

Journal of Integer Sequences, Vol. 25 (2022), Article 22.8.1

On the *p*-adic Valuations of Sums of Powers of Integers

Gombodorj Bayarmagnai and Sainjargal Delger Department of Mathematics National University of Mongolia Baga Toirog Ulaanbaatar 14200 Mongolia bayarmagnai@num.edu.mn sdelger96@gmail.com

Abstract

In this paper we obtain a simple formula for the number of matching *p*-ary digits of certain terms of Lucas sequences for any odd prime *p*. Using this formula, we present a simple sufficient condition for the sequence $(v_p(a_1^n + a_2^n + \cdots + a_k^n))_{n\geq 0}$ to be unbounded, where a_1, a_2, \ldots, a_k $(k \geq 2)$ are given integers and v_p is the *p*-adic valuation.

1 Introduction

The *p*-adic valuations of integer sequences have been objects of interest because of their surprising properties such as *k*-regularity (Allouche et al. [1], Bell [2], and Murru et al. [6]) and exponent lifting (Birkhoff et al. [3] and Sanna [9]). In the paper we focus on the *p*-adic valuations of sequences given by sums of powers of integers and differences of terms of Lucas sequences.

Given an integer $k \ge 2$ and integers a_1, a_2, \ldots, a_k satisfying $|a_i| \ge 2$ for each $1 \le i \le k$, let $(s_n)_{n\ge 1}$ be the sequence defined by

$$s_n = a_1^n + a_2^n + \dots + a_k^n$$

for each $n \ge 1$. For k = 2, the sequence of the *p*-adic valuations $(v_p(s_n))_{n\ge 1}$ is well known (Birkhoff et al. [3]) and in particular, the sequence is unbounded if *p* divides a term of $(s_n)_{n\ge 1}$, where *p* is an odd prime and v_p is the *p*-adic valuation. But it is not true in general. The first purpose of this paper is to present a sufficient condition for the unboundedness of the sequence $(v_p(s_n))_{n\ge 1}$, especially for the case $k \ge 3$.

Now, we formulate our main result:

Theorem 1. Let p be an odd prime dividing s_{ℓ} for some index ℓ such that $\ell < p$. If

$$\sum_{(a_i,p)=1} q(a_i)a_i^\ell \not\equiv 0 \pmod{p} \tag{1}$$

then $(v_p(s_n))_{n\geq 1}$ is unbounded, where $q(a) = \frac{a^{p-1}-1}{p}$ is the Fermat quotient of p with base a.

Our next purpose is to study the rate of growth in the number of matching *p*-ary digits of certain terms of Lucas sequences. This will be useful in the proof Theorem 1. More precisely, throughout the paper, a Lucas sequence $(U_n)_{n>0}$ is a sequence given by $U_0 = 0$, $U_1 = 1$, and

$$U_n = aU_{n-1} - bU_{n-2}, \ n = 2, 3, \dots,$$

where a, b are relatively prime integers. We require that $(U_n)_{n\geq 0}$ is nondegenerate, that is, $b \neq 0$ and the ratio α/β of the two roots α , β of the characteristic polynomial $x^2 - ax + b$ is not a root of unity. It is well known that the Lucas quotient U_{τ}/p is an integer for any prime p not dividing 2b (Ribenboim [8]), where $(\frac{\cdot}{p})$ is the Legendre symbol and $\tau = p - (\frac{a^2-4b}{p})$. Then our next result is the following.

Theorem 2. Let $(U_n)_{n\geq 0}$ be a Lucas sequence, and let D denote the discriminant of its characteristic polynomial. For a prime p not dividing 2b we have

$$v_p(U_{\tau p^{\ell}} - pU_{\tau p^{\ell-1}}) = \begin{cases} 2\ell + \delta + \sigma + v_p(\tau), & \text{if } b^2 \neq 1; \\ 3\ell + 3\sigma + v_p(D/3) + 1, & \text{if } b^2 = 1, \end{cases}$$

for $\ell > \delta$, where δ and σ are the p-adic valuations of $b^{p-1} - 1$ and U_{τ}/p , respectively.

The theorem is analogous to the results of Lengyel [4, 5] for the sequences of Motzkin numbers, central binomial coefficients and Catalan numbers. Note that $\sigma = 0$ if p is a Lucas non-Wieferich prime. Assuming the ABC conjecture, Ribenboim [7] showed that there are infinitely many Lucas non-Wieferich primes.

2 The number of matching digits

In this section we prove Theorem 2. Before that we need some preliminary results stating properties of the subsequence $(U_{\tau p^{\ell}})_{\ell \geq 0}$. Finally, we see that the sequence defined by the last nonzero digits of $U_{\tau p^{\ell}}$ in base p is constant. This property is key in the proof of Theorem 1.

Lemma 3. If p is a prime not dividing 2b and n is a positive integer divisible by τ then

$$v_p(U_{np^{\ell+1}}) = v_p(U_{np^{\ell}}) + 1$$

for each positive integer ℓ .

Proof. Let $\rho_U(p)$ be the rank of appearance of p in the sequence $(U_n)_{n\geq 0}$. It is known that $p \mid U_n$ if and only if $\rho_U(p) \mid n$ (see for example, [8, (3.3), p. 12]). Thus τ is divisible by $\rho_U(p)$ and hence the formula follows from [9, Corollary 1.6].

We read the *p*-ary digits of $U_{\tau p^{\ell}}$ from left to right and consider the number of matching *p*-ary digits of $U_{\tau p^{\ell}}$ and $pU_{\tau p^{\ell-1}}$, i.e., $v_p(U_{\tau p^{\ell}} - pU_{\tau p^{\ell-1}})$. All the first $\ell + v_p(U_{\tau})$ digits of the two numbers are zero by Lemma 3, and moreover, the number of matching digits is determined by the *p*-adic valuation of the difference $u_{\ell} - u_{\ell-1}$, where u_{ℓ} is the *p*-free part of the term $U_{\tau p^{\ell}}$, i.e.,

$$u_{\ell} = p^{-v_p(U_{\tau p^{\ell}})} U_{\tau p^{\ell}}.$$

Lemma 4. For each odd $k \ge 1$ we have

$$U_{k\tau p^{\ell}}/U_{\tau p^{\ell}} = D \sum_{i=1}^{(k-1)/2} b^{(\frac{k-1}{2}-i)\tau p^{\ell}} U_{i\tau p^{\ell}}^2 + k b^{\frac{k-1}{2}\tau p^{\ell}}.$$

Proof. It is well-known that for all integers $n \ge 0$, it holds $U_n = (\alpha^n - \beta^n)/(\alpha - \beta)$. Hence we have $U_{k\tau p^{\ell}}/U_{\tau p^{\ell}} = \sum_{i=0}^{k-1} \alpha^{i\tau p^{\ell}} \beta^{(k-1-i)\tau p^{\ell}}$ for any integer $k \ge 1$. For odd k the latter equals

$$\sum_{i=1}^{(k-1)/2} b^{(\frac{k-1}{2}-i)\tau p^{\ell}} (\alpha^{i\tau p^{\ell}} - \beta^{i\tau p^{\ell}})^2 + k b^{\frac{k-1}{2}\tau p^{\ell}},$$

since $b = \alpha \beta$. Thus the lemma follows from this identity and $D = (\alpha - \beta)^2$.

Lemma 5. For each positive integer ℓ there exists an integer t_{ℓ} such that

$$\frac{u_{\ell+1}}{u_{\ell}} = DU_{\tau p^{\ell}}^2 \left(pt_{\ell} + \frac{p^2 - 1}{24} b^{\frac{p-3}{2}\tau p^{\ell}} \right) + b^{\frac{p-1}{2}\tau p^{\ell}}.$$

Proof. For any positive integer ℓ , by Lemma 4, we have

$$\frac{u_{\ell+1}}{u_{\ell}} = \frac{DU_{\tau p^{\ell}}^2}{p} \Big(\sum_{k=1}^{(p-1)/2} b^{(\frac{p-1}{2}-k)\tau p^{\ell}} (U_{k\tau p^{\ell}}/U_{\tau p^{\ell}})^2 \Big) + b^{\frac{p-1}{2}\tau p^{\ell}}.$$

We claim that $(U_{k\tau p^{\ell}}/U_{\tau p^{\ell}})^2 \equiv k^2 b^{(k-1)\tau p^{\ell}} \pmod{p^{2(\ell+\sigma+1)}}$ for each $1 \leq k \leq (p-1)/2$. The claim follows easily from Lemma 4 if k is odd. For even k we have the identity

$$(U_{k\tau p^{\ell}}/U_{k\tau p^{\ell}/2})^2 = DU_{k\tau p^{\ell}/2}^2 + 4b^{k\tau p^{\ell}/2},$$

which, by induction on k, yields the claim. Thus we can conclude from the claim that

$$\sum_{k=1}^{(p-1)/2} b^{(\frac{p-1}{2}-k)\tau p^{\ell}} (U_{k\tau p^{\ell}}/U_{\tau p^{\ell}})^2 \equiv \frac{p^3-p}{24} b^{\frac{p-3}{2}\tau p^{\ell}} \pmod{p^{2(\ell+\sigma+1)}},$$

completing the proof.

We are now ready to prove Theorem 2.

Proof of Theorem 2. The case $b^2 = 1$: We claim that $b^{\frac{p-1}{2}\tau} = 1$. If p is not a divisor of D then it is clear since τ is even. Suppose p is a divisor of D. Then $\tau = p$ which is odd. If b = -1 then $D = a^2 + 4$ and hence $p \equiv 1 \pmod{4}$, implying the claim.

From Lemma 5 and the claim we obtain

$$\frac{u_{\ell+1} - u_{\ell}}{u_{\ell}^3} = Dp^{2(\ell+\sigma+1)} \left(pt_{\ell} + \frac{p^2 - 1}{24} b^{\frac{p-3}{2}\tau p^{\ell}} \right)$$

for some integer t_{ℓ} . Therefore

$$v_p(u_{\ell+1} - u_\ell) = 2(\ell + \sigma + 1) + v_p(D/3)$$
(2)

for each positive integer ℓ .

The case $b^2 \neq 1$: We claim that b^{τ} is a square residue modulo p. If p is not a divisor of D then the claim is clear since τ is even. Suppose p is a divisor of D. Then $\tau = p$ and hence we have

$$b \equiv \frac{\left(\alpha^{(\tau+1)/2} + \beta^{(\tau+1)/2}\right)^2}{\left(\alpha^{(\tau-1)/2} + \beta^{(\tau-1)/2}\right)^2} \pmod{p},$$

since U_{τ} is divisible by p. Moreover, the right hand side is equal to $(U_{\tau+1}U_{\frac{\tau-1}{2}}(U_{\tau-1}U_{\frac{\tau+1}{2}})^{-1})^2$, showing the claim.

By applying Lemma 3 and Lemma 4 we obtain

$$v_p(u_{\ell+1} - u_\ell) = v_p(b^{\frac{p-1}{2}\tau p^\ell} - 1)$$

if $\ell > \delta$. Since $v_p(b^{\frac{p-1}{2}\tau} - 1) \neq 0$ by the above claim, we have $v_p(u_{\ell+1} - u_{\ell}) = v_p(\tau) + \delta + \ell$ when $\ell > \delta$, completing the proof of Theorem 2.

Example 6. The Fibonacci sequence $(F_n)_{n\geq 0}$ is a Lucas sequence with characteristic polynomial $x^2 - x - 1$. Since $\tau = p \pm 1$ if $p^2 \equiv \pm 1 \pmod{5}$ and $\tau = p$ if p = 5, we have

$$v_p(f_{\ell+1} - f_\ell) = \begin{cases} 2\ell + 1, & \text{if } p = 3; \\ 2\ell + 3, & \text{if } p = 5; \\ 2\ell + 2v_p(F_\tau), & \text{if } p \ge 7. \end{cases}$$

Here f_{ℓ} denotes the *p*-free part of the τp^{ℓ} -th Fibonacci number.

Let \hat{u}_{ℓ} denote the last nonzero digit of $U_{\tau p^{\ell}}$ in base p. Theorem 2 implies that the sequence $(\hat{u}_{\ell})_{\ell \geq 0}$ is eventually constant since $\hat{u}_{\ell} \equiv u_{\ell} \pmod{p}$ for each positive integer ℓ .

Lemma 7. The sequence $(\hat{u}_{\ell})_{\ell \geq 0}$ is constant.

Proof. For our purpose it suffices to show that $v_p(u_{\ell+1} - u_\ell) \ge 1$ for any integer $\ell \ge 0$. If $b^2 = 1$ then this follows from (1). In the proof of Theorem 2, we have seen that $v_p(b^{\frac{p-1}{2}\tau}-1) = \delta + v_p(\tau) \ge 1$ if $b^2 \ne 1$. Thus, by Lemma 3 and Lemma 5, we obtain

$$v_p(u_{\ell+1} - u_\ell) \ge \min(v_p(DU_{\tau p^\ell}^2/3), v_p(b^{\frac{p-1}{2}\tau p^\ell} - 1)) \ge \min(\sigma + 1, \delta + v_p(\tau)),$$

completing the proof.

3 On sums of powers of integers

We begin this section with a key lemma which is a version of the lifting the exponent (LTE) lemma and then use it to prove Theorem 1.

Let a_1, a_2, \ldots, a_k be integers satisfying $|a_i| \ge 2$ and $p \nmid a_i$ for $1 \le i \le k$. For each index i define a sequence $q_n^{(i)}$ by the difference $q_n^{(i)} = a_i^n - 1$ for any integer $n \ge 0$. Then the sequence of the quotients $(q_n^{(i)}/q_1^{(i)})_{n\ge 0}$ is a Lucas sequence with characteristic polynomial $x^2 - (a_i + 1)x + a_i$.

Lemma 8. Let p be an odd prime. If there exist integers c_1, c_2, \ldots, c_k and $\ell \ge 0$ such that

$$c_1 q_{(p-1)p^{\ell}}^{(1)} + c_2 q_{(p-1)p^{\ell}}^{(2)} + \dots + c_k q_{(p-1)p^{\ell}}^{(k)} \equiv 0 \pmod{p^{\ell+\chi+1}}$$
(3)

then (3) holds for all $\ell \geq 0$, where χ is the minimum among all $v_p(q_{p-1}^{(i)})$.

Proof. Denote by χ_i $(1 \le i \le k)$ the exponent $v_p(q_{p-1}^{(i)})$ which is clearly not zero. For the sequence $(q_n^{(i)}/q_1^{(i)})_{n>0}$, we have $\tau_i = p$ if $p \mid a_i - 1$ and $\tau_i = p - 1$ otherwise.

If $\tau_i = p - 1$ then apply Lemma 7 to the sequence $\left(q_n^{(i)}/q_1^{(i)}\right)_{n>0}$. Then we obtain

$$(q_{(p-1)p^n}^{(i)}/q_1^{(i)})/p^{\chi_i+n-v_p(q_1^{(i)})} \equiv (q_{p-1}^{(i)}/q_1^{(i)})/p^{\chi_i-v_p(q_1^{(i)})} \pmod{p}$$

for any integer $n \ge 0$. This yields that $q_{(p-1)p^n}^{(i)}/p^{\chi_i+n} \equiv q_{(p-1)p^\ell}^{(i)}/p^{\chi_i+\ell} \pmod{p}$ for any $n \ge 0$.

If $\tau_i = p$ then $v_p(q_{(p-1)\tau_i}^{(i)}) = 1 + \chi_i$. By applying Lemma 7 to the Lucas sequence $(q_{(p-1)n}^{(i)}/q_{p-1}^{(i)})_{n\geq 0}$ we similarly obtain

$$q_{(p-1)p^n}^{(i)}/p^{\chi_i+n} \equiv q_{(p-1)p^{\ell}}^{(i)}/p^{\chi_i+\ell} \pmod{p}$$

for any integer $n \ge 0$, since $q_{(p-1)p}^{(i)}/p^{\chi_i+1} \equiv q_{p-1}^{(i)}/p^{\chi_i} \pmod{p}$. Consequently we have

$$q_{(p-1)p^n}^{(i)}/p^{\chi+n} \equiv q_{(p-1)p^{\ell}}^{(i)}/p^{\chi+\ell} \pmod{p}$$

for each index i. Substituting these congruences into

$$c_1 q_{(p-1)p^{\ell}}^{(1)} / p^{\chi+\ell} + \dots + c_k q_{(p-1)p^{\ell}}^{(k)} / p^{\chi+\ell} \equiv 0 \pmod{p},$$

which is equivalent to (3), we complete the proof of the lemma.

Remark 9. Let p be an odd prime. For fixed integers a, b satisfying $p \nmid ab$ and $p \mid a - b$, the classical LTE lemma states that $v_p(a^n - b^n) = v_p(n) + v_p(a - b)$. Hence, for each index i, we have $v_p(q_{(p-1)p^{\ell}}^{(i)}) = \ell + \chi_i$. Thus Lemma 8 does not follow from the LTE lemma since $q_{(p-1)p^{\ell}}^{(i)}/p^{\ell+\chi} \not\equiv 0 \pmod{p}$ for some index i.

We are now ready to present a proof of Theorem 1.

Proof of Theorem 1. For each a_i which is prime to p we set $c_i = a_i^{\ell}$ and define a sequence $(q_n^{(i)})_{n\geq 1}$ by $q_n^{(i)} = a_i^n - 1$ for each integer $n \geq 1$. Then the assumption is clearly equivalent to the condition that

$$\sum_{(a_i,p)=1} c_i q_{p-1}^{(i)} / p \not\equiv 0 \pmod{p}.$$
(4)

Under this condition we show the existence of an unbounded subsequence of $(v_p(s_n))_{n\geq 1}$ by induction. We claim that there is an integer $N \geq 1$ such that

$$v_p(s_N) > m \text{ and } N \equiv \ell \pmod{p-1}$$

for a fixed integer $m \ge 0$. Firstly, if m = 0 then we choose $N = \ell$ which is the base case of our induction. Assume the claim holds for an integer N such that $m = v_p(s_N) > 0$. We now show that there is an integer n such that $v_p(s_n) > m$ and $n \equiv \ell \pmod{p-1}$. For this purpose we consider the set S defined by

$$S = \{s_{n_t} \mid n_t = N + \varphi(p^m)t, \ t = 1, 2, \dots, p\},\$$

where φ denotes the Euler's totient function. It follows from Euler's theorem and the induction hypothesis that $v_p(s_{n_t}) \ge m$ for each t. Suppose each element of S is not divisible by p^{m+1} . Then, by Pigeonhole principle, there are two different elements s_{n_j} and $s_{n_{j+t}}$ of S $(t \ne 0)$ which are congruent modulo p^{m+1} . Hence we obtain

$$\sum_{(a_i,p)=1} c_i q_{t\varphi(p^m)}^{(i)} / p^m \equiv 0 \pmod{p}$$

since $N \equiv \ell \pmod{p-1}$ and j, t are non-zero integers. Clearly, we have

$$q_{\varphi(p^m)t}^{(i)}/p^m \equiv tq_{\varphi(p^m)}^{(i)}/p^m \pmod{p}$$

for each index i. Therefore, using these congruences, it follows from Lemma 2 that

$$\sum_{(a_i,p)=1} c_i q_{\varphi(p)}^{(i)} / p \equiv 0 \pmod{p},$$

contradicting (4). Thus S contains an element s_{n_t} satisfying $v_p(s_{n_t}) \ge m+1$. Clearly, $n_t \equiv \ell \pmod{p-1}$ by the induction hypothesis. This completes the induction step.

Remark 10. Theorem 1 provides a sufficient but not necessary condition: consider the sequence $(s_n)_{n>1}$ given by $s_n = 1 + 2^n + 3^n$ for all $n \ge 0$. Set p = 7. Then

$$s_4 \equiv 2^4 (2^{p-1} - 1)/p + 3^4 (3^{p-1} - 1)/p \equiv 0 \pmod{p},$$

but the subsequence $(v_p(s_{4p^n}))_{n\geq 1}$ is unbounded since $v_p(s_{4p^n}) = n+2$ for each $n\geq 0$.

Corollary 11. Let p be a prime divisor of the sequence $(s_n)_{n\geq 1}$. Assume that a_1, a_2, \ldots, a_k and k are not divisibly by p and $v_p(s_\ell) = 1$ for each s_ℓ such that $1 \leq \ell < p$ and $p \mid s_\ell$. Then the sequence $(v_p(s_n))_{n\geq 1}$ is bounded by 1 if and only if (1) does not hold.

Proof. If $(v_p(s_n))_{n\geq 1}$ is bounded then Theorem 1 implies that (1) does not hold.

Suppose (1) does not hold. For any integers $n, j \ge 1$ we have

$$s_{n+\varphi(p)j} = \sum a_i^n (pq(a_i) + 1)^j$$

and hence

$$s_{n+\varphi(p)j} \equiv s_n \pmod{p^2} \iff \sum_{i=1}^k a_i^n q(a_i) \equiv 0 \pmod{p}.$$
 (5)

If $v_p(s_n) \neq 0$ then $v_p(s_\ell) \neq 0$, where ℓ is an integer satisfying $n = \ell + \varphi(p)j$ with $0 < \ell < \varphi(p)$. Therefore (5) implies that $v_p(s_n) = 1$ and thus the sequence $(v_p(s_n))_{n \geq 1}$ is bounded by 1. \Box

Example 12. Let $a_1 = 6$, $a_2 = 13$, $a_3 = 97$ and p = 19. Clearly, if $\ell < p$ and $p \mid s_\ell$ then $\ell = 2$. Moreover, $v_p(s_2) = 1$ and the sum

$$a_1^2(a_1^{p-1}-1)/p + a_2^2(a_2^{p-1}-1)/p + a_3^2(a_3^{p-1}-1)/p$$

is divisible by p. Thus, by Corollary 11, each term of the sequence $(s_n)_{n\geq 1}$ is not divisible by p^2 .

4 Acknowledgment

The authors would like to thank the referee for carefully reading the paper. The research has received funding from the National University of Mongolia under grant agreement P2020-3943.

References

- J.-P. Allouche and J. Shallit, The ring of k-regular sequences, Theoret. Comput. Sci. 98 (1992), 163–197.
- [2] J. P. Bell, p-adic valuations and k-regular sequences, Discrete Math. 307 (2007), 3070– 3075.
- [3] G. D. Birkhoff and H. S. Vandiver, On the integral divisors of $a^n b^n$, Ann. of Math. 5 (1904), 173–180.
- [4] T. Lengyel, Exact p-adic orders for differences of Motzkin numbers, Int. J. Number Theory 10 (2014), 653–667.
- [5] T. Lengyel, On divisibility properties of some differences of the central binomial coefficients and catalan numbers, *Integers* 13 (2013), A10.
- [6] N. Murru and C. Sanna, On the k-regularity of the k-adic valuation of Lucas sequences, J. Théor. Nombres Bordeaux 30 (2018), 227–237.
- [7] P. Ribenboim, On square factors of terms of binary recurring sequences and the ABC conjecture, Publ. Math. Debrecen 59 (2001), 459–469.
- [8] P. Ribenboim, My Numbers, My Friends, Springer-Verlag, 2002.
- [9] C. Sanna, The *p*-adic valuation of Lucas sequences, *Fibonacci Quart.* **54** (2016), 118–124.

2010 Mathematics Subject Classification: Primary 11B39; Secondary 11B50.

Keywords: sums of powers of integers, p-adic valuation, Lucas sequence.

Received July 11 2022; revised versions received August 5 2022; August 31 2022; September 13 2022. Published in *Journal of Integer Sequences*, October 7 2022.

Return to Journal of Integer Sequences home page.