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Abstract

We prove that the inequality 2π(n) − π(2n) ≥ 2ω(n) is valid for all n ≥ 71. Here,
π(n) denotes the prime counting function and ω(n) denotes the number of distinct
prime factors of n. Our inequality refines a recently published result by Zhang.

1 Introduction and statement of the main result

In 1909, Landau [4] conjectured that the inequality

π(2n) ≤ 2π(n) (1)

is valid for all integers n ≥ 2. Here, π(n) denotes the number of primes which are less than or
equal to n. The first proof of (1) was given by Rosser and Schoenfeld [11] in 1966. Moreover,
they showed that the sign of equality holds in (1) if and only if n ∈ {2, 4, 10}.

1

mailto:h.alzer@gmx.de
mailto:mankwong@connect.polyu.hk


Landau’s inequality attracted the attention of several mathematicians, who presented
various extensions and counterparts of (1). For more information on this subject we refer to
Ehrhart [3], Mitrinović, Sándor, Crstici [6, Chapter VII], Panaitopol [7, 8, 9], and Vlamos
[12].

Our work was inspired by an interesting paper published by Zhang [13] in 2020. He
obtained a positive lower bound for the difference 2π(n)− π(2n). More precisely, he proved
that for n ≥ 59,

2π(n)− π(2n) > ω(2n), (2)

where ω(n) denotes the number of distinct prime factors of n. Here, we offer the following
improvement of (2) for n ≥ 71.

Theorem 1. Let n ≥ 71 be an integer. Then

2π(n)− π(2n) ≥ 2ω(n), (3)

with equality if and only if n ∈ {78, 100, 102, 126}.

We note that n = 70 is the largest integer such that (3) is not true. In the next section,
we present a proof of Theorem 1 and we show that (3) refines (2).

2 Proof of Theorem 1

Proof. Let
F (n) = 2π(n)− π(2n)− 2ω(n). (4)

We consider two cases.

Case 1. 71 ≤ n ≤ 30091.

We used MAPLE 16 and the following computer program to verify (3).

with(NumberTheory):

w := n -> nops(PrimeFactors(n)):

F := n -> 2*pi(n)-pi(2*n)-2*w(n):

for k from 71 to 30091 do

if F(n) <= 0 then print(k,F(n)) end if

end do;

For all n we obtain that F (n) is positive with exactly four exceptions:

F (78) = F (100) = F (102) = F (126) = 0.

Case 2. n ≥ 30092.
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We apply the estimates

n

log(n)− 1
≤ π(n) (n ≥ 5393), (5)

π(n) ≤
n

log(n)− 1.1
(n ≥ 60184), (6)

ω(n) ≤ c
log(n)

log(log(n))
(c = 1.3841; n ≥ 3). (7)

The inequalities (5) and (6) are due to Dusart [2], whereas (7) was proved by Robin [10].
Better bounds for π(n) were given by Berkane and Dusart [1].

Let F (n) be the function defined in (4). Using (5), (6) and (7) gives for n ≥ 30092,

F (n) ≥
2n

log(n)− 1
−

2n

log(2n)− 1.1
−

2c log(n)

log(log(n))
= G(n), say. (8)

We set n = ex with x ≥ log(30092) ≈ 10.31 and a = 1.1− log(2) ≈ 0.40. Then,

1

2
G(n) =

1

2
G(ex) = (1− a)

ex

(x− 1)(x− a)
− c

x

log(x)
.

Using
x− y

log(x)− log(y)
<

x+ y

2
(0 < y < x),

(see Mitrinović [5, p. 273]) with y = 1 gives

1

2(1− a)
(x− 1)(x− a)G(ex) = ex −

c

1− a
x(x− a)

x− 1

log(x)

> ex −
c

1− a
x(x− a)

x+ 1

2

> 1 +
5

∑

k=1

xk

k!
−

6

5
x(x+ 1)

(

x−
2

5

)

= 1 +
x

600
P (x)

with
P (x) = 5x4 + 25x3 − 620x2 − 132x+ 888.

Since P is positive on [10,∞), we obtain G(ex) > 0 for x ≥ log(30092). From (8) we conclude
that F (n) > 0 for n ≥ 30092.

Finally, we show that (3) improves Zhang’s inequality (2).
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Lemma 2. For all integers n ≥ 2, we have

2ω(n) ≥ ω(2n). (9)

Equality holds in (9) if and only if n = pk, where p is an odd prime number and k is a
positive integer.

Proof. Let

n =
r
∏

j=1

pj
kj ,

where p1, · · · , pr are prime numbers with p1 < · · · < pr and k1, · · · , kr are positive integers.
If p1 = 2, then

2ω(n)− ω(2n) = 2r − r = r > 0,

and if p1 > 2, then
2ω(n)− ω(2n) = 2r − (r + 1) = r − 1 ≥ 0,

with equality if and only if n = p1
k1 .

Let n ≥ 71. If n = pk, where p ≥ 3 is a prime number and k ≥ 1 is an integer, then
n /∈ {78, 100, 102, 126}. From Theorem 1 and Lemma 2 we conclude that

2π(n)− π(2n) > 2ω(n) = ω(2n).

And, if n 6= pk, then
2π(n)− π(2n) ≥ 2ω(n) > ω(2n).
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