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Abstract

In a posthumously published work, Euler proved that all even perfect numbers are of
the form 2p−1(2p−1), where 2p−1 is a prime number. In this article, we extend Euler’s
method for certain α-perfect numbers for which Euler’s result can be generalized. In
particular, we use Euler’s method to prove that if N is a 3-perfect number divisible
by 6; then either 2 ‖ N or 3 ‖ N . As well, we prove that if N is a 5

2 -perfect number
divisible by 5, then 24 ‖ N , 52 ‖ N , and 312 | N . Finally, for p ∈ {17, 257, 65537}, we
prove that there are no 2p

p−1 -perfect numbers divisible by p.

1 Introduction

A perfect number is equal to the sum of its proper divisors. These numbers have been
studied since the ancient Greek times. An old known result is Proposition 36 of Book IX

1The first author received support from the Center for Research and Development in Mathematics and
Applications (CIDMA) through the Portuguese Foundation for Science and Technology (FCT—Fundação
para a Ciência e Tecnologia), reference UIDB/04106/2020.

2The second author received support from the Portuguese Foundation for Science and Technology (FCT—
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in the Elements, where Euclid showed that if 2p − 1 is a prime number then 2p−1(2p − 1) is
perfect. Around two thousand years later, L. Euler [2, p. 630] proved that every even perfect
number is of Euclid’s form. In the same page, there is Euler’s formula for an odd perfect
number. If σ(N) = 2N and N is odd, then

N = pek2, (1)

where p is a prime number, (p, k) = 1, and p ≡ e ≡ 1 (mod 4).
Let σ to be the sum of divisors function and

I(N) =
σ(N)

N

to be the index function of N . Clearly, I(N) is multiplicative. For p a prime number
and a a non-negative integer, the index function I(pa) is monotonically increasing in a but
monotonically decreasing in p. Also, for any prime number p and any positive integer a, we
have

p+ 1

p
≤ I(pa) <

p

p− 1
. (2)

Moreover, if I(N) = c
d
and gcd(c, d) = 1, we have

if p is a prime number and p | d, then p | N ; (3)

and
if p is a prime number and p | c, then p | σ(N). (4)

For any rational number α, a positive integer N is an α-perfect number if I(N) = α. We
say α is an abundancy index if α ∈ Im(I). The case α = 2 corresponds to a perfect number
and, when α is an integer, N is a multiperfect number. More than 5700 multiperfect numbers
have been found (see Achim Flammenkamp’s The Multiply Perfect Numbers Page [3]). Many
other rational values for α were studied, some of them with connections with odd perfect
numbers [7, 11]. When a rational α is not in the image of I(N), α is called an abundancy
outlaw. Holdener and Stanton [5] gave a list of abundancy outlaws as well as rational numbers
for which their abundancy status is unknown. Given a prime p, we say that a rational α is
a p-abundancy outlaw if there are no α-perfect numbers divisible by p.

We will present a generalization of Euler’s result on perfect numbers that can be applied
to certain α-perfect numbers. In particular, it can be applied to the 3-perfect numbers and
5
2
-perfect numbers. For p ∈ {17, 257, 65537}, we also prove that 2p

p−1
is a p-abundancy outlaw.

The only known 3-perfect numbers are the following

23 · 3 · 5, 25 · 3 · 7, 29 · 3 · 11 · 31, 213 · 3 · 11 · 43 · 127,

28 · 5 · 7 · 19 · 37 · 73, and 214 · 5 · 7 · 19 · 31 · 151.

Dickson [1, p. 33] gives a historical account of the 3-perfect numbers. It is conjectured the
numbers above are the only 3-perfect numbers. Clearly, N is a 3-perfect number with 2 ‖ N
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if and only if N
2
is an odd perfect number. Therefore, if the above list of 3-perfect numbers

is complete, then there are no odd perfect numbers. Also, it is easy to see that 5
2
is not an

abundancy outlaw, since I(24) = 5
2
.

In order to apply our generalization of the Euclid-Euler theorem we will need to find all
solutions of certain two and three-variable exponential diophantine equations. We will use
the general method developed by Styer [10] which formalizes and extends a method used by
Guy, Lacampagne, and Selfridge [4] (also see the paper [8] for similar results).

2 Generalizing Euler’s method

Let α be a rational number and N > 1 be an α-perfect number, then I(N) = α. Using (2)
and the multiplicativity of I(N), there exist positive integers r and m, prime numbers pi,
and positive integers ai, with 1 ≤ i ≤ r; such that

N = m
r
∏

i=1

paii , (5)

α
r
∏

i=1

pi − 1

pi
≤ 1, (6)

and

gcd

(

m,

r
∏

i=1

paii

)

= 1.

Therefore,

αm

r
∏

i=1

paii = σ(N) = σ(m)
r
∏

i=1

pai+1
i − 1

pi − 1
.

Hence, for some integers k and d, we have

σ(m) =
βk

d

r
∏

i=1

pai+1
i (7)

and

m =
k

d

r
∏

i=1

(

pai+1
i − 1

)

, (8)

where

β = α
r
∏

i=1

pi − 1

pi
≤ 1

and

d = gcd

(

β

r
∏

i=1

pai+1
i ,

r
∏

i=1

(

pai+1
i − 1

)

)

.
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We will try to find a lower bound for σ(m), by summing divisors of m that are explicitly
indicated in Eq. (8). A comparison of the lower bound with Eq. (7), will give us contradictions
or conditions on the form of N . From now on, we will always consider β = 1.

3 The Euclid-Euler theorem: r = 1 and α =
p

p−1

Suppose N = pam is an α-perfect number, where p is a prime number and α = p

p−1
satisfies

Condition (6) with equality. Then I(N) = α.
By (3), if p 6= 2 then 2 | N . Therefore,

I(N) ≥
3

2

p+ 1

p
>

p

p− 1
= α.

Hence, p = 2 and we have the case studied by Euler [2]. The Euler theorem is a well known
result, but we write its proof here to give context for our results.

Theorem 1 (Euler). If N is an even perfect number, then N = 2p−1(2p − 1), where p and
2p − 1 are prime numbers.

Proof. Suppose N = 2am and σ(N) = 2N . Then

2a+1m = σ(N) = (2a+1 − 1)σ(m).

Since gcd(2a+1−1, 2a+1) = 1, then there exists a positive integer k such that m = k(2a+1−1)
and σ(m) = k2a+1. Since k and m divide m, and σ(m) = k +m, then 2a+1 − 1 is a prime
number and k = 1. Now, 2a+1 − 1 can only be a prime number if a + 1 is a prime number
p. Therefore, N = 2p−1(2p − 1).

4 3-perfect numbers divisible by 6: r = 2 and α = 3

In this section, we will consider r = 2, p1 = 2, and p2 = 3 in Eq. (5). We will prove that if a
3-perfect number N is divisible by 6, then either 2 ‖ N or 3 ‖ N . Although Steuerwald [9]
prove this result in 1954, we will use the method introduced in Section 2. Before we proceed,
we need results about the difference between powers of 2 and 3. These results are special
cases of Pillai’s conjecture and Mihǎilescu’s theorem [6], which proves the Catalan conjecture.
It is worth noting that the solutions of equation |2a − 3b| = 1 were first determined by Levi
ben Gershon, also known as Gersonides (1288–1344), in his treatise De Numeris Harmonicis.

Lemma 2. The only solutions of the diophantine equation

2a − 3b = −1 (9)

are (1, 1) and (3, 2). Also, the only solutions of the diophantine equation

2a − 3b = 2c − 1, (10)

are (2, 1, 1), (4, 2, 3), and (a, 0, a), for all a ∈ Z.
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Proof. We start by solving the equation |2a − 3b| = 1. Since 2 is a primitive root of 3b, for
any b ≥ 1; then the solutions of 2x ≡ ±1 (mod 3b) are x = 3b−1k, for k ≥ 0. But, for b ≥ 3
we have

23
b−1

> 2 · 3b.

Therefore, b ∈ {0, 1, 2} and so we obtain the solutions (a, 0, a) and (2, 1, 1) of Eq. (10). Also,
we obtain the solutions (1, 1) and (3, 2) of Eq. (9).

Now, suppose c ≥ 2. If c is even, then 3 | 2c − 1 and we obtain a contradiction. If c is
odd, we have 2a ≡ 1 (mod 3) so a is even. Therefore, there exists a positive integer a′ such
that a = 2a′. As c = 2c′ + 1, for some positive integer c′, we have 22a

′

− 3b = 22c
′+1 − 1. So

(−1)b+1 ≡ −1 (mod 4). Hence, b is even and we have b = 2b′, for some non-negative integer
b′. Then we have

22a
′

− 32b
′

= 22c
′+1 − 1.

Therefore,
(−1)a

′

− (−1)b
′

≡ 2 · (−1)c
′

− 1 (mod 5).

If a′ and b′ have the same parity we have a contradiction. If a′ is odd and b′ is even we have a
contradiction as well. Therefore, a′ is even and b′ is odd. So we have 4 | a and b ≡ 2 (mod 4),
which implies 1− (−1) ≡ 2 · (−1)c

′

− 1 (mod 5). Hence, c′ is odd and c ≡ 3 (mod 4). Since
c > 1, then a > c. Therefore, we have 2c(2a−c − 1) = 3b − 1. Hence, 2c ‖ 3b − 1.

Since b ≡ 2 (mod 4), then 23 ‖ 3b − 1. Hence, c = 3 and we can rewrite Eq. (10) as
(

2
a

2 − 3
b

2

)(

2
a

2 + 3
b

2

)

= 7.

Therefore, a = 4 and b = 2. Hence, if c ≥ 2, the only solution of Eq. (10) is (4, 2, 3).
Therefore, we obtain the stated result,

We can now state and give a new proof of Steuerwald’s theorem on 3-perfect numbers.

Theorem 3. Suppose N is a 3-perfect number of the form N = 2a 3bm, where a, b ≥ 1 and
gcd(6,m) = 1. Then a = 1 and b 6= 1, or a 6= 1 and b = 1.

Proof. Let N = 2a 3bm such that a, b ≥ 1, gcd(6,m) = 1, and σ(N) = 3N . Then

3N = 2a 3b+1m = σ(N) = (2a+1 − 1)
3b+1 − 1

2
σ(m).

Therefore,
σ(m)

m
=

2a+1 3b+1

(2a+1 − 1)(3b+1 − 1)
.

Let d = gcd
(

2a+1 3b+1, (2a+1 − 1)(3b+1 − 1)
)

. It is easy to see that d = 2s 3t, where 1 ≤ s ≤
a+ 1 and 0 ≤ t ≤ b+ 1. Since

gcd

(

2a+13b+1

2s 3t
,
(2a+1 − 1)(3b+1 − 1)

2s 3t

)

= 1,
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then

σ(m) =
2a+1 3b+1

2s 3t
k and m =

2a+1 − 1

3t
3b+1 − 1

2s
k,

for some positive integer k.
Let us consider the following three cases, which will establish the claim.

Case A: Suppose that t 6= 0 and let

M = max

(

2a+1 − 1

3t
,
3b+1 − 1

2s

)

.

Then we have

σ(m)

k
=

2a+13b+1

2s 3t

=
((2a+1 − 1) + 1)

((

3b+1 − 1
)

+ 1
)

2s 3t

=
2a+1 − 1

3t
3b+1 − 1

2s
+

2a+1 − 1

3t
1

2s
+

3b+1 − 1

2s
1

3t
+

1

2s 3t

<
m

k
+

M

2
+

M

3
+ 1

<
m

k
+M + 1.

Therefore,
σ(m) < m+Mk + k. (11)

By definition of M , we have m = uMk, with u ∈
{

2a+1
−1

3t
, 3

b+1
−1

2s

}

. By definition of s and t,

we have u ∈ Z. Then Mk | m. If Mk 6= m and M 6= 1, then m, Mk, and k are different
divisors of m. Thus,

σ(m) ≥ m+Mk + k. (12)

The combination of inequalities (11) and (12), give us a contradiction.
If Mk = m or M = 1, then

2a+1 − 1

3t
= 1 or

3b+1 − 1

2s
= 1.

Therefore, 2a+1 − 3t = 1 or 3b+1 − 2s = 1. By Lemma 2, we have a = 1 or b = 1.

Case B: Suppose that t = 0 and

2a+1 − 1 6=
3b+1 − 1

2s
.

6



Let

M ′ = min

(

2a+1 − 1,
3b+1 − 1

2s

)

.

If M ′ = 1 then

2a+1 − 1 = 1 or
3b+1 − 1

2s
= 1.

Therefore, 2a+1 = 2 or 3b+1 − 2s = 1. As a, b ≥ 1, by Lemma 2, we conclude that b = 1.
If M ′ 6= 1 then

m,
(

2a+1 − 1
)

k,
3b+1 − 1

2s
k, and k,

are different divisors m. Therefore,

σ(m) ≥ m+ (2a+1 − 1)k +
3b+1 − 1

2s
k + k

> (2a+1 − 1)
3b+1 − 1

2s
k +

2a+1 − 1

2s
k +

3b+1 − 1

2s
k +

k

2s

= σ(m),

where the strict inequality results from s ≥ 1. So, we obtain a contradiction.

Case C: Suppose that t = 0 and

2a+1 − 1 =
3b+1 − 1

2s
.

Then 2a+1+s − 3b+1 = 2s − 1. By Lemma 2, we have (a, b) ∈ {(0, 0), (0, 1)}. Since a, b ≥ 1
we obtain a contradiction.

Hence, we must have a = 1 or b = 1.
Next, we prove that we cannot have a = 1 and b = 1, simultaneously.
If a = 1, let N = 2N ′, where N ′ is odd. Then

6N ′ = 3N = σ(N) = 3σ(N ′)

Therefore, σ(N ′) = 2N ′. So N ′ is an odd perfect number. By Euler’s formula (1), if 3 | N ′

then 32 | N ′. Hence, we cannot have b = 1. Thus, we have a = 1 and b 6= 1, or a 6= 1 and
b = 1.

5 Fermat prime numbers: r = 2 and α =
2p
p−1

In Eq. (5), if r = 2, p1 = 2, and p2 6= 3, then α is not an integer. Moreover, if p2 is not a
Fermat number, then we must have a prime p /∈ {p1, p2} such that p | p2−1

2
. Using (3), we

obtain p | N . For this reason, and in order to keep r = 2 without any other known prime
divisors of N , we will only consider the cases where p2 6= 3 and p2 is a Fermat prime number.
Let Fn = 22

n

+ 1 denote the n-th Fermat number, for any non-negative integer n. The next
result states some properties of Fermat numbers that will be used later.
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Lemma 4. Let n be a non-negative integer and Fn be the n-th Fermat number. Then

1. Fn−1 | F
2n

n − 1, for n ≥ 1;

2. ord22
n+s(Fn) = 2s, for n ≥ 1 and s a non-negative integer.

Proof. Let n ≥ 1. Clearly, Fn = (Fn−1 − 1)2 + 1. So there exists an integer t, such that

F 2n

n − 1 =
(

(Fn−1 − 1)2 + 1
)2n

− 1

= −1 +
((

F 2
n−1 − 2Fn−1

)

+ 2
)2n

= −1 +
2n
∑

j=0

(

2n

j

)

(

F 2
n−1 − 2Fn−1

)j
22

n
−j

= −1 + tFn−1 + 22
n

= tFn−1 + F0F1 · · ·Fn−1.

Hence, Fn−1 | F
2n

n − 1.
The statement 2. is clearly true for s = 0. We prove by induction that

F 2s−1

n ≡ 1 + 22
n+s−1 (mod 22

n+s), (13)

for any s ≥ 1.
Since Fn ≡ Fn (mod 22

n+1), the congruence (13) is valid for s = 1. Now, suppose (13) is
valid for s. Then there exists an integer t such that

F 2s

n =
(

F 2s−1

n

)2

=
(

1 +
(

22
n+s−1 + 22

n+st
))2

= 1 + 22
n+s + 22

n+s+1t+ 22
n+1+2s−2 + 22

n+1+2st2 + 22
n+1+2st

≡ 1 + 22
n+s (mod 22

n+s+1).

Therefore, Eq. (13) is true for any s ≥ 1. So we have

ord22
n+s(Fn) 6= 2s−1.

Since ord22
n+s(Fn) is a power of 2 and

F 2s

n ≡ 1 (mod 22
n+s),

then statement 2. is obtained.

Before applying Euler’s method we still need two technical results about some exponential
diophantine equations. Our proof of these results is inspired by Styer’s work [10].
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Lemma 5. Let n ≥ 1 and Fn be the n-th Fermat number. Suppose there exists a non-negative
integer s and a prime number qn, such that

qn | F 2s

n − 1 (14)

and
ordFn

(2) | ordqn(2). (15)

Then the exponential diophantine equation

2a − F b
n = 2c − 1, (16)

has no solutions (a, b, c) with b ≥ 1 and c ≥ 2n + s.

Proof. Suppose there exists a non-negative integer s and a prime number qn satisfying
Cond. (14) and (15). Also, suppose that exists a solution (a, b, c) of Eq. (16) with b ≥ 1 and
c ≥ 2n + s. Since b ≥ 1, we have a > c. Therefore, we have

F b
n ≡ 1 (mod 22

n+s).

By Lemma 4, we have ord22
n+s(Fn) = 2s. Hence, 2s | b. Now, Cond. (14) and Eq. (16) imply

2a − 1 ≡ 2c − 1 (mod qn). Let t = ordqn(2). Then a ≡ c (mod t). Hence, exists a′ such that
a = c+ a′t. But, by Eq. (15), ordFn

(2) | t, which implies

2c − 1 ≡ 2a ≡ 2c
(

2t
)a′

≡ 2c (mod Fn).

Since the previous equation has no solutions, we obtain a contradiction. Thus, we obtain
the stated result.

Lemma 6. Let Fn be the n-th Fermat number and consider the following exponential dio-
phantine equations

2a − F b
n = −1 (17)

and
2a − F b

n = 2c − 1. (18)

Then

(a) when n ∈ {1, 2, 3, 4}, Equation (17) only holds for (a, b) = (2n, 1);

(b) when n ∈ {2, 3, 4}, Equation (18) only holds for

(a, b, c) ∈ {(a, 0, a) | a ∈ Z} ∪ {(2n + 1, 1, 2n)};

(c) when n = 1, Equation (18) only holds for

(a, b, c) ∈ {(a, 0, a) | a ∈ Z} ∪ {(3, 1, 2), (7, 3, 2), (5, 2, 3)}.
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Proof. Suppose n ∈ {1, 2, 3, 4}, 2a −F b
n = −1, and a ≥ 2n +1. Therefore, 22

n+1 | F b
n − 1. So

b is even and we have b = 2b′, for some positive integer b′. But, since 3 | 52 − 1, 9 | 172 − 1,
43 | 2572− 1, and 11 | 655372− 1, we always obtain a contradiction. Therefore, (2n, 1) is the
only solution of Eq. (17), and we obtain statement (a).

Now, we consider Eq. (18) with n ∈ {1, 2, 3, 4}. Notice that we always have a ≥ c. If
b = 0 then a = c and so we have (a, b, c) = (a, 0, a). Since 2c(2a−c − 1) = F b

n − 1 and
22

n

| F b
n − 1, for any positive integer b, we have c ≥ 2n. Therefore, if b = 1 then c = 2n and

a = 2n + 1.
From now on, we assume b ≥ 2. Since Fn is a Fermat number, we have a ≥ 2n+1 + 1. As

2n + n < 2n+1, then Eq. (18) implies

F b
n ≡ 1− 2c (mod 22

n+n). (19)

By Lemma 4, we have ord22
n+n(Fn) = 2n. Then, for each c, exist integers bc and b′c such that

b = bc + 2nb′c. Notice that bc and b′c also depend on which n we are considering. By Lemma
4, we have Fn−1 | F

2n

n − 1. Hence,

2a − F bc
n ≡ 2c − 1 (mod Fn−1). (20)

As ordFn−1
(2) = 2n, then exist integers ac and a′c such that a = ac + 2na′c. But then

2ac(−1)a
′

c ≡ 2c − 1 (mod Fn). (21)

We now analyze Eq. (18) for each n ∈ {1, 2, 3, 4}.
Suppose n = 1.
Since s = 2 and q1 = 13 satisfy the conditions of Lemma 5, then Eq. (18) has no solutions

for c ≥ 4. Therefore, c = 2 or c = 3.
Clearly, (7, 3, 2) is the only solution of Eq. (18), with c = 2 and a ≤ 7. If a ≥ 8 and

c = 2, then 5b ≡ −3 (mod 256). Therefore, b ≡ 35 (mod 64), i.e., there exists a non-negative
integer b′ such that b = 35 + 64b′. Then

2a − 535 · 564b
′

= 3.

As 641 | 564 − 1 and 535 ≡ 516 (mod 641), then

2a ≡ 519 (mod 641).

But this congruence has no solutions.
If c = 3 and a ≤ 5, then (5, 2, 3) is the only solution of Eq. (18). Suppose c = 3 and

a ≥ 6, then 5b ≡ −7 (mod 64). Therefore, we have b ≡ 10 (mod 16); i.e., there exists a
non-negative integer b′ such that b = 10 + 16b′. Then

2a − 510 · 516b
′

= 7.
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As 13 | 516 − 1 and 510 ≡ −1 (mod 13), then

2a ≡ 6 (mod 13).

Therefore, a ≡ 5 (mod 12). On the other hand, since 510 ≡ 9 (mod 17) and 17 | 516−1, then

2a ≡ −1 (mod 17).

Hence, we have a ≡ 4 (mod 8), which gives us a contradiction. Thus, we obtain statement
(c).

Let us now consider n = 2.
Since s = 4 and q1 = 18913 satisfy the conditions of Lemma 5, then Eq. (18) has no

solutions for c ≥ 8.
For each c ∈ {4, 5, 6, 7}, consider b = bc + 2nb′c to be the solutions of Eq. (19) and

a = ac + 2na′c to be the solutions of Eq. (20) (when these equations have solution). The
values of bc and ac are given in Table 1.

c bc ac
4 3 3
5 2 No solutions
6 0 2
7 0 2

Table 1: Solutions of Eq. (19) and Eq. (20) for n = 2.

Hence, when c = 5, Eq. (20) has no solutions. Also, when c ∈ {4, 6, 7}, Eq. (21) has no
solutions.

Next, we consider n = 3.
Since s = 4 and q3 = 193 satisfy the conditions of Lemma 5, then Eq. (18) has no

solutions for c ≥ 12.
For each c ∈ {8, 9, 10, 11}, consider b = bc + 2nb′c to be the solutions of Eq. (19) and

a = ac + 2na′c to be the solutions of Eq. (20) (when these equations have solution). The
values bc and ac are given in table 2.

c bc ac
8 7 7
9 6 No solutions
10 4 1
11 0 3

Table 2: Solutions of Eq. (19) and Eq. (20) for n = 3.

Hence, when c = 9, Eq. (20) has no solutions. Also, when c ∈ {8, 10, 11}, Eq. (21) has
no solutions.
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Finally, consider n = 4.
Since s = 5 and q4 = 38899171806337 satisfy the conditions of Lemma 5, then Eq. (18)

has no solutions for c ≥ 21.
For each c ∈ {16, 17, 18, 19, 20}, consider b = bc + 2nb′c to be the solutions of Eq. (19)

and a = ac +2na′c to be the solutions of Eq. (20) (when these equations have solution). The
values bc and ac are given in table 3.

c bc ac
16 15 15
17 14 No solutions
18 12 No solutions
19 8 No solutions
20 0 4

Table 3: Solutions of Eq. (19) and Eq. (20) for n = 4.

Hence, when c ∈ {17, 18, 19}, Eq. (20) has no solutions. When c ∈ {16, 20}, Eq. (21) has
no solutions.

Thus, statement (b) is obtained.

We are now in conditions to prove a generalization of the Euclid-Euler theorem for 2Fn

Fn−1
-

perfect numbers, when n ∈ {1, 2, 3, 4}. The proof of the next theorem follows the same steps
as the proof of Theorem 3.

Theorem 7. Let Fn be the n-th Fermat number. Then

1. if exists N such that σ(N)
N

= F1

2
and F1 | N , then 24 ‖ N,F 2

1 ‖ N , and 312 | N .

2. if n ∈ {2, 3, 4} then 2Fn

Fn−1
is a Fn-abundancy outlaw.

Proof. Let n ∈ {1, 2, 3, 4} and Fn = 22
n

+ 1. We can write N = 2aF b
nm such that a, b ≥ 1,

gcd(2Fn,m) = 1, and

σ(N) =
2Fn

Fn − 1
N.

Then
2Fn

Fn − 1
=

σ(N)

N
=

2a+1 − 1

2a
F b+1
n − 1

F b
n(Fn − 1)

σ(m)

m
.

Therefore,
σ(m)

m
=

2a+1 F b+1
n

(2a+1 − 1)(F b+1
n − 1)

.

Let
d = gcd

(

2a+1 F b+1
n , (2a+1 − 1)(F b+1

n − 1)
)

.
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As Fn − 1 | F b+1
n − 1, then d = 2s F t

n, where 2n ≤ s ≤ a+ 1 and 0 ≤ t ≤ b+ 1. Since

gcd

(

2a+1F b+1
n

2s F t
n

,
(2a+1 − 1)(F b+1

n − 1)

2s F t
n

)

= 1,

then

σ(m) =
2a+1F b+1

n

2s F t
n

k and m =
2a+1 − 1

F t
n

F b+1
n − 1

2s
k,

for some positive integer k.
Let us consider the following three cases, which will establish the claim.

Case A: Suppose that t 6= 0 and let

M = max

(

2a+1 − 1

F t
n

,
F b+1
n − 1

2s

)

.

Then we have that

σ(m)

k
=

2a+1F b+1
n

2s F t
n

=
2a+1 − 1

F t
n

F b+1
n − 1

2s
+

2a+1 − 1

F t
n

1

2s
+

F b+1
n − 1

2s
1

F t
n

+
1

2s F t
n

<
m

k
+

M

Fn − 1
+

M

Fn

+ 1

<
m

k
+M + 1.

Therefore,
σ(m) < m+Mk + k. (22)

If Mk 6= m and M 6= 1, then m has at least the divisors m, Mk, and k. Thus,

σ(m) ≥ m+Mk + k. (23)

The combination of inequalities (22) and (23), give us a contradiction.
If Mk = m or M = 1, then

2a+1 − 1

F t
n

= 1 or
F b+1
n − 1

2s
= 1.

Thus 2a+1 − F t
n = 1 or F b+1

n − 2s = 1. By Lemma 6, the only solutions of these equations
are (a, t) = (0, 0) and (b, s) = (0, 2n). Hence, we obtain a contradiction because a, b ≥ 1.

Case B: Suppose t = 0 and

2a+1 − 1 6=
F b+1
n − 1

2s
.

13



Let

M ′ = min

(

2a+1 − 1,
F b+1
n − 1

2s

)

.

If M ′ = 1 then

2a+1 − 1 = 1 or
F b+1
n − 1

2s
= 1.

Thus 2a+1 = 2 or F b+1
n − 2s = 1. As a, b ≥ 1, by Lemma 6, we have a contradiction.

If M ′ 6= 1 then m has at least the divisors

m,
(

2a+1 − 1
)

k,
F b+1
n − 1

2s
k and k.

Therefore,

σ(m) ≥ m+ (2a+1 − 1)k +
F b+1
n − 1

2s
k + k

> (2a+1 − 1)
F b+1
n − 1

2s
k +

2a+1 − 1

2s
k +

F b+1
n − 1

2s
k +

k

2s

= σ(m),

where the strict inequality results from s ≥ 2n. Hence, we obtain a contradiction.

Case C: Suppose t = 0 and

2a+1 − 1 =
F b+1
n − 1

2s
.

Then 2a+1+s − F b+1
n = 2s − 1. By Lemma 6, we have

(Fn, a, b, s) ∈ {(5,−1,−1, 1), (5, 0, 0, 2), (5, 1,1, 3), (5, 4, 2, 2), (17, 0, 0, 4),

(257, 0, 0, 8), (65537, 0, 0, 16)}.

Since a, b ≥ 1, we only have solutions for Fn = 5 and then (Fn, a, b) = (5, 1, 1) or (Fn, a, b) =
(5, 4, 2).

If (Fn, a, b) = (5, 1, 1) then

σ(N)

N
=

5

2
=

3

2
·
6

5
·
σ(m)

m
.

Therefore, 9 | m. But then
σ(N)

N
=

5

2
≥

3

2
·
6

5
·
13

9
>

5

2
.

Hence, (Fn, a, b) = (5, 4, 2) and so 312 | N .
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[6] P. Mihǎilescu, Primary cyclotomic units and a proof of catalans conjecture, J. Reine
Angew. Math. 2004 (2004), 167–195.

[7] R. Ryan, A simpler dense proof regarding the abundancy index, Math. Mag. 76 (2003),
299–301.

[8] R. Scott, On the equations px − by = c and ax + by = cz, J. Number Theory 44 (1993),
153–165.

[9] R. Steuerwald, Ein Satz über natürliche Zahlen N mit σ(N) = 3N , Arch. Math. (Basel)
5 (1954), 449–451.

[10] R. Styer, Small two-variable exponential diophantine equations, Math. Comp. 60 (1993),
811–816.

[11] P. Weiner, The abundancy ratio, a measure of perfection, Math. Mag. 73 (2000), 307–
310.

15

http://wwwhomes.uni-bielefeld.de/achim/mpn.html
http://wwwhomes.uni-bielefeld.de/achim/mpn.html
https://cs.uwaterloo.ca/journals/JIS/VOL10/Holdener/holdener7.html


2020 Mathematics Subject Classification: Primary 11A25; Secondary 11N25, 11B83.
Keywords: Euclid-Euler theorem, α-perfect number, Fermat number, abundancy index,
abundancy outlaw.

(Concerned with sequences A005820, A019434, A214409, and A214413.)

Received July 2 2022; revised version received July 3 2022; October 5 2022; October 6 2022;
October 12 2022. Published in Journal of Integer Sequences, October 14 2022.

Return to Journal of Integer Sequences home page.

16

https://oeis.org/A005820
https://oeis.org/A019434
https://oeis.org/A214409
https://oeis.org/A214413
https://cs.uwaterloo.ca/journals/JIS/

	Introduction
	Generalizing Euler's method
	The Euclid-Euler theorem: r=1 and =pp-1
	3-perfect numbers divisible by 6: r=2 and =3
	Fermat prime numbers: r=2 and =2pp-1
	Acknowledgment

