (w,),. Now assume that (17) holds for an integer » > 0. Sincen+1>n > —r,

we have
s r+1 r (r)
wlhs = 0t (@ E1) = 0() ) wlen (18)
k=0
Since n+r+3 >n+r+2 > 0, we have wT(QTJrg = wiiaz:;—aw,(liaﬂ Fork=0,1...,7+1,
we have wi}rk = wéfklll — @wgfk) because

e Ifn+k+1<0 then we obtain 0 =0 — 0.
e Ifn+k+1>0andn—+k <0thenn-+k=—1, we obtain a =a — 0.
e Ifn+k>0thenn+k-+1>0 and we obtain wT(QkH :wr(szlll —ozwflfkl).

Thus, from (18) we get

r4+1

r+1 r+1 T — r— r—{_l r r+1 r+1
wéfrls - Oéwgw:rrlz = Z(_l) kgt <O¢2 (k: _ 1) - B(k)) (wr(z:kll - awfl—:_k))'

k=0

We deduce that
A r+1 T
r+1 r+1) r o’ r+1
wi = awl 1Y, + Z et <a2 <k _ 1) - ﬁ(k;)) wr(z—:rk-&)-l
r+1
1 r
i Z(_l)rfkarﬂrlfk <@2 (]:“_‘ 1) _ ﬁ(;)) wr(z—:rkl)
k=0
T 1 r 'r‘ T+1 r T 1
= (ar +20)w Y, + Z TR (042< ) B (k)) wi el
r—+1
+ (= )r+1 15y r+1)+z )= kortl- k( (T+1) (
r+1
T 1 r T T+1 r—+1
= (ar + 2a) 7(1;,”4—2 : +1l(042( ) ﬁ(l 1>> n:z)

r+1
r r r r o r+1
+ ( ) +1 +15’U} +1) + Z k_r+l-k ( (k



r+2
+1 r+1 r r
_ _1)rkgrik [ 42 r 2 B B (r+1)
ko( ) o a’lL o + « L1 ﬁk:—l ﬁk w,\,

r+2
2 1
S (o)1

k=0

We conclude that (17) holds for all » > 0. O

3 A generalization of the Cassini formula
Cassini formula (7) can be expressed as a 2 X 2 determinant in the following way

Wn, Wn+1

= (~B)" (B — afiab — Fa?).

Wn41 Wn42
For n,r € Z such that n > 0 and r > 0, let us define the (r 4+ 2) x (r 4+ 2) matrix

(r) (r) ) (r)

Wn, Wy 1 o Wi
B TN (S ()

n+1 n—+2 n4+r+2
Wy = . . . .
(r) () (r)

wn—l—r—H wn+r+2 o wn+2r+2

Our purpose is to evaluate the determinant of the matrix W, ,,. Note that

On — .
Wn4+1 Wpy2
From Theorem 9, we can write

r+1

w7(z7:|)—7’+2 = Z qkwsﬂl]w n Z =,
k=0
where .
+ r
—(—1 r+1—k r—k 2 r o 0< k? < 1.

Let

o 1 0 --- 0 0

o o 1 --- 0 0

2710 00 -~ 1 0 (19)
0O 0 0 1
9 1 492 - Gr QGrs1

10



denote the companion matrix of the generalized hyper-Fibonacci sequence <w,(f)> . We

deduce from Theorem 9 that the generalized hyper-Fibonacci sequence (wﬁf))n can be defined
by the vector recurrence relation

w® (r)

(6} o
wnr w?’LT

:+2 = Vit :+1 : ( 9 0)
w7(1:)—7"+2 wg—i)-r-‘rl

where n 4+ r > 0.

Lemma 10. Let n > 0 and r > 0 be integers. Then
W’r,n - V;EFQWT,O'

Proof. From the relation (20) we can write W,.,, = V, oW, ,_1. It follows that

Wi = VegoaWenoy = V3 Wen o = - = Vi, Wi,

O

Lemma 11. Let r > 0 be an integer. Then

det(V,42) = —a’B.
Proof. 1t is clear that
det(Vie) = (—1)*3q0 = (—1)™*3(=1)" 2" 8 = —a’ .

O

Theorem 12. Let n > 0 and r > 0 be integers. Then

det(W,,) = (—1)"HLo+3)2 gnrtr? gnsrpr (02 b — Ba?). (21)

Proof. For r = 0, the result follows from Identity (7). Assume that » > 1. For a # 0, we
deduce from (20) that multiplication by V,_}, decreases by 1 the subscript of each component,
ie.,

v
w’f’ w’l" . w’]"
V= | v

w wlly e wl,

11



Thus,

(22)

W_p Wiy wy
(r) (r) (r)
w w w
VeaaWoo= [ 77 7 :
O .}
Since w@L =0 for 1 <n <r, then
0 0 0wy w”
0 0 wi” W Wl
VoW = : : : : :
- 0 w(()r) wf«T—)Q ww(~T—)1 wy”
w(()r) wY) w7(~r—)1 wﬁr) w7(~1-21
I C R
Thus,
det(Wr’(]) = det(VrJrg)T : A,
where
0 0 0w’ w"
0 0 W W Wl
Aol : : : :
0wy o wy w? w”
wér) wY) wﬁr—)l wv("T) w7(~7-21
I C )
Let L; denote the jth line of A, where j = 1,2,...,742. First, we replace L,y by Li11 —alL;
fori=r+1,7,...,1. Since wg—ll) = wg)l — aw”, we get
0 0 wi™ WY + 20
0 0 UJY_I) wér—l)
A= : : : :
w(()r—l) ’ZUY_l) w,,(,r—l) w7(,:__11)
r—1 r—1 r—1 r—1
wg ) wé ) w7(~+1 ) 7(~+2 )
Using the same method again (r — 1) times, we obtain
0 0 0 Wo w1 + d1
0 0 Wo w1 Wy + dQ
A — . . ,
0 Wo Wr_g Wp—1 Wy + dr
Wy Wy Wr—1 Wy W41
w; w2 Wy Wrgq Wr4-2

12




where d; = a(—l)"*l(r)oﬂ' for 1 <14 < r. Now let C; denote the jth column of this last

i

determinant, where j = 1,...,7 + 2. Replacing the column C; by C; — (aC;_1 + 5C;_5) for
i=r+2,1r+1,...,3 and using the fact that w; = aw;_1 + Pw;_o we get

0 0 0

0 0 0

0 O 0
A=|: . .

0 wy wi—awy

Wop wWq 0

w1 Wa 0

0 Wy wy, — awy + dy
wo w; — Wy do
w1 — dWg 0 d3
0 0 d,
0 0 0
0 0 0

Now we permute the column C; with column C, 3_; for 1 < ¢ < [(r + 2)/2], and obtain

wl—()éwo+d1 Wo 0 0 0 0
dg w1 — Wy Wo Tt 0 0 0
ds 0 w; — awy - 0 0 0
A=(-pty - ;
d, 0 0 w; —awy wy 0
0 0 0 0 wy; W
0 0 0 0 wa Wy
We deduce that
_ (_1\[EE2 A (W1 Wo
A= (-l ol (23)
where
dy — (ca — b) a 0 0 0
ds —(aa — b) a 0 0
A ds 0 —(aa — b) 0 0
d,—q 0 0 —(aa —b) a
d, 0 0 0 —(oa —b)

We distinguish two cases for the calculation of A’.
o If aa = b # 0, the expansion with respect to the first column gives

dl a

dy 0

o | B0
d-—1 0

d. 0

0
a

0

0
0
0

0
0
0

13

= (-1)""d.a" ' = (aa)".



o If b — aa # 0, let L; denote the jth line of A’ where j =1,...,r. Replacing the line

L; by L; + ¢ Liyfori=r—1,...,1 gives
aa —b
T a i—1
h— d;
( aa)—l—;(aa_b) 0 0 0
b—aa --- 0 0
A = ) . ) )
. : . : :
dr_1 + d, 0 - b—aa 0
aa —b
d, 0 0 b— aa

We deduce that

which coincides with the case aa = b # 0. Since 'wl Yol — 2 — qab — pa?, we deduce from

w2
Identities (22), (23) and Lemmas 10, 11 that
det (Wr,n) _ (_1)n+\_(7’+3)/2janr+r2ﬁn+rbr(62 — aab — BGQ)-

O
Corollary 13. Let n > 0 and r > 0 be integers. Then
(r) (r) (r)
A S o
Foi Fols o Fafg _ (_1)n+L(T+3)/2J'
(") ") (r)
Fn+r+1 Fn+r+2 e Fn+2r+2

14



Proof. Follows from Identity (21) fora=0and b=a == 1. O

Corollary 14. Letn > 0 and r > 0 be integers. Then

(r) (r) (r)
L(n) L?J)rl e Ln+r+1
Ln+1 Ln+2 Ln+r+2 _ 5(_1)n+L(r+1)/2J'
") (") -
Ln+r+1 Ln+r+2 e Ln+2r+2
Proof. Follows from Identity (21) fora=2and b=a == 1. ]
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