Journal of Integer Sequences, Vol. 25 (2022), Article 22.8.1

On the p-adic Valuations of Sums of Powers of Integers

Gombodorj Bayarmagnai and Sainjargal Delger
Department of Mathematics
National University of Mongolia
Baga Toirog
Ulaanbaatar 14200
Mongolia
bayarmagnai@num.edu.mn
sdelger96@gmail.com

Abstract

In this paper we obtain a simple formula for the number of matching p-ary digits of certain terms of Lucas sequences for any odd prime p. Using this formula, we present a simple sufficient condition for the sequence $\left(v_{p}\left(a_{1}^{n}+a_{2}^{n}+\cdots+a_{k}^{n}\right)\right)_{n \geq 0}$ to be unbounded, where $a_{1}, a_{2}, \ldots, a_{k}(k \geq 2)$ are given integers and v_{p} is the p-adic valuation.

1 Introduction

The p-adic valuations of integer sequences have been objects of interest because of their surprising properties such as k-regularity (Allouche et al. [1], Bell [2], and Murru et al. [6]) and exponent lifting (Birkhoff et al. [3] and Sanna [9]). In the paper we focus on the p-adic valuations of sequences given by sums of powers of integers and differences of terms of Lucas sequences.

Given an integer $k \geq 2$ and integers $a_{1}, a_{2}, \ldots, a_{k}$ satisfying $\left|a_{i}\right| \geq 2$ for each $1 \leq i \leq k$, let $\left(s_{n}\right)_{n \geq 1}$ be the sequence defined by

$$
s_{n}=a_{1}^{n}+a_{2}^{n}+\cdots+a_{k}^{n}
$$

for each $n \geq 1$. For $k=2$, the sequence of the p-adic valuations $\left(v_{p}\left(s_{n}\right)\right)_{n \geq 1}$ is well known (Birkhoff et al. [3]) and in particular, the sequence is unbounded if p divides a term of $\left(s_{n}\right)_{n \geq 1}$, where p is an odd prime and v_{p} is the p-adic valuation. But it is not true in general. The first purpose of this paper is to present a sufficient condition for the unboundedness of the sequence $\left(v_{p}\left(s_{n}\right)\right)_{n \geq 1}$, especially for the case $k \geq 3$.

Now, we formulate our main result:
Theorem 1. Let p be an odd prime dividing s_{ℓ} for some index ℓ such that $\ell<p$. If

$$
\begin{equation*}
\sum_{\left(a_{i}, p\right)=1} q\left(a_{i}\right) a_{i}^{\ell} \not \equiv 0 \quad(\bmod p) \tag{1}
\end{equation*}
$$

then $\left(v_{p}\left(s_{n}\right)\right)_{n \geq 1}$ is unbounded, where $q(a)=\frac{a^{p-1}-1}{p}$ is the Fermat quotient of p with base a.
Our next purpose is to study the rate of growth in the number of matching p-ary digits of certain terms of Lucas sequences. This will be useful in the proof Theorem 1. More precisely, throughout the paper, a Lucas sequence $\left(U_{n}\right)_{n \geq 0}$ is a sequence given by $U_{0}=0, U_{1}=1$, and

$$
U_{n}=a U_{n-1}-b U_{n-2}, n=2,3, \ldots
$$

where a, b are relatively prime integers. We require that $\left(U_{n}\right)_{n \geq 0}$ is nondegenerate, that is, $b \neq 0$ and the ratio α / β of the two roots α, β of the characteristic polynomial $x^{2}-a x+b$ is not a root of unity. It is well known that the Lucas quotient U_{τ} / p is an integer for any prime p not dividing $2 b$ (Ribenboim [8]), where $(\dot{\bar{p}})$ is the Legendre symbol and $\tau=p-\left(\frac{a^{2}-4 b}{p}\right)$. Then our next result is the following.

Theorem 2. Let $\left(U_{n}\right)_{n \geq 0}$ be a Lucas sequence, and let D denote the discriminant of its characteristic polynomial. For a prime p not dividing $2 b$ we have

$$
v_{p}\left(U_{\tau p^{\ell}}-p U_{\tau p^{\ell-1}}\right)= \begin{cases}2 \ell+\delta+\sigma+v_{p}(\tau), & \text { if } b^{2} \neq 1 \\ 3 \ell+3 \sigma+v_{p}(D / 3)+1, & \text { if } b^{2}=1\end{cases}
$$

for $\ell>\delta$, where δ and σ are the p-adic valuations of $b^{p-1}-1$ and U_{τ} / p, respectively.
The theorem is analogous to the results of Lengyel [4, 5] for the sequences of Motzkin numbers, central binomial coefficients and Catalan numbers. Note that $\sigma=0$ if p is a Lucas non-Wieferich prime. Assuming the $A B C$ conjecture, Ribenboim [7] showed that there are infinitely many Lucas non-Wieferich primes.

2 The number of matching digits

In this section we prove Theorem 2. Before that we need some preliminary results stating properties of the subsequence $\left(U_{\tau p^{\ell}}\right)_{\ell \geq 0}$. Finally, we see that the sequence defined by the last nonzero digits of $U_{\tau p^{e}}$ in base p is constant. This property is key in the proof of Theorem 1.

Lemma 3. If p is a prime not dividing $2 b$ and n is a positive integer divisible by τ then

$$
v_{p}\left(U_{n p^{\ell+1}}\right)=v_{p}\left(U_{n p^{\ell}}\right)+1
$$

for each positive integer ℓ.
Proof. Let $\rho_{U}(p)$ be the rank of appearance of p in the sequence $\left(U_{n}\right)_{n \geq 0}$. It is known that $p \mid U_{n}$ if and only if $\rho_{U}(p) \mid n$ (see for example, [8, (3.3), p. 12]). Thus τ is divisible by $\rho_{U}(p)$ and hence the formula follows from [9, Corollary 1.6].

We read the p-ary digits of $U_{\tau p^{k}}$ from left to right and consider the number of matching p-ary digits of $U_{\tau p^{\ell}}$ and $p U_{\tau p^{\ell-1}}$, i.e., $v_{p}\left(U_{\tau p^{\ell}}-p U_{\tau p^{\ell-1}}\right)$. All the first $\ell+v_{p}\left(U_{\tau}\right)$ digits of the two numbers are zero by Lemma 3, and moreover, the number of matching digits is determined by the p-adic valuation of the difference $u_{\ell}-u_{\ell-1}$, where u_{ℓ} is the p-free part of the term $U_{\tau p^{\ell}}$, i.e.,

$$
u_{\ell}=p^{-v_{p}\left(U_{\tau p^{\ell}}\right)} U_{\tau p^{\ell}}
$$

Lemma 4. For each odd $k \geq 1$ we have

$$
U_{k \tau p^{\ell}} / U_{\tau p^{\ell}}=D \sum_{i=1}^{(k-1) / 2} b^{\left(\frac{k-1}{2}-i\right) \tau p^{\ell}} U_{i \tau p^{\ell}}^{2}+k b^{\frac{k-1}{2} \tau p^{\ell}}
$$

Proof. It is well-known that for all integers $n \geq 0$, it holds $U_{n}=\left(\alpha^{n}-\beta^{n}\right) /(\alpha-\beta)$. Hence we have $U_{k \tau p^{\ell}} / U_{\tau p^{\ell}}=\sum_{i=0}^{k-1} \alpha^{i \tau p^{\ell}} \beta^{(k-1-i) \tau p^{\ell}}$ for any integer $k \geq 1$. For odd k the latter equals

$$
\sum_{i=1}^{(k-1) / 2} b^{\left(\frac{k-1}{2}-i\right) \tau p^{\ell}}\left(\alpha^{i \tau p^{\ell}}-\beta^{i \tau p^{\ell}}\right)^{2}+k b^{\frac{k-1}{2} \tau p^{\ell}}
$$

since $b=\alpha \beta$. Thus the lemma follows from this identity and $D=(\alpha-\beta)^{2}$.
Lemma 5. For each positive integer ℓ there exists an integer t_{ℓ} such that

$$
\frac{u_{\ell+1}}{u_{\ell}}=D U_{\tau p^{\ell}}^{2}\left(p t_{\ell}+\frac{p^{2}-1}{24} b^{\frac{p-3}{2} \tau p^{\ell}}\right)+b^{\frac{p-1}{2} \tau p^{\ell}} .
$$

Proof. For any positive integer ℓ, by Lemma 4, we have

$$
\frac{u_{\ell+1}}{u_{\ell}}=\frac{D U_{\tau p^{\ell}}^{2}}{p}\left(\sum_{k=1}^{(p-1) / 2} b^{\left(\frac{p-1}{2}-k\right) \tau p^{\ell}}\left(U_{k \tau p^{\ell}} / U_{\tau p^{\ell}}\right)^{2}\right)+b^{\frac{p-1}{2} \tau p^{\ell}} .
$$

We claim that $\left(U_{k \tau p^{\ell}} / U_{\tau p^{\ell}}\right)^{2} \equiv k^{2} b^{(k-1) \tau p^{\ell}}\left(\bmod p^{2(\ell+\sigma+1)}\right)$ for each $1 \leq k \leq(p-1) / 2$. The claim follows easily from Lemma 4 if k is odd. For even k we have the identity

$$
\left(U_{k \tau p^{\ell}} / U_{k \tau p^{\ell} / 2}\right)^{2}=D U_{k \tau p^{\ell} / 2}^{2}+4 b^{k \tau p^{\ell} / 2},
$$

which, by induction on k, yields the claim. Thus we can conclude from the claim that

$$
\sum_{k=1}^{(p-1) / 2} b^{\left(\frac{p-1}{2}-k\right) \tau p^{\ell}}\left(U_{k \tau p^{\ell}} / U_{\tau p^{\ell}}\right)^{2} \equiv \frac{p^{3}-p}{24} b^{\frac{p-3}{2} \tau p^{\ell}} \quad\left(\bmod p^{2(\ell+\sigma+1)}\right)
$$

completing the proof.
We are now ready to prove Theorem 2.
Proof of Theorem 2. The case $b^{2}=1$: We claim that $b^{\frac{p-1}{2} \tau}=1$. If p is not a divisor of D then it is clear since τ is even. Suppose p is a divisor of D. Then $\tau=p$ which is odd. If $b=-1$ then $D=a^{2}+4$ and hence $p \equiv 1(\bmod 4)$, implying the claim.

From Lemma 5 and the claim we obtain

$$
\frac{u_{\ell+1}-u_{\ell}}{u_{\ell}^{3}}=D p^{2(\ell+\sigma+1)}\left(p t_{\ell}+\frac{p^{2}-1}{24} b^{\frac{p-3}{2} \tau p^{\ell}}\right)
$$

for some integer t_{ℓ}. Therefore

$$
\begin{equation*}
v_{p}\left(u_{\ell+1}-u_{\ell}\right)=2(\ell+\sigma+1)+v_{p}(D / 3) \tag{2}
\end{equation*}
$$

for each positive integer ℓ.
The case $b^{2} \neq 1$: We claim that b^{τ} is a square residue modulo p. If p is not a divisor of D then the claim is clear since τ is even. Suppose p is a divisor of D. Then $\tau=p$ and hence we have

$$
b \equiv \frac{\left(\alpha^{(\tau+1) / 2}+\beta^{(\tau+1) / 2}\right)^{2}}{\left(\alpha^{(\tau-1) / 2}+\beta^{(\tau-1) / 2}\right)^{2}} \quad(\bmod p)
$$

since U_{τ} is divisible by p. Moreover, the right hand side is equal to $\left(U_{\tau+1} U_{\frac{\tau-1}{2}}\left(U_{\tau-1} U_{\frac{\tau+1}{2}}\right)^{-1}\right)^{2}$, showing the claim.

By applying Lemma 3 and Lemma 4 we obtain

$$
v_{p}\left(u_{\ell+1}-u_{\ell}\right)=v_{p}\left(b^{\frac{p-1}{2} \tau p^{\ell}}-1\right)
$$

if $\ell>\delta$. Since $v_{p}\left(b^{\frac{p-1}{2} \tau}-1\right) \neq 0$ by the above claim, we have $v_{p}\left(u_{\ell+1}-u_{\ell}\right)=v_{p}(\tau)+\delta+\ell$ when $\ell>\delta$, completing the proof of Theorem 2.

Example 6. The Fibonacci sequence $\left(F_{n}\right)_{n \geq 0}$ is a Lucas sequence with characteristic polynomial $x^{2}-x-1$. Since $\tau=p \pm 1$ if $p^{2} \equiv \pm 1(\bmod 5)$ and $\tau=p$ if $p=5$, we have

$$
v_{p}\left(f_{\ell+1}-f_{\ell}\right)= \begin{cases}2 \ell+1, & \text { if } p=3 \\ 2 \ell+3, & \text { if } p=5 \\ 2 \ell+2 v_{p}\left(F_{\tau}\right), & \text { if } p \geq 7\end{cases}
$$

Here f_{ℓ} denotes the p-free part of the τp^{ℓ}-th Fibonacci number.

Let \hat{u}_{ℓ} denote the last nonzero digit of $U_{\tau p^{\ell}}$ in base p. Theorem 2 implies that the sequence $\left(\hat{u}_{\ell}\right)_{\ell \geq 0}$ is eventually constant since $\hat{u}_{\ell} \equiv u_{\ell}(\bmod p)$ for each positive integer ℓ.

Lemma 7. The sequence $\left(\hat{u}_{\ell}\right)_{\ell \geq 0}$ is constant.
Proof. For our purpose it suffices to show that $v_{p}\left(u_{\ell+1}-u_{\ell}\right) \geq 1$ for any integer $\ell \geq 0$. If $b^{2}=1$ then this follows from (1). In the proof of Theorem 2, we have seen that $v_{p}\left(b^{\frac{p-1}{2} \tau}-1\right)=$ $\delta+v_{p}(\tau) \geq 1$ if $b^{2} \neq 1$. Thus, by Lemma 3 and Lemma 5 , we obtain

$$
v_{p}\left(u_{\ell+1}-u_{\ell}\right) \geq \min \left(v_{p}\left(D U_{\tau p^{\ell}}^{2} / 3\right), v_{p}\left(b^{\frac{p-1}{2} \tau p^{\ell}}-1\right)\right) \geq \min \left(\sigma+1, \delta+v_{p}(\tau)\right)
$$

completing the proof.

3 On sums of powers of integers

We begin this section with a key lemma which is a version of the lifting the exponent (LTE) lemma and then use it to prove Theorem 1.

Let $a_{1}, a_{2}, \ldots, a_{k}$ be integers satisfying $\left|a_{i}\right| \geq 2$ and $p \nmid a_{i}$ for $1 \leq i \leq k$. For each index i define a sequence $q_{n}^{(i)}$ by the difference $q_{n}^{(i)}=a_{i}^{n}-1$ for any integer $n \geq 0$. Then the sequence of the quotients $\left(q_{n}^{(i)} / q_{1}^{(i)}\right)_{n \geq 0}$ is a Lucas sequence with characteristic polynomial $x^{2}-\left(a_{i}+1\right) x+a_{i}$.

Lemma 8. Let p be an odd prime. If there exist integers $c_{1}, c_{2}, \ldots, c_{k}$ and $\ell \geq 0$ such that

$$
\begin{equation*}
c_{1} q_{(p-1) p^{\ell}}^{(1)}+c_{2} q_{(p-1) p^{\ell}}^{(2)}+\cdots+c_{k} q_{(p-1) p^{\ell}}^{(k)} \equiv 0 \quad\left(\bmod p^{\ell+\chi+1}\right) \tag{3}
\end{equation*}
$$

then (3) holds for all $\ell \geq 0$, where χ is the minimum among all $v_{p}\left(q_{p-1}^{(i)}\right)$.
Proof. Denote by $\chi_{i}(1 \leq i \leq k)$ the exponent $v_{p}\left(q_{p-1}^{(i)}\right)$ which is clearly not zero. For the sequence $\left(q_{n}^{(i)} / q_{1}^{(i)}\right)_{n \geq 0}$, we have $\tau_{i}=p$ if $p \mid a_{i}-1$ and $\tau_{i}=p-1$ otherwise.

If $\tau_{i}=p-1$ then apply Lemma 7 to the sequence $\left(q_{n}^{(i)} / q_{1}^{(i)}\right)_{n \geq 0}$. Then we obtain

$$
\left(q_{(p-1) p^{n}}^{(i)} / q_{1}^{(i)}\right) / p^{\chi_{i}+n-v_{p}\left(q_{1}^{(i)}\right)} \equiv\left(q_{p-1}^{(i)} / q_{1}^{(i)}\right) / p^{\chi_{i}-v_{p}\left(q_{1}^{(i)}\right)} \quad(\bmod p)
$$

for any integer $n \geq 0$. This yields that $q_{(p-1) p^{n}}^{(i)} / p^{\chi_{i}+n} \equiv q_{(p-1) p^{\ell}}^{(i)} / p^{\chi_{i}+\ell}(\bmod p)$ for any $n \geq 0$.
If $\tau_{i}=p$ then $v_{p}\left(q_{(p-1) \tau_{i}}^{(i)}\right)=1+\chi_{i}$. By applying Lemma 7 to the Lucas sequence $\left(q_{(p-1) n}^{(i)} / q_{p-1}^{(i)}\right)_{n \geq 0}$ we similarly obtain

$$
q_{(p-1) p^{n}}^{(i)} / p^{\chi_{i}+n} \equiv q_{(p-1) p^{\ell}}^{(i)} / p^{\chi_{i}+\ell} \quad(\bmod p)
$$

for any integer $n \geq 0$, since $q_{(p-1) p}^{(i)} / p^{\chi_{i}+1} \equiv q_{p-1}^{(i)} / p^{\chi_{i}}(\bmod p)$. Consequently we have

$$
q_{(p-1) p^{n}}^{(i)} / p^{\chi+n} \equiv q_{(p-1) p^{\ell}}^{(i)} / p^{\chi+\ell} \quad(\bmod p)
$$

for each index i. Substituting these congruences into

$$
c_{1} q_{(p-1) p^{\ell}}^{(1)} / p^{\chi+\ell}+\cdots+c_{k} q_{(p-1) p^{\ell}}^{(k)} / p^{\chi+\ell} \equiv 0 \quad(\bmod p),
$$

which is equivalent to (3), we complete the proof of the lemma.
Remark 9. Let p be an odd prime. For fixed integers a, b satisfying $p \nmid a b$ and $p \mid a-b$, the classical LTE lemma states that $v_{p}\left(a^{n}-b^{n}\right)=v_{p}(n)+v_{p}(a-b)$. Hence, for each index i, we have $v_{p}\left(q_{(p-1) p^{\ell}}^{(i)}\right)=\ell+\chi_{i}$. Thus Lemma 8 does not follow from the LTE lemma since $q_{(p-1) p^{\ell}}^{(i)} / p^{\ell+\chi} \not \equiv 0(\bmod p)$ for some index i.

We are now ready to present a proof of Theorem 1.
Proof of Theorem 1. For each a_{i} which is prime to p we set $c_{i}=a_{i}^{\ell}$ and define a sequence $\left(q_{n}^{(i)}\right)_{n \geq 1}$ by $q_{n}^{(i)}=a_{i}^{n}-1$ for each integer $n \geq 1$. Then the assumption is clearly equivalent to the condition that

$$
\begin{equation*}
\sum_{\left(a_{i}, p\right)=1} c_{i} q_{p-1}^{(i)} / p \not \equiv 0 \quad(\bmod p) . \tag{4}
\end{equation*}
$$

Under this condition we show the existence of an unbounded subsequence of $\left(v_{p}\left(s_{n}\right)\right)_{n \geq 1}$ by induction. We claim that there is an integer $N \geq 1$ such that

$$
v_{p}\left(s_{N}\right)>m \text { and } N \equiv \ell \quad(\bmod p-1)
$$

for a fixed integer $m \geq 0$. Firstly, if $m=0$ then we choose $N=\ell$ which is the base case of our induction. Assume the claim holds for an integer N such that $m=v_{p}\left(s_{N}\right)>0$. We now show that there is an integer n such that $v_{p}\left(s_{n}\right)>m$ and $n \equiv \ell(\bmod p-1)$. For this purpose we consider the set S defined by

$$
S=\left\{s_{n_{t}} \mid n_{t}=N+\varphi\left(p^{m}\right) t, t=1,2, \ldots, p\right\}
$$

where φ denotes the Euler's totient function. It follows from Euler's theorem and the induction hypothesis that $v_{p}\left(s_{n_{t}}\right) \geq m$ for each t. Suppose each element of S is not divisible by p^{m+1}. Then, by Pigeonhole principle, there are two different elements $s_{n_{j}}$ and $s_{n_{j+t}}$ of S $(t \neq 0)$ which are congruent modulo p^{m+1}. Hence we obtain

$$
\sum_{\left(a_{i}, p\right)=1} c_{i} q_{t \varphi\left(p^{m}\right)}^{(i)} / p^{m} \equiv 0 \quad(\bmod p)
$$

since $N \equiv \ell(\bmod p-1)$ and j, t are non-zero integers. Clearly, we have

$$
q_{\varphi\left(p^{m}\right) t}^{(i)} / p^{m} \equiv t q_{\varphi\left(p^{m}\right)}^{(i)} / p^{m} \quad(\bmod p)
$$

for each index i. Therefore, using these congruences, it follows from Lemma 2 that

$$
\sum_{\left(a_{i}, p\right)=1} c_{i} q_{\varphi(p)}^{(i)} / p \equiv 0 \quad(\bmod p)
$$

contradicting (4). Thus S contains an element $s_{n_{t}}$ satisfying $v_{p}\left(s_{n_{t}}\right) \geq m+1$. Clearly, $n_{t} \equiv \ell$ $(\bmod p-1)$ by the induction hypothesis. This completes the induction step.

Remark 10. Theorem 1 provides a sufficient but not necessary condition: consider the sequence $\left(s_{n}\right)_{n \geq 1}$ given by $s_{n}=1+2^{n}+3^{n}$ for all $n \geq 0$. Set $p=7$. Then

$$
s_{4} \equiv 2^{4}\left(2^{p-1}-1\right) / p+3^{4}\left(3^{p-1}-1\right) / p \equiv 0 \quad(\bmod p),
$$

but the subsequence $\left(v_{p}\left(s_{4 p^{n}}\right)\right)_{n \geq 1}$ is unbounded since $v_{p}\left(s_{4 p^{n}}\right)=n+2$ for each $n \geq 0$.
Corollary 11. Let p be a prime divisor of the sequence $\left(s_{n}\right)_{n \geq 1}$. Assume that $a_{1}, a_{2}, \ldots, a_{k}$ and k are not divisibly by p and $v_{p}\left(s_{\ell}\right)=1$ for each s_{ℓ} such that $1 \leq \ell<p$ and $p \mid s_{\ell}$. Then the sequence $\left(v_{p}\left(s_{n}\right)\right)_{n \geq 1}$ is bounded by 1 if and only if (1) does not hold.

Proof. If $\left(v_{p}\left(s_{n}\right)\right)_{n \geq 1}$ is bounded then Theorem 1 implies that (1) does not hold.
Suppose (1) does not hold. For any integers $n, j \geq 1$ we have

$$
s_{n+\varphi(p) j}=\sum a_{i}^{n}\left(p q\left(a_{i}\right)+1\right)^{j}
$$

and hence

$$
\begin{equation*}
s_{n+\varphi(p) j} \equiv s_{n} \quad\left(\bmod p^{2}\right) \Longleftrightarrow \sum_{i=1}^{k} a_{i}^{n} q\left(a_{i}\right) \equiv 0 \quad(\bmod p) \tag{5}
\end{equation*}
$$

If $v_{p}\left(s_{n}\right) \neq 0$ then $v_{p}\left(s_{\ell}\right) \neq 0$, where ℓ is an integer satisfying $n=\ell+\varphi(p) j$ with $0<\ell<\varphi(p)$. Therefore (5) implies that $v_{p}\left(s_{n}\right)=1$ and thus the sequence $\left(v_{p}\left(s_{n}\right)\right)_{n \geq 1}$ is bounded by 1 .

Example 12. Let $a_{1}=6, a_{2}=13, a_{3}=97$ and $p=19$. Clearly, if $\ell<p$ and $p \mid s_{\ell}$ then $\ell=2$. Moreover, $v_{p}\left(s_{2}\right)=1$ and the sum

$$
a_{1}^{2}\left(a_{1}^{p-1}-1\right) / p+a_{2}^{2}\left(a_{2}^{p-1}-1\right) / p+a_{3}^{2}\left(a_{3}^{p-1}-1\right) / p
$$

is divisible by p. Thus, by Corollary 11, each term of the sequence $\left(s_{n}\right)_{n \geq 1}$ is not divisible by p^{2}.

4 Acknowledgment

The authors would like to thank the referee for carefully reading the paper. The research has received funding from the National University of Mongolia under grant agreement P20203943.

References

[1] J.-P. Allouche and J. Shallit, The ring of k-regular sequences, Theoret. Comput. Sci. 98 (1992), 163-197.
[2] J. P. Bell, p-adic valuations and k-regular sequences, Discrete Math. 307 (2007), 30703075.
[3] G. D. Birkhoff and H. S. Vandiver, On the integral divisors of $a^{n}-b^{n}$, Ann. of Math. 5 (1904), 173-180.
[4] T. Lengyel, Exact p-adic orders for differences of Motzkin numbers, Int. J. Number Theory 10 (2014), 653-667.
[5] T. Lengyel, On divisibility properties of some differences of the central binomial coefficients and catalan numbers, Integers 13 (2013), A10.
[6] N. Murru and C. Sanna, On the k-regularity of the k-adic valuation of Lucas sequences, J. Théor. Nombres Bordeaux 30 (2018), 227-237.
[7] P. Ribenboim, On square factors of terms of binary recurring sequences and the $A B C$ conjecture, Publ. Math. Debrecen 59 (2001), 459-469.
[8] P. Ribenboim, My Numbers, My Friends, Springer-Verlag, 2002.
[9] C. Sanna, The p-adic valuation of Lucas sequences, Fibonacci Quart. 54 (2016), 118-124.

2010 Mathematics Subject Classification: Primary 11B39; Secondary 11B50.
Keywords: sums of powers of integers, p-adic valuation, Lucas sequence.

Received July 11 2022; revised versions received August 5 2022; August 31 2022; September 13 2022. Published in Journal of Integer Sequences, October 72022.

Return to Journal of Integer Sequences home page.

