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Abstract

In this paper we obtain a simple formula for the number of matching p-ary digits of
certain terms of Lucas sequences for any odd prime p. Using this formula, we present a
simple sufficient condition for the sequence (v, (af +ay+- - -+a}))n>0 to be unbounded,
where a1, as,...,a; (k> 2) are given integers and v, is the p-adic valuation.

1 Introduction

The p-adic valuations of integer sequences have been objects of interest because of their
surprising properties such as k-regularity (Allouche et al. [1], Bell [2], and Murru et al. [6])
and exponent lifting (Birkhoff et al. [3] and Sanna [9]). In the paper we focus on the p-adic
valuations of sequences given by sums of powers of integers and differences of terms of Lucas

sequences.
Given an integer k > 2 and integers ay, as, ..., a satisfying |a;| > 2 for each 1 <i < F,
let (sn)n>1 be the sequence defined by

Sp=ay +ay + - +ay
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for each n > 1. For k = 2, the sequence of the p-adic valuations (v,(s,)),>1 is well known
(Birkhoff et al. [3]) and in particular, the sequence is unbounded if p divides a term of
(Sn)n>1, where p is an odd prime and v, is the p-adic valuation. But it is not true in general.
The first purpose of this paper is to present a sufficient condition for the unboundedness of
the sequence (v,(s,))n>1, especially for the case k > 3.

Now, we formulate our main result:

Theorem 1. Let p be an odd prime diwviding sy for some index ¢ such that { < p. If

S gladal £0  (mod p) (1)

(ai,p)=1

aP—

then (vy(sn))n>1 s unbounded, where q(a) = % is the Fermat quotient of p with base a.

Our next purpose is to study the rate of growth in the number of matching p-ary digits of
certain terms of Lucas sequences. This will be useful in the proof Theorem 1. More precisely,
throughout the paper, a Lucas sequence (U, ),>¢ is a sequence given by Uy = 0, U; = 1, and

Un = CLUn,1 — bUn,Q, n = 2,3,...,

where a, b are relatively prime integers. We require that (U, ),>0 is nondegenerate, that is,
b # 0 and the ratio /3 of the two roots a, 3 of the characteristic polynomial 22 — ax + b is
not a root of unity. It is well known that the Lucas quotient U, /p is an integer for any prime
p not dividing 2b (Ribenboim [8]), where () is the Legendre symbol and 7 = p — (%).
Then our next result is the following.

Theorem 2. Let (U,)n>0 be a Lucas sequence, and let D denote the discriminant of its
characteristic polynomial. For a prime p not dividing 2b we have

20+ 6+ 0+ vy(7), if b2 #£ 1,

U,y —pU, i) =
UplUrpt = Urpit) {3£+3a+vp(D/3)+1, i =1,

for € > 6, where § and o are the p-adic valuations of P~1 — 1 and U, /p, respectively.

The theorem is analogous to the results of Lengyel [4, 5] for the sequences of Motzkin
numbers, central binomial coefficients and Catalan numbers. Note that o = 0 if p is a Lucas
non-Wieferich prime. Assuming the ABC conjecture, Ribenboim [7] showed that there are
infinitely many Lucas non-Wieferich primes.

2 The number of matching digits

In this section we prove Theorem 2. Before that we need some preliminary results stating
properties of the subsequence (U, ¢ )s>0. Finally, we see that the sequence defined by the last
nonzero digits of U, ¢ in base p is constant. This property is key in the proof of Theorem 1.
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Lemma 3. If p is a prime not dividing 2b and n is a positive integer divisible by T then
Up(Unpz+1) = Up(Unpe) +1
for each positive integer (.

Proof. Let py(p) be the rank of appearance of p in the sequence (U, ),>o. It is known that
p | U, if and only if py(p) | n (see for example, [8, (3.3), p. 12]). Thus 7 is divisible by py(p)
and hence the formula follows from [9, Corollary 1.6]. O

We read the p-ary digits of U, ¢ from left to right and consider the number of matching
p-ary digits of U, and pU, -1, i.e., v,(Upe — pU,pe-1). All the first £ 4 v,(U,) digits of
the two numbers are zero by Lemma 3, and moreover, the number of matching digits is
determined by the p-adic valuation of the difference uy — u,_1, where wuy is the p-free part of
the term U, i.e.,

Uy = p_”p(Uwe)UTpe.
Lemma 4. For each odd k > 1 we have

(k—1)/2

Uprpt /Uppe = D Z AL FE AP e

1T

Proof. 1t is well-known that for all mtegers n > 0, it holds U,, = (a" — ")/(a — ). Hence
we have Uy, /U, e = Zk Lot g=1=070" fo1 any integer k > 1. For odd k the latter equals

i=0

(h-1)/2
Z b(%—i)’rp( iTpt Bz’rp) _i_kb%ﬂ-p[,

i=1
since b = a3. Thus the lemma follows from this identity and D = (a — ). O

Lemma 5. For each positive integer { there exists an integer t, such that

2 f— _ _
U1 _ DU e(pte—i— D 1bPQBTpe>+bPQlTpe'
Uy L 24

Proof. For any positive integer ¢, by Lemma 4, we have

p 1

bl k)Tp (Ukrpt /Unp )>+b%7pl.

Up+1

Uy

DU2 ((p 1)/2
k=1

We claim that (Up,ye/U,pe)? = k2% D" (mod p? @) for each 1 < k < (p — 1)/2. The
claim follows easily from Lemma 4 if k£ is odd. For even k we have the identity

(UkTpZ/UkTp‘Zﬂ) DU

krptj2 Apkre' /2 )



which, by induction on k, yields the claim. Thus we can conclude from the claim that

(p—1)/2

K PP =P e 2ltrotl
b Ti )Tp UkTPZ/UT ) = 24 bTTp (mOd p +U+ ))7

k=1
completing the proof. O
We are now ready to prove Theorem 2.

Proof of Theorem 2. The case b?> = 1: We claim that b T = 1. If p is not a divisor of D
then it is clear since 7 is even. Suppose p is a divisor of D. Then 7 = p which is odd. If
b= —1then D = a? + 4 and hence p = 1 (mod 4), implying the claim.
From Lemma 5 and the claim we obtain
2
Uy — U 2(@—}-0—{-1)( pT— 1 ﬂT}%)
——— =D t b=

for some integer t,. Therefore
0y (s — ) = 20+ 0 + 1) + 0,(D/3) 2)
for each positive integer /.

The case b? # 1: We claim that b7 is a square residue modulo p. If p is not a divisor of D
then the claim is clear since 7 is even. Suppose p is a divisor of D. Then 7 = p and hence

we have
(&(TH)/Q +5(T+1)/2)2

(&(771)/2 + 5(771)/2) 2

since U is divisible by p. Moreover, the right hand side is equal to (Ur41 Uz (Ur—y U%-H)_I)Q,
showing the claim.
By applying Lemma 3 and Lemma 4 we obtain

p—1
Op (g1 — ug) = Up(b?me - 1)

if £ > §. Since vp(pr_lT — 1) # 0 by the above claim, we have v,(up1 — ug) = v,(7) + 0 + ¢
when ¢ > §, completing the proof of Theorem 2. m

b (mod p),

Example 6. The Fibonacci sequence (F,,),>0 is a Lucas sequence with characteristic poly-
nomial z*> — 2 — 1. Since 7 =p £ 1 if p? = +1 (mod 5) and 7 = p if p = 5, we have

20+1, if p=3;
Up(fesr — fo) = { 20+ 3, if p = 5;
2% +20,(F,), ifp>T.

Here f, denotes the p-free part of the 7p‘-th Fibonacci number.
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Let i, denote the last nonzero digit of U, ¢ in base p. Theorem 2 implies that the sequence
(Te) >0 is eventually constant since @, = u, (mod p) for each positive integer ¢.

Lemma 7. The sequence (ty)e>o i constant.

Proof. For our purpose it suffices to show that v,(ugr1 — ug) > 1 for any integer ¢ > 0. If

b*> = 1 then this follows from (1). In the proof of Theorem 2, we have seen that vp(b%T— 1) =
§ 4+ v,(7) > 1if b* # 1. Thus, by Lemma 3 and Lemma 5, we obtain

V(U1 — ug) > min(v,(DU? 2/3) Up(bifp 1)) > min(o + 1,6 + v,(7)),

completing the proof. O

3 On sums of powers of integers

We begin this section with a key lemma which is a version of the lifting the exponent (LTE)
lemma and then use it to prove Theorem 1.

Let ay,as, ..., a; be integers satisfying |a;| > 2 and p t a; for 1 <1 < k. For each index
1 define a sequence qT(«L by the dlfference qé) = a — 1 for any integer n > 0. Then the
sequence of the quotients ( Gn / ¢ )n>0 is a Lucas sequence with characteristic polynomial

2?2 — (a; + 1)x + a,.
Lemma 8. Let p be an odd prime. If there exist integers c¢q,co, ..., ¢, and £ > 0 such that

1 k
c1qép) e T 02q((p) ppt T quép)_l)p/z =0 (mod p+) (3)

then (3) holds for all ¢ > 0, where x is the minimum among all vp(ql(le).

Proof. Denote by y; (1 < i < k) the exponent vp(ql(f_)l) which is clearly not zero. For the

sequence (qT(f)/qY))nZO, we have 7; = pif p| a; — 1 and 7; = p — 1 otherwise.

If 7, = p — 1 then apply Lemma 7 to the sequence (qﬁf) / qli))n>0. Then we obtain

: i +n—vp(gl? i i 0!
(q((p)—l)pn/(J§))/pX’+” @) = (g8 /gi") /pe @) (mod p)

for any integer n > 0. This yields that q( o /pX“r” = q((;)—l)pf /pXitt (mod p) for any n > 0.

If 7, = p then vp(q((p) 1)T) =1+ ;. By applying Lemma 7 to the Lucas sequence

(Q((pq)n/qp—l)nz() we similarly obtain

Q1 /P = ) /P (mod p)



for any integer n > 0, since q 1p Jpxitl = qz(f_)l /pXi (mod p). Consequently we have

X+n — X+

" /P L /P (mod p)

for each index i. Substituting these congruences into
k
1) /P ekl /P =0 (mod p),

which is equivalent to (3), we complete the proof of the lemma. O

Remark 9. Let p be an odd prime. For fixed integers a, b satisfying p 1 ab and p | a — b,
the classical LTE lemma states that v,(a™ — ") = v,(n) + v,(a — b). Hence, for each index

i, we have vp(q((p) Dyt ,) =+ x;. Thus Lemma 8 does not follow from the LTE lemma since
(i

q(p_l)pg/p”’( # 0 (mod p) for some index 1.

We are now ready to present a proof of Theorem 1.

Proof of Theorem 1. For each a; which is prime to p we set ¢; = a’ and define a sequence
(QT(“Lz)>n21 by ¢t = a’ — 1 for each integer n > 1. Then the assumption is clearly equivalent
to the condition that

> g /p#£0  (mod p). (4)

(ai,p)=1

Under this condition we show the existence of an unbounded subsequence of (v,(s;,))n>1 by
induction. We claim that there is an integer N > 1 such that

Up(sy) >mand N=/( (modp—1)

for a fixed integer m > 0. Firstly, if m = 0 then we choose N = ¢ which is the base case
of our induction. Assume the claim holds for an integer N such that m = v,(sy) > 0. We
now show that there is an integer n such that v,(s,) > m and n = ¢ (mod p — 1). For this
purpose we consider the set S defined by

S={sy, |ne =N+, t=1,2,...,p},

where ¢ denotes the Euler’s totient function. It follows from Euler’s theorem and the in-
duction hypothesis that v,(s,,) > m for each t. Suppose each element of S is not divisible
by p™*!. Then, by Pigeonhole principle, there are two different elements Sp, and sy, of S
(t # 0) which are congruent modulo p™!. Hence we obtain

Z C’anp m)/pm = 0 (mOd p)

(ai,p)=1



since N = ¢ (mod p — 1) and 7, ¢ are non-zero integers. Clearly, we have

Uty /P = 40 m P (m0d p)
for each index i. Therefore, using these congruences, it follows from Lemma 2 that
> ad),/p=0 (mod p),
(ai,p)=1

contradicting (4). Thus S contains an element s, satisfying v,(s,,) > m+1. Clearly, n, = ¢
(mod p — 1) by the induction hypothesis. This completes the induction step. O]

Remark 10. Theorem 1 provides a sufficient but not necessary condition: consider the se-
quence (sy)n>1 given by s, =1+ 2" 43" for all n > 0. Set p = 7. Then

s, =242 = 1) /p+ 3431 = 1)/p=0 (mod p),
but the subsequence (v,(s4pn))n>1 is unbounded since v, (sS4 ) = n + 2 for each n > 0.

Corollary 11. Let p be a prime divisor of the sequence (sp)n>1. Assume that ay,as, ..., ay
and k are not divisibly by p and v,(s;) = 1 for each s; such that 1 <{ < p and p | s,. Then
the sequence (Vy(Sn))n>1 15 bounded by 1 if and only if (1) does not hold.

Proof. If (v,(Sy))n>1 is bounded then Theorem 1 implies that (1) does not hold.
Suppose (1) does not hold. For any integers n,j > 1 we have

Snte(p)j = Z ai (pg(a;) + 1)’

and hence

k

Sntp(p)j = o (mod p?) = Z alq(a;) =0 (mod p). (5)
i=1

If v,(s,) # 0 then v,(sy) # 0, where £ is an integer satisfying n = {4+¢(p)j with 0 < £ < p(p).
Therefore (5) implies that v,(s,) = 1 and thus the sequence (v,(s,))n>1 is bounded by 1. [

Example 12. Let a; = 6, ay = 13, a3 = 97 and p = 19. Clearly, if £ < p and p | s, then
= 2. Moreover, v,(s2) =1 and the sum

ai(@d™t —1)/p+a3(ab ' —1)/p+a5(as ' —1)/p

is divisible by p. Thus, by Corollary 11, each term of the sequence (s,),>1 is not divisible
by p?.
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