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Abstract

In this paper, we give some properties of generalized hyper-Fibonacci numbers in

order to obtain a Cassini-like formula for them.

1 Introduction

In this paper, we consider the generalized Fibonacci sequence (wn)n≥0 defined by
{

w0 = a, w1 = b;

wn+2 = αwn+1 + βwn, (n ≥ 0)
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where a, b, α, and β are integers. Several authors [3, 7, 8, 12] studied properties of these
numbers. If α2 + 4β 6= 0, then we have

wn = asn1 + (b− as1)

(

sn1 − sn2
s1 − s2

)

, n ≥ 0, (1)

where s1 = (α+
√
α + 4β)/2 and s2 = (α−

√
α + 4β)/2 are the roots of x2 −αx− β = 0. If

A = b−as2 and B = b−as1, then the identity (1) is equivalent to the well-known Binet-like
formula

wn =
Asn1 −Bsn2
s1 − s2

, n ≥ 0.

If β 6= 0 and α2 + 4β 6= 0, then the generalized Fibonacci numbers for negative subscripts
are defined, using Identity (1), by w−n = a(s−n

1 + s−n
2 )− (−β)−nwn for n ≥ 0. If β 6= 0 and

α2 +4β = 0, then α = 2t and β = −t2, where t is the double root of x2 −αx− β = 0. Thus,
wn = ((2bα−1 − a)n+ a)tn and w−n = ((a− 2bα−1)n+ a)t−n, for n ≥ 0.

We introduce the generalized hyper-Fibonacci numbers associated with the sequence
(wn)n≥0 as follows:

w(r+1)
n =

n
∑

k=0

αn−kw
(r)
k , w(0)

n = wn, w
(r)
0 = a, w

(r)
1 = αar + b, (2)

where r is a nonnegative integer.
The aim of this paper is to extend the well-known Cassini formula [5, 10, 14]

FnFn+2 − F 2
n+1 = (−1)n+1 (3)

to the generalized hyper-Fibonacci numbers (2), where (Fn)n denotes the classical Fibonacci
sequence. The identity (3) can be written in a determinant form as

∣

∣

∣

∣

Fn Fn+1

Fn+1 Fn+2

∣

∣

∣

∣

= (−1)n+1. (4)

In [11], Stakhov generalized the Cassini formula (3) to the p-Fibonacci numbers and devel-
oped a new coding theory based on the Qp-matrices. By analogy, one can use the compagnon
matrices given bellow in the formula (19) instead of the Qp-matrices. Halici [6] established
the Cassini formula for the Fibonacci quaternions. Martinjak and Urbiha [9] extended the
Cassini formula (4) to the hyper-Fibonacci numbers defined in [2, 4] as

F (r+1)
n =

n
∑

k=0

F
(r)
k , F (0)

n = Fn, F
(r)
0 = 0, F

(r)
1 = 1,

where r is a nonnegative integer. The number F
(r)
n is called the nth hyper-Fibonacci num-

ber of the rth generation. The hyper-Fibonacci numbers satisfy many interesting number-
theoretical and combinatorial properties, e.g., [2]. Martinjak and Urbiha [9] defined the
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matrix

Ar,n =











F
(r)
n F

(r)
n+1 · · · F

(r)
n+r+1

F
(r)
n+1 F

(r)
n+2 · · · F

(r)
n+r+2

...
...

. . .
...

F
(r)
n+r+1 F

(r)
n+r+2 · · · F

(r)
n+2r+2











and proved that
det(Ar,n) = (−1)n+⌊(r+3)/2⌋, (5)

where n and r are nonnegative integers. It is clear that for r = 0, we obtain (4). Recently,
in [1], the authors generalized the identity (5) to the (a, b)-hyper-Fibonacci numbers.

If (bn)n≥0 and (cn)n≥0 are two sequences satisfying the relation an+2 = αan+1+βan, then
we have the identity [13]

bncn−1 − bn−1cn = (−β)n−1(b1c0 − b0c1). (6)

If we take bn = Fn+2 and cn = Fn+1, then the identity (6) reduces to (3). For bn = wn+2 and
cn = wn+1, the identity (6) reduces to

wnwn+2 − w2
n+1 = (−β)n(βa2 + αab− b2). (7)

Cassini formula (7) can also be expressed as a determinant in the following way

∣

∣

∣

∣

wn wn+1

wn+1 wn+2

∣

∣

∣

∣

= (−β)n−1(βb2 − αβab− β2a2).

For n, r ∈ Z such that n ≥ 0 and r ≥ 0, let us define the (r + 2)× (r + 2) matrix

Wr,n =











w
(r)
n w

(r)
n+1 · · · w

(r)
n+r+1

w
(r)
n+1 w

(r)
n+2 · · · w

(r)
n+r+2

...
...

. . .
...

w
(r)
n+r+1 w

(r)
n+r+2 · · · w

(r)
n+2r+2











.

In Section 2, we establish some combinatorial properties involving the generalized hyper-
Fibonacci sequence (w

(r)
n )n≥0. In Section 3, we evaluate the determinant of the matrix Wr,n,

which gives the identity (5) for a = 0 and b = α = β = 1. For a = 2 and b = α = β = 1, we
deduce the determinant of the matrix











L
(r)
n L

(r)
n+1 · · · L

(r)
n+r+1

L
(r)
n+1 L

(r)
n+2 · · · L

(r)
n+r+2

...
...

. . .
...

L
(r)
n+r+1 L

(r)
n+r+2 · · · L

(r)
n+2r+2
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involving the hyper-Lucas numbers given by [2, 4]

L(r+1)
n =

n
∑

k=0

L
(r)
k , L(0)

n = Ln, L
(r)
0 = 2, L

(r)
1 = 2r + 1.

We let
(

n
k

)

denote the binomial coefficient which is defined for a nonnegative integer n
and an integer k by

(

n

k

)

=







n!

k!(n− k)!
, if 0 ≤ k ≤ n;

0, otherwise,

and for a negative integer n and an integer k by

(

n

k

)

=



























(−1)k
(−n+ k − 1

k

)

, if k ≥ 0;

(−1)n−k

(−k − 1

n− k

)

, if k ≤ n;

0, otherwise.

In Sections 2 and 3 we assume that β 6= 0.

2 Properties of the sequences (w
(r)
n )n≥0

In this section, we give some properties satisfied by the generalized hyper-Fibonacci sequence
(w

(r)
n )n≥0 given by the formula (2).

Lemma 1. Let n ≥ 0 be an integer. Then

w(1)
n =

1

β
wn+2 −

αn+1

β
b. (8)

Proof. We prove the lemma by induction on n ≥ 0. For n = 0, the identity (8) is trivially
checked. Now assume that (8) holds for an integer n ≥ 0. Then

w
(1)
n+1 =

n+1
∑

k=0

αn+1−kwk

= α
n
∑

k=0

αn−kwk + wn+1

= αw(1)
n + wn+1

= α

(

1

β
wn+2 −

αn+1

β
b

)

+ wn+1

=
1

β
wn+3 −

αn+2

β
b.

We conclude that (8) holds for all n ≥ 0.
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The following proposition expresses a generalized hyper-Fibonacci number of any gener-
ation r ≥ 1 in terms of the 0th generation.

Proposition 2. Let r ≥ 1 be an integer. Then

w(r)
n =

1

βr
wn+2r − αn+1

r−1
∑

l=0

(

n+ r − l − 1

r − l − 1

)

w2l+1

βl+1
, n ≥ 0. (9)

Proof. We prove the proposition by induction on r ≥ 1. We deduce from Lemma 1 that (9)
holds for r = 1. Now assume that (9) holds for an integer r ≥ 1. Then

w(r+1)
n =

n
∑

k=0

αn−kw
(r)
k

=
n
∑

k=0

αn−k

(

1

βr
wk+2r − αk+1

r−1
∑

l=0

(

k + r − l − 1

r − l − 1

)

w2l+1

βl+1

)

=
1

βr

n
∑

k=0

αn−kwk+2r −
n
∑

k=0

r−1
∑

l=0

(

k + r − l − 1

r − l − 1

)

αn+1w2l+1

βl+1

=
1

βr

n+2r
∑

l=0

αn+2r−lwl −
αn+1

βr

2r−1
∑

l=0

α2r−1−lwl − αn+1

r−1
∑

l=0

w2l+1

βl+1

n
∑

k=0

(

k + r − l − 1

r − l − 1

)

=
1

βr
w

(1)
n+2r −

αn+1

βr
w

(1)
2r−1 − αn+1

r−1
∑

l=0

(

n+ r − l

r − l

)

w2l+1

βl+1

=
1

βr+1
wn+2r+2 −

αn+1

βr+1
w2r+1 − αn+1

r−1
∑

l=0

(

n+ r − l

r − l

)

w2l+1

βl+1

=
1

βr+1
wn+2r+2 − αn+1

r
∑

l=0

(

n+ r − l

r − l

)

w2l+1

βl+1
.

We deduce that (9) holds for all r ≥ 1.

To go further, we need to define the generalized hyper-Fibonacci numbers of negative
subscripts. To do this, we first study the particular case a = 0 and b = 1 of the sequence
(wn)n ≥ 0. Thus, let (un)n denote this particular sequence. The definition given by (2)
reduces to

u(r+1)
n =

n
∑

k=0

αn−ku
(r)
k , u(0)

n = un, u
(r)
0 = 0, u

(r)
1 = 1. (10)

Proposition 3. Let r ≥ 0 be an integer. Then

u(r+1)
n =

1

β
u
(r)
n+2 −

(

n+ r + 1

r

)

αn+1

β
, n ≥ 0. (11)
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Proof. We prove the proposition by induction on r ≥ 0. We deduce from Lemma 1 that (11)
holds for r = 0. Now assume that (11) holds for an integer r ≥ 0. Then

u(r+2)
n =

n
∑

k=0

αn−ku
(r+1)
k

=
n
∑

k=0

αn−k

(

1

β
u
(r)
k+2 −

(

k + r + 1

r

)

αk+1

β

)

=
1

β

n
∑

k=0

αn−ku
(r)
k+2 −

1

β

n
∑

k=0

(

k + r + 1

r

)

αn+1

=
1

β

n+2
∑

l=2

αn+2−lu
(r)
l − 1

β

n+2
∑

l=2

(

l + r − 1

r

)

αn+1

=
1

β

(

n+2
∑

l=0

αn+2−lu
(r)
l − αn+1

)

− 1

β

(

n+2
∑

l=1

(

l + r − 1

r

)

αn+1 − αn+1

)

=
1

β
u
(r+1)
n+2 − 1

β

n+2
∑

l=1

(

l + r − 1

r

)

αn+1

=
1

β
u
(r+1)
n+2 −

(

n+ r + 2

r + 1

)

αn+1

β
.

We deduce that (11) holds for all r ≥ 0.

The following corollary allows us to extend the sequence (un)n≥0 to negative subscripts.

Corollary 4. Let r ≥ 0 and n ≥ 0 be integers. Then

u
(r+1)
n+2 = αu

(r+1)
n+1 + βu(r+1)

n +

(

n+ r + 1

r

)

αn+1. (12)

Proof. According to (10), we have

u
(r)
n+1 = u

(r+1)
n+1 − αu(r+1)

n , (13)

where n ≥ 0 and r ≥ 0. From (11) and (13) we get

u(r+1)
n =

1

β
u
(r+1)
n+2 − α

β
u
(r+1)
n+1 −

(

n+ r + 1

r

)

αn+1

β
.

We deduce that

u
(r+1)
n+2 = αu

(r+1)
n+1 + βu(r+1)

n +

(

n+ r + 1

r

)

αn+1.
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Now we give a linear relation between the sequences (wn)n≥0 and (un)n≥0.

Lemma 5. Let n ≥ 0 be an integer. Then

wn+1 = bun+1 + βaun. (14)

Proof. We prove the lemma by induction on n ≥ 0. For n = 0, 1 and 2, the identity (14) is
trivially checked. Now assume that (14) holds up to some order n ≥ 1. Then

wn+2 = αwn+1 + βwn

= α (bun+1 + βaun) + β (bun + βaun−1)

= b (αun+1 + βun) + βa (αun + βun−1)

= bun+2 + βaun+1.

We conclude that (14) holds for all n ≥ 0.

In the following lemma, we give a relation between the sequences (w
(1)
n )n≥0 and (u

(1)
n )n≥0.

Lemma 6. Let n ≥ 0 be an integer. Then

w(1)
n = bu(1)

n + βau
(1)
n−1 + aαn. (15)

Proof. We prove the lemma by induction on n ≥ 0. Since u
(1)
0 = u

(1)
−1 = 0, the identity (15)

holds for n = 0. Now assume that (15) holds for an integer n ≥ 0. Then

w
(1)
n+1 =

n+1
∑

k=0

αn+1−kwk

= wn+1 + α

n
∑

k=0

αn−kwk

= wn+1 + αw(1)
n

= bun+1 + βaun + α(bu(1)
n + βau

(1)
n−1 + aαn)

= b(un+1 + αu(1)
n ) + βa(un + αu

(1)
n−1) + aαn+1

= bu
(1)
n+1 + βau(1)

n + aαn+1.

We conclude that (15) holds for all n ≥ 0.

Now we derive a relation between the sequences (w
(r)
n )n≥0 and (u

(r)
n )n≥0, for any generation

r ≥ 1.

Proposition 7. Let r ≥ 1 be an integer. Then

w(r)
n = bu(r)

n + βau
(r)
n−1 + a

(

n+ r − 1

r − 1

)

αn, n ≥ 0. (16)
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Proof. We prove the proposition by induction on n ≥ 0. We deduce from Lemma 6 that
Identity (16) holds for r = 1. Now assume that (16) holds for an integer r ≥ 1. Then

w(r+1)
n =

n
∑

k=0

αn−kwk

=
n
∑

k=0

αn−k

(

bu
(r)
k + βau

(r)
k−1 + a

(

k + r − 1

r − 1

)

αk

)

=
n
∑

k=0

αn−ku
(r)
k + βa

n
∑

k=0

αn−ku
(r)
k−1 + aαn

n
∑

k=0

(

k + r − 1

r − 1

)

= bu(r+1)
n + βa

n−1
∑

l=0

α(n−1)−lu
(r)
l +

(

n+ r

r

)

aαn

= bu(r+1)
n + βau

(r+1)
n−1 +

(

n+ r

r

)

aαn.

We conclude that (16) holds for all n ≥ 0.

Remark 8. Using Identity (12), we extend, for r ≥ 1 and α 6= 0, the sequence (un)n≥0 to
negative subscripts as follows:

u
(r)
−n =

1

β
u
(r)
−n+2 −

α

β
u
(r)
−n+1 −

(−n+ r

r − 1

)

α−n+1

β
, n ≥ 0.

It is easy to see that

u
(r)
−n = 0, for 0 ≤ n ≤ r and u

(r)
−r−1 =

1

β

(−1

α

)r

6= 0.

Now, using Identity (16), we define, for r ≥ 1 and α 6= 0, the generalized hyper-Fibonacci
numbers for negative subscripts by

w
(r)
−n = bu

(r)
−n + βau

(r)
−n+1 + a

(−n+ r − 1

r − 1

)

α−n, n ≥ 0.

We deduce that
w

(r)
−n = 0 for 1 ≤ n ≤ r.

If α = 0, we have respectively from (2) and (10) that w
(r)
n = wn and u

(r)
n = un for n ≥ 0.

Thus,
w

(r)
−n = w−n and u

(r)
−n = u−n, n ≥ 0.

The following theorem is the key assertion behind the computation of the generalized
Cassini formula.
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Theorem 9. Assume that α 6= 0 and let r ≥ 0 be an integer. Then

w
(r)
n+r+2 =

r+1
∑

k=0

(−1)r+1−kαr−k

(

α2

(

r + 1

k − 1

)

− β

(

r

k

))

w
(r)
n+k, n ≥ −r. (17)

Proof. Let us proceed by induction on r. For r = 0, the identity (17) holds by definition of
the sequence (wn)n. Now assume that (17) holds for an integer r ≥ 0. Since n+1 ≥ n ≥ −r,
we have

w
(r)
n+r+3 =

r+1
∑

k=0

(−1)r+1−kαr−k

(

α2

(

r + 1

k − 1

)

− β

(

r

k

))

w
(r)
n+k+1. (18)

Since n+ r+3 ≥ n+ r+2 ≥ 0, we have w
(r)
n+r+3 = w

(r+1)
n+r+3−αw

(r+1)
n+r+2. For k = 0, 1 . . . , r+1,

we have w
(r)
n+k+1 = w

(r+1)
n+k+1 − αw

(r+1)
n+k because

• If n+ k + 1 < 0 then we obtain 0 = 0− 0.

• If n+ k + 1 ≥ 0 and n+ k < 0 then n+ k = −1, we obtain a = a− 0.

• If n+ k ≥ 0 then n+ k + 1 > 0 and we obtain w
(r)
n+k+1 = w

(r+1)
n+k+1 − αw

(r+1)
n+k .

Thus, from (18) we get

w
(r+1)
n+r+3 − αw

(r+1)
n+r+2 =

r+1
∑

k=0

(−1)r+1−kαr−k

(

α2

(

r + 1

k − 1

)

− β

(

r

k

))

(w
(r+1)
n+k+1 − αw

(r+1)
n+k ).

We deduce that

w
(r+1)
n+r+3 = αw

(r+1)
n+r+2 +

r+1
∑

k=0

(−1)r+1−kαr−k

(

α2

(

r + 1

k − 1

)

− β

(

r

k

))

w
(r+1)
n+k+1

+
r+1
∑

k=0

(−1)r−kαr+1−k

(

α2

(

r + 1

k − 1

)

− β

(

r

k

))

w
(r+1)
n+k

= (αr + 2α)w
(r+1)
n+r+2 +

r
∑

k=0

(−1)r+1−kαr−k

(

α2

(

r + 1

k − 1

)

− β

(

r

k

))

w
(r+1)
n+k+1

+ (−1)r+1αr+1βw(r+1)
n +

r+1
∑

k=1

(−1)r−kαr+1−k

(

α2

(

r + 1

k − 1

)

− β

(

r

k

))

w
(r+1)
n+k

= (αr + 2α)w
(r+1)
n+r+2 +

r+1
∑

l=1

(−1)r−lαr+1−l

(

α2

(

r + 1

l − 2

)

− β

(

r

l − 1

))

w
(r+1)
n+l

+ (−1)r+1αr+1βw(r+1)
n +

r+1
∑

k=1

(−1)r−kαr+1−k

(

α2

(

r + 1

k − 1

)

− β

(

r

k

))

w
(r+1)
n+k
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=
r+2
∑

k=0

(−1)r−kαr+1−k

(

α2

(

r + 1

k − 2

)

+ α2

(

r + 1

k − 1

)

− β

(

r

k − 1

)

− β

(

r

k

))

w
(r+1)
n+k

=
r+2
∑

k=0

(−1)r−kαr+1−k

(

α2

(

r + 2

k − 1

)

− β

(

r + 1

k

))

w
(r+1)
n+k .

We conclude that (17) holds for all r ≥ 0.

3 A generalization of the Cassini formula

Cassini formula (7) can be expressed as a 2× 2 determinant in the following way

∣

∣

∣

∣

wn wn+1

wn+1 wn+2

∣

∣

∣

∣

= (−β)n−1(βb2 − αβab− β2a2).

For n, r ∈ Z such that n ≥ 0 and r ≥ 0, let us define the (r + 2)× (r + 2) matrix

Wr,n =











w
(r)
n w

(r)
n+1 · · · w

(r)
n+r+1

w
(r)
n+1 w

(r)
n+2 · · · w

(r)
n+r+2

...
...

. . .
...

w
(r)
n+r+1 w

(r)
n+r+2 · · · w

(r)
n+2r+2











.

Our purpose is to evaluate the determinant of the matrix Wr,n. Note that

W0,n =

(

wn wn+1

wn+1 wn+2

)

.

From Theorem 9, we can write

w
(r)
n+r+2 =

r+1
∑

k=0

qkw
(r)
n+k, n ≥ −r,

where

qk = (−1)r+1−kαr−k

(

α2

(

r + 1

k − 1

)

− β

(

r

k

))

, 0 ≤ k ≤ r + 1.

Let

Vr+2 =



















0 1 0 · · · 0 0
0 0 1 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 1 0
0 0 0 · · · 0 1
q0 q1 q2 · · · qr qr+1



















(19)

10



denote the companion matrix of the generalized hyper-Fibonacci sequence
(

w
(r)
n

)

n
. We

deduce from Theorem 9 that the generalized hyper-Fibonacci sequence (w
(r)
n )n can be defined

by the vector recurrence relation











w
(r)
n+1

w
(r)
n+2
...

w
(r)
n+r+2











= Vr+2











w
(r)
n

w
(r)
n+1
...

w
(r)
n+r+1











, (20)

where n+ r ≥ 0.

Lemma 10. Let n ≥ 0 and r ≥ 0 be integers. Then

Wr,n = V n
r+2Wr,0.

Proof. From the relation (20) we can write Wr,n = Vr+2Wr,n−1. It follows that

Wr,n = Vr+2Wr,n−1 = V 2
r+2Wr,n−2 = · · · = V n

r+2Wr,0.

Lemma 11. Let r ≥ 0 be an integer. Then

det(Vr+2) = −αrβ.

Proof. It is clear that

det(Vr+2) = (−1)r+3q0 = (−1)r+3(−1)r+2αrβ = −αrβ.

Theorem 12. Let n ≥ 0 and r ≥ 0 be integers. Then

det(Wr,n) = (−1)n+⌊(r+3)/2⌋αnr+r2βn+rbr(b2 − αab− βa2). (21)

Proof. For r = 0, the result follows from Identity (7). Assume that r ≥ 1. For α 6= 0, we
deduce from (20) that multiplication by V −1

r+2 decreases by 1 the subscript of each component,
i.e.,

V −1
r+2Wr,0 =











w
(r)
−1 w

(r)
0 · · · w

(r)
r

w
(r)
0 w

(r)
1 · · · w

(r)
r+1

...
...

. . .
...

w
(r)
r w

(r)
r+1 · · · w

(r)
2r+1











.
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Thus,

V −r
r+2Wr,0 =











w
(r)
−r w

(r)
1−r · · · w

(r)
1

w
(r)
1−r w

(r)
2−r · · · w

(r)
2

...
...

. . .
...

w
(r)
1 w

(r)
2 · · · w

(r)
r+2











.

Since w
(r)
−n = 0 for 1 ≤ n ≤ r, then

V −r
r+2Wr,0 =





















0 0 · · · 0 w
(r)
0 w

(r)
1

0 0 · · · w
(r)
0 w

(r)
1 w

(r)
2

...
...

. . .
...

...
...

0 w
(r)
0 · · · w

(r)
r−2 w

(r)
r−1 w

(r)
r

w
(r)
0 w

(r)
1 · · · w

(r)
r−1 w

(r)
r w

(r)
r+1

w
(r)
1 w

(r)
2 · · · w

(r)
r w

(r)
r+1 w

(r)
r+2





















.

Thus,
det(Wr,0) = det(Vr+2)

r ·∆, (22)

where

∆ =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

0 0 · · · 0 w
(r)
0 w

(r)
1

0 0 · · · w
(r)
0 w

(r)
1 w

(r)
2

...
...

. . .
...

...
...

0 w
(r)
0 · · · w

(r)
r−2 w

(r)
r−1 w

(r)
r

w
(r)
0 w

(r)
1 · · · w

(r)
r−1 w

(r)
r w

(r)
r+1

w
(r)
1 w

(r)
2 · · · w

(r)
r w

(r)
r+1 w

(r)
r+2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

Let Lj denote the jth line of ∆, where j = 1, 2, . . . , r+2. First, we replace Li+1 by Li+1−αLi

for i = r + 1, r, . . . , 1. Since w
(r−1)
i+1 = w

(r)
i+1 − αw

(r)
i , we get

∆ =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

0 0 · · · w
(r−1)
0 w

(r−1)
1 + 2α

0 0 · · · w
(r−1)
1 w

(r−1)
2

...
...

. . .
...

...

w
(r−1)
0 w

(r−1)
1 · · · w

(r−1)
r w

(r−1)
r+1

w
(r−1)
1 w

(r−1)
2 · · · w

(r−1)
r+1 w

(r−1)
r+2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

Using the same method again (r − 1) times, we obtain

∆ =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

0 0 · · · 0 w0 w1 + d1
0 0 · · · w0 w1 w2 + d2
...

...
. . .

...
...

...
0 w0 · · · wr−2 wr−1 wr + dr
w0 w1 · · · wr−1 wr wr+1

w1 w2 · · · wr wr+1 wr+2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

,
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where di = a(−1)i−1
(

r
i

)

αi for 1 ≤ i ≤ r. Now let Cj denote the jth column of this last
determinant, where j = 1, . . . , r + 2. Replacing the column Ci by Ci − (αCi−1 + βCi−2) for
i = r + 2, r + 1, . . . , 3 and using the fact that wi = αwi−1 + βwi−2 we get

∆ =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

0 0 0 · · · 0 w0 w1 − αw0 + d1
0 0 0 · · · w0 w1 − αw0 d2
0 0 0 · · · w1 − αw0 0 d3
...

...
...

. . .
...

...
...

0 w0 w1 − αw0 · · · 0 0 dr
w0 w1 0 · · · 0 0 0
w1 w2 0 · · · 0 0 0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

Now we permute the column Ci with column Cr+3−i for 1 ≤ i ≤ ⌊(r + 2)/2⌋, and obtain

∆ = (−1)⌊
r+2

2
⌋

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

w1 − αw0 + d1 w0 0 · · · 0 0 0
d2 w1 − αw0 w0 · · · 0 0 0
d3 0 w1 − αw0 · · · 0 0 0
...

...
...

. . .
...

...
...

dr 0 0 · · · w1 − αw0 w0 0
0 0 0 · · · 0 w1 w0

0 0 0 · · · 0 w2 w1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

We deduce that

∆ = (−1)⌊
r+2

2
⌋∆′

∣

∣

∣

∣

w1 w0

w2 w1

∣

∣

∣

∣

, (23)

where

∆′ =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

d1 − (αa− b) a 0 · · · 0 0
d2 −(αa− b) a · · · 0 0
d3 0 −(αa− b) · · · 0 0
...

...
...

. . .
...

...
dr−1 0 0 · · · −(αa− b) a
dr 0 0 · · · 0 −(αa− b)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

We distinguish two cases for the calculation of ∆′.
• If αa = b 6= 0, the expansion with respect to the first column gives

∆′ =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

d1 a 0 · · · 0 0
d2 0 a · · · 0 0
d3 0 0 · · · 0 0
...

...
...

. . .
...

...
dr−1 0 0 · · · 0 a
dr 0 0 · · · 0 0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= (−1)r+1dra
r−1 = (αa)r.
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• If b − αa 6= 0, let Lj denote the jth line of ∆′, where j = 1, . . . , r. Replacing the line

Li by Li +
a

αa− b
Li+1 for i = r − 1, . . . , 1 gives

∆′ =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(b− αa) +
r
∑

i=1

(

a

αa− b

)i−1

di 0 · · · 0 0

b− αa · · · 0 0
...

...
. . .

...
...

dr−1 +
a

αa− b
dr 0 · · · b− αa 0

dr 0 · · · 0 b− αa

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

We deduce that

∆′ = (b− αa)r−1

(

(b− αa) +
r
∑

i=1

(

a

αa− b

)i−1

di

)

= (b− αa)r−1

(

(b− αa) + a
r
∑

i=1

(

a

b− αa

)i−1(
r

i

)

αi

)

= (b− αa)r−1

(

(b− αa) + (b− αa)
r
∑

i=1

(

αa

b− αa

)i(
r

i

)

)

= (b− αa)r−1

(

(b− αa)
r
∑

i=0

(

αa

b− αa

)i(
r

i

)

)

= (b− αa)r
(

αa

b− αa
+ 1

)r

= (b− αa)r
(

b

b− αa

)r

= br,

which coincides with the case αa = b 6= 0. Since

∣

∣

∣

∣

w1 w0

w2 w1

∣

∣

∣

∣

= b2 −αab− βa2, we deduce from

Identities (22), (23) and Lemmas 10, 11 that

det (Wr,n) = (−1)n+⌊(r+3)/2⌋αnr+r2βn+rbr(b2 − αab− βa2).

Corollary 13. Let n ≥ 0 and r ≥ 0 be integers. Then
∣

∣

∣

∣

∣

∣

∣

∣

∣

F
(r)
n F

(r)
n+1 · · · F

(r)
n+r+1

F
(r)
n+1 F

(r)
n+2 · · · F

(r)
n+r+2

...
...

. . .
...

F
(r)
n+r+1 F

(r)
n+r+2 · · · F

(r)
n+2r+2

∣

∣

∣

∣

∣

∣

∣

∣

∣

= (−1)n+⌊(r+3)/2⌋.
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Proof. Follows from Identity (21) for a = 0 and b = α = β = 1.

Corollary 14. Let n ≥ 0 and r ≥ 0 be integers. Then

∣

∣

∣

∣

∣

∣

∣

∣

∣

L
(r)
n L

(r)
n+1 · · · L

(r)
n+r+1

L
(r)
n+1 L

(r)
n+2 · · · L

(r)
n+r+2

...
...

. . .
...

L
(r)
n+r+1 L

(r)
n+r+2 · · · L

(r)
n+2r+2

∣

∣

∣

∣

∣

∣

∣

∣

∣

= 5(−1)n+⌊(r+1)/2⌋.

Proof. Follows from Identity (21) for a = 2 and b = α = β = 1.
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