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Abstract

In this paper we obtain a simple formula for the number of matching p-ary digits of
certain terms of Lucas sequences for any odd prime p. Using this formula, we present a
simple sufficient condition for the sequence (vp(a

n
1+an2+· · ·+ank))n≥0 to be unbounded,

where a1, a2, . . . , ak (k ≥ 2) are given integers and vp is the p-adic valuation.

1 Introduction

The p-adic valuations of integer sequences have been objects of interest because of their
surprising properties such as k-regularity (Allouche et al. [1], Bell [2], and Murru et al. [6])
and exponent lifting (Birkhoff et al. [3] and Sanna [9]). In the paper we focus on the p-adic
valuations of sequences given by sums of powers of integers and differences of terms of Lucas
sequences.

Given an integer k ≥ 2 and integers a1, a2, . . . , ak satisfying |ai| ≥ 2 for each 1 ≤ i ≤ k,
let (sn)n≥1 be the sequence defined by

sn = an1 + an2 + · · ·+ ank
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for each n ≥ 1. For k = 2, the sequence of the p-adic valuations (vp(sn))n≥1 is well known
(Birkhoff et al. [3]) and in particular, the sequence is unbounded if p divides a term of
(sn)n≥1, where p is an odd prime and vp is the p-adic valuation. But it is not true in general.
The first purpose of this paper is to present a sufficient condition for the unboundedness of
the sequence (vp(sn))n≥1, especially for the case k ≥ 3.

Now, we formulate our main result:

Theorem 1. Let p be an odd prime dividing sℓ for some index ℓ such that ℓ < p. If

∑

(ai,p)=1

q(ai)a
ℓ
i 6≡ 0 (mod p) (1)

then (vp(sn))n≥1 is unbounded, where q(a) = ap−1−1
p

is the Fermat quotient of p with base a.

Our next purpose is to study the rate of growth in the number of matching p-ary digits of
certain terms of Lucas sequences. This will be useful in the proof Theorem 1. More precisely,
throughout the paper, a Lucas sequence (Un)n≥0 is a sequence given by U0 = 0, U1 = 1, and

Un = aUn−1 − bUn−2, n = 2, 3, . . . ,

where a, b are relatively prime integers. We require that (Un)n≥0 is nondegenerate, that is,
b 6= 0 and the ratio α/β of the two roots α, β of the characteristic polynomial x2 − ax+ b is
not a root of unity. It is well known that the Lucas quotient Uτ/p is an integer for any prime
p not dividing 2b (Ribenboim [8]), where ( ·

p
) is the Legendre symbol and τ = p − (a

2−4b
p

).
Then our next result is the following.

Theorem 2. Let (Un)n≥0 be a Lucas sequence, and let D denote the discriminant of its

characteristic polynomial. For a prime p not dividing 2b we have

vp(Uτpℓ − pUτpℓ−1) =

{

2ℓ+ δ + σ + vp(τ), if b2 6= 1;

3ℓ+ 3σ + vp(D/3) + 1, if b2 = 1,

for ℓ > δ, where δ and σ are the p-adic valuations of bp−1 − 1 and Uτ/p, respectively.

The theorem is analogous to the results of Lengyel [4, 5] for the sequences of Motzkin
numbers, central binomial coefficients and Catalan numbers. Note that σ = 0 if p is a Lucas
non-Wieferich prime. Assuming the ABC conjecture, Ribenboim [7] showed that there are
infinitely many Lucas non-Wieferich primes.

2 The number of matching digits

In this section we prove Theorem 2. Before that we need some preliminary results stating
properties of the subsequence (Uτpℓ)ℓ≥0. Finally, we see that the sequence defined by the last
nonzero digits of Uτpℓ in base p is constant. This property is key in the proof of Theorem 1.
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Lemma 3. If p is a prime not dividing 2b and n is a positive integer divisible by τ then

vp(Unpℓ+1) = vp(Unpℓ) + 1

for each positive integer ℓ.

Proof. Let ρU(p) be the rank of appearance of p in the sequence (Un)n≥0. It is known that
p | Un if and only if ρU(p) | n (see for example, [8, (3.3), p. 12]). Thus τ is divisible by ρU(p)
and hence the formula follows from [9, Corollary 1.6].

We read the p-ary digits of Uτpℓ from left to right and consider the number of matching
p-ary digits of Uτpℓ and pUτpℓ−1 , i.e., vp(Uτpℓ − pUτpℓ−1). All the first ℓ + vp(Uτ ) digits of
the two numbers are zero by Lemma 3, and moreover, the number of matching digits is
determined by the p-adic valuation of the difference uℓ − uℓ−1, where uℓ is the p-free part of
the term Uτpℓ , i.e.,

uℓ = p−vp(Uτpℓ
)Uτpℓ .

Lemma 4. For each odd k ≥ 1 we have

Ukτpℓ/Uτpℓ = D

(k−1)/2
∑

i=1

b(
k−1
2

−i)τpℓU2
iτpℓ + kb

k−1
2

τpℓ .

Proof. It is well-known that for all integers n ≥ 0, it holds Un = (αn − βn)/(α − β). Hence
we have Ukτpℓ/Uτpℓ =

∑k−1
i=0 αiτpℓβ(k−1−i)τpℓ for any integer k ≥ 1. For odd k the latter equals

(k−1)/2
∑

i=1

b(
k−1
2

−i)τpℓ
(

αiτpℓ − βiτpℓ
)2
+kb

k−1
2

τpℓ ,

since b = αβ. Thus the lemma follows from this identity and D = (α− β)2.

Lemma 5. For each positive integer ℓ there exists an integer tℓ such that

uℓ+1

uℓ

= DU2
τpℓ

(

ptℓ +
p2 − 1

24
b

p−3
2

τpℓ
)

+b
p−1
2

τpℓ .

Proof. For any positive integer ℓ, by Lemma 4, we have

uℓ+1

uℓ

=
DU2

τpℓ

p

(

(p−1)/2
∑

k=1

b(
p−1
2

−k)τpℓ(Ukτpℓ/Uτpℓ)
2
)

+b
p−1
2

τpℓ .

We claim that (Ukτpℓ/Uτpℓ)
2 ≡ k2b(k−1)τpℓ (mod p2(ℓ+σ+1)) for each 1 ≤ k ≤ (p − 1)/2. The

claim follows easily from Lemma 4 if k is odd. For even k we have the identity

(Ukτpℓ/Ukτpℓ/2)
2 = DU2

kτpℓ/2 + 4bkτp
ℓ/2,
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which, by induction on k, yields the claim. Thus we can conclude from the claim that

(p−1)/2
∑

k=1

b(
p−1
2

−k)τpℓ(Ukτpℓ/Uτpℓ)
2 ≡

p3 − p

24
b

p−3
2

τpℓ (mod p2(ℓ+σ+1)),

completing the proof.

We are now ready to prove Theorem 2.

Proof of Theorem 2. The case b2 = 1: We claim that b
p−1
2

τ = 1. If p is not a divisor of D
then it is clear since τ is even. Suppose p is a divisor of D. Then τ = p which is odd. If
b = −1 then D = a2 + 4 and hence p ≡ 1 (mod 4), implying the claim.

From Lemma 5 and the claim we obtain

uℓ+1 − uℓ

u3
ℓ

= Dp2(ℓ+σ+1)
(

ptℓ +
p2 − 1

24
b

p−3
2

τpℓ
)

for some integer tℓ. Therefore

vp(uℓ+1 − uℓ) = 2(ℓ+ σ + 1) + vp(D/3) (2)

for each positive integer ℓ.

The case b2 6= 1: We claim that bτ is a square residue modulo p. If p is not a divisor of D
then the claim is clear since τ is even. Suppose p is a divisor of D. Then τ = p and hence
we have

b ≡

(

α(τ+1)/2 + β(τ+1)/2
)2

(

α(τ−1)/2 + β(τ−1)/2
)2 (mod p),

since Uτ is divisible by p. Moreover, the right hand side is equal to (Uτ+1U τ−1
2
(Uτ−1U τ+1

2
)−1)2,

showing the claim.
By applying Lemma 3 and Lemma 4 we obtain

vp(uℓ+1 − uℓ) = vp(b
p−1
2

τpℓ − 1)

if ℓ > δ. Since vp(b
p−1
2

τ − 1) 6= 0 by the above claim, we have vp(uℓ+1 − uℓ) = vp(τ) + δ + ℓ
when ℓ > δ, completing the proof of Theorem 2.

Example 6. The Fibonacci sequence (Fn)n≥0 is a Lucas sequence with characteristic poly-
nomial x2 − x− 1. Since τ = p± 1 if p2 ≡ ±1 (mod 5) and τ = p if p = 5, we have

vp(fℓ+1 − fℓ) =











2ℓ+ 1, if p = 3;

2ℓ+ 3, if p = 5;

2ℓ+ 2vp(Fτ ), if p ≥ 7.

Here fℓ denotes the p-free part of the τpℓ-th Fibonacci number.
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Let ûℓ denote the last nonzero digit of Uτpℓ in base p. Theorem 2 implies that the sequence
(ûℓ)ℓ≥0 is eventually constant since ûℓ ≡ uℓ (mod p) for each positive integer ℓ.

Lemma 7. The sequence (ûℓ)ℓ≥0 is constant.

Proof. For our purpose it suffices to show that vp(uℓ+1 − uℓ) ≥ 1 for any integer ℓ ≥ 0. If

b2 = 1 then this follows from (1). In the proof of Theorem 2, we have seen that vp(b
p−1
2

τ−1) =
δ + vp(τ) ≥ 1 if b2 6= 1. Thus, by Lemma 3 and Lemma 5, we obtain

vp(uℓ+1 − uℓ) ≥ min(vp(DU2
τpℓ/3), vp(b

p−1
2

τpℓ − 1)) ≥ min(σ + 1, δ + vp(τ)),

completing the proof.

3 On sums of powers of integers

We begin this section with a key lemma which is a version of the lifting the exponent (LTE)
lemma and then use it to prove Theorem 1.

Let a1, a2, . . . , ak be integers satisfying |ai| ≥ 2 and p ∤ ai for 1 ≤ i ≤ k. For each index

i define a sequence q
(i)
n by the difference q

(i)
n = ani − 1 for any integer n ≥ 0. Then the

sequence of the quotients
(

q
(i)
n /q

(i)
1

)

n≥0
is a Lucas sequence with characteristic polynomial

x2 − (ai + 1)x+ ai.

Lemma 8. Let p be an odd prime. If there exist integers c1, c2, . . . , ck and ℓ ≥ 0 such that

c1q
(1)

(p−1)pℓ
+ c2q

(2)

(p−1)pℓ
+ · · ·+ ckq

(k)

(p−1)pℓ
≡ 0 (mod pℓ+χ+1) (3)

then (3) holds for all ℓ ≥ 0, where χ is the minimum among all vp(q
(i)
p−1).

Proof. Denote by χi (1 ≤ i ≤ k) the exponent vp(q
(i)
p−1) which is clearly not zero. For the

sequence
(

q
(i)
n /q

(i)
1

)

n≥0
, we have τi = p if p | ai − 1 and τi = p− 1 otherwise.

If τi = p− 1 then apply Lemma 7 to the sequence
(

q
(i)
n /q

(i)
1

)

n≥0
. Then we obtain

(q
(i)
(p−1)pn/q

(i)
1 )/pχi+n−vp(q

(i)
1 ) ≡ (q

(i)
p−1/q

(i)
1 )/pχi−vp(q

(i)
1 ) (mod p)

for any integer n ≥ 0. This yields that q
(i)
(p−1)pn/p

χi+n ≡ q
(i)

(p−1)pℓ
/pχi+ℓ (mod p) for any n ≥ 0.

If τi = p then vp(q
(i)
(p−1)τi

) = 1 + χi. By applying Lemma 7 to the Lucas sequence

(q
(i)
(p−1)n/q

(i)
p−1)n≥0 we similarly obtain

q
(i)
(p−1)pn/p

χi+n ≡ q
(i)

(p−1)pℓ
/pχi+ℓ (mod p)
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for any integer n ≥ 0, since q
(i)
(p−1)p/p

χi+1 ≡ q
(i)
p−1/p

χi (mod p). Consequently we have

q
(i)
(p−1)pn/p

χ+n ≡ q
(i)

(p−1)pℓ
/pχ+ℓ (mod p)

for each index i. Substituting these congruences into

c1q
(1)

(p−1)pℓ
/pχ+ℓ + · · ·+ ckq

(k)

(p−1)pℓ
/pχ+ℓ ≡ 0 (mod p),

which is equivalent to (3), we complete the proof of the lemma.

Remark 9. Let p be an odd prime. For fixed integers a, b satisfying p ∤ ab and p | a − b,
the classical LTE lemma states that vp(a

n − bn) = vp(n) + vp(a− b). Hence, for each index

i, we have vp(q
(i)

(p−1)pℓ
) = ℓ + χi. Thus Lemma 8 does not follow from the LTE lemma since

q
(i)

(p−1)pℓ
/pℓ+χ 6≡ 0 (mod p) for some index i.

We are now ready to present a proof of Theorem 1.

Proof of Theorem 1. For each ai which is prime to p we set ci = aℓi and define a sequence

(q
(i)
n )n≥1 by q

(i)
n = ani − 1 for each integer n ≥ 1. Then the assumption is clearly equivalent

to the condition that

∑

(ai,p)=1

ciq
(i)
p−1/p 6≡ 0 (mod p). (4)

Under this condition we show the existence of an unbounded subsequence of (vp(sn))n≥1 by
induction. We claim that there is an integer N ≥ 1 such that

vp(sN) > m and N ≡ ℓ (mod p− 1)

for a fixed integer m ≥ 0. Firstly, if m = 0 then we choose N = ℓ which is the base case
of our induction. Assume the claim holds for an integer N such that m = vp(sN) > 0. We
now show that there is an integer n such that vp(sn) > m and n ≡ ℓ (mod p− 1). For this
purpose we consider the set S defined by

S = {snt
| nt = N + ϕ(pm)t, t = 1, 2, . . . , p},

where ϕ denotes the Euler’s totient function. It follows from Euler’s theorem and the in-
duction hypothesis that vp(snt

) ≥ m for each t. Suppose each element of S is not divisible
by pm+1. Then, by Pigeonhole principle, there are two different elements snj

and snj+t
of S

(t 6= 0) which are congruent modulo pm+1. Hence we obtain

∑

(ai,p)=1

ciq
(i)
tϕ(pm)/p

m ≡ 0 (mod p)
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since N ≡ ℓ (mod p− 1) and j, t are non-zero integers. Clearly, we have

q
(i)
ϕ(pm)t/p

m ≡ tq
(i)
ϕ(pm)/p

m (mod p)

for each index i. Therefore, using these congruences, it follows from Lemma 2 that

∑

(ai,p)=1

ciq
(i)
ϕ(p)/p ≡ 0 (mod p),

contradicting (4). Thus S contains an element snt
satisfying vp(snt

) ≥ m+1. Clearly, nt ≡ ℓ
(mod p− 1) by the induction hypothesis. This completes the induction step.

Remark 10. Theorem 1 provides a sufficient but not necessary condition: consider the se-
quence (sn)n≥1 given by sn = 1 + 2n + 3n for all n ≥ 0. Set p = 7. Then

s4 ≡ 24(2p−1 − 1)/p+ 34(3p−1 − 1)/p ≡ 0 (mod p),

but the subsequence (vp(s4pn))n≥1 is unbounded since vp(s4pn) = n+ 2 for each n ≥ 0.

Corollary 11. Let p be a prime divisor of the sequence (sn)n≥1. Assume that a1, a2, . . . , ak
and k are not divisibly by p and vp(sℓ) = 1 for each sℓ such that 1 ≤ ℓ < p and p | sℓ. Then

the sequence (vp(sn))n≥1 is bounded by 1 if and only if (1) does not hold.

Proof. If (vp(sn))n≥1 is bounded then Theorem 1 implies that (1) does not hold.
Suppose (1) does not hold. For any integers n, j ≥ 1 we have

sn+ϕ(p)j =
∑

ani (pq(ai) + 1)j

and hence

sn+ϕ(p)j ≡ sn (mod p2) ⇐⇒
k

∑

i=1

ani q(ai) ≡ 0 (mod p). (5)

If vp(sn) 6= 0 then vp(sℓ) 6= 0, where ℓ is an integer satisfying n = ℓ+ϕ(p)j with 0 < ℓ < ϕ(p).
Therefore (5) implies that vp(sn) = 1 and thus the sequence (vp(sn))n≥1 is bounded by 1.

Example 12. Let a1 = 6, a2 = 13, a3 = 97 and p = 19. Clearly, if ℓ < p and p | sℓ then
ℓ = 2. Moreover, vp(s2) = 1 and the sum

a21(a
p−1
1 − 1)/p+ a22(a

p−1
2 − 1)/p+ a23(a

p−1
3 − 1)/p

is divisible by p. Thus, by Corollary 11, each term of the sequence (sn)n≥1 is not divisible
by p2.
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