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Abstract

We consider a two-parameter family of triangles whose (n, k)-th entry (counting
the initial entry as the (0, 0)-th entry) is the number of tilings of N -boards (which are
linear arrays of N unit square cells for any nonnegative integer N) with unit squares
and (1,m− 1; t)-combs for some fixed m = 1, 2, . . . and t = 2, 3, . . . that use n tiles in
total of which k are combs. A (1,m − 1; t)-comb is a tile composed of t unit square
sub-tiles (referred to as teeth) placed so that each tooth is separated from the next
by a gap of width m − 1. We show that the entries in the triangle are coefficients
of the product of two consecutive generalized Fibonacci polynomials each raised to
some nonnegative integer power. We also present a bijection between the tiling of an
(n + (t − 1)m)-board with k (1,m − 1; t)-combs with the remaining cells filled with
squares and the k-subsets of {1, . . . , n} such that no two elements of the subset differ
by a multiple of m up to (t − 1)m. We can therefore give a combinatorial proof of
how the number of such k-subsets is related to the coefficient of a polynomial. We also
derive a recursion relation for the number of closed walks from a particular node on a
class of directed pseudographs and apply it obtain an identity concerning the m = 2,
t = 5 instance of the family of triangles. Further identities of the triangles are also
established mostly via combinatorial proof.
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1 Introduction

In a recent paper [3], that we will henceforth refer to as AE22, we considered two one-
parameter families of generalizations of Pascal’s triangle. Regarding the triangles as lower
triangular matrices, the members of both families have ones in the leftmost column and the
repetition of 1 followed by m − 1 zeros along the leading diagonal, where m is a positive
integer. In the case of the first family, the rest of the entries are obtained using Pascal’s
recurrence, i.e.,

(
n
k

)
m

=
(
n−1
k

)
m

+
(
n−1
k−1

)
m

, where
(
n
k

)
m

is the (n, k)-th entry (counting the
first entry as being in row n = 0 and column k = 0) of the m-th triangle of the family. We
showed that this is equivalent to the triangles being row-reversed (1/(1 − xm), x/(1 − x))
Riordan arrays. A (p(x), q(x)) Riordan array, where p(x) = p0 + p1x + p2x

2 + · · · and
q(x) = q1x + q2x

2 + · · · , is an infinite lower triangular matrix whose (n, k)-th entry is the
coefficient of xn in the series expansion of p(x)(q(x))k [13, 4]. The row-reversed version of a
Riordan array has the entries up to and including the leading diagonal in each row placed
in reverse order [3].

The main focus of AE22 was on a second family of triangles whose (n, k)-th entry (denoted
by 〈 nk 〉m) is the number of ways to tile N -boards (which are linear arrays of N ≥ 0 unit
square cells) using k (1,m − 1)-fences and n − k squares (and thus n tiles in total). A
(1,m− 1)-fence is a tile composed to two unit-square sub-tiles separated by a gap of width
m − 1 [5, 6]. The two families of triangles coincide for m = 1, 2 and the m = 1 case is
Pascal’s triangle, i.e.,

(
n
k

)
1

= 〈 nk 〉1 =
(
n
k

)
and

(
n
k

)
2

= 〈 nk 〉2 for all n and k. We showed that

for j ≥ 0, k ≥ 0, m ≥ 1, and r = 0, . . . ,m − 1, the entry 〈mj+r−k
k
〉m is the coefficient of

xk in fm−rj (x)f rj+1(x), where in this instance the Fibonacci polynomial fn(x) is defined by
fn(x) = fn−1(x)+xfn−2(x)+δn,0, fn<0(x) = 0, where δi,j is 1 if i = j and zero otherwise. By
first identifying a bijection between the tilings of an (n+m)-board with k (1,m− 1)-fences
and n + m − 2k squares and the subsets of Nn = {1, . . . , n} containing k elements none of
which differ from another element in the subset by m, we showed that the number of such
subsets, S(m)(n, k) = 〈 n+m−kk 〉m. We thus arrived at a combinatorial proof of the relation
between S(m)(n, k) and the coefficient of xk in the product of nonnegative integer powers of
two successive Fibonacci polynomials.

Here we generalize the second family of triangles by considering the analogous n-tile
tilings ofN -boards with (1,m−1; t)-combs and squares for positive integerm and t = 2, 3, . . ..
A (w, g; t)-comb contains t sub-tiles of dimensions w×1 (referred to as teeth) separated from
one another by gaps of width g [2]. A (1,m− 1; 2)-comb is evidently a (1,m− 1)-fence and
so the t = 2 instances of the triangles we introduce here coincide with the second family of
triangles in AE22. Our choice of this particular way to generalize the second family stems
from the result that the additional combinatorial interpretation of entries in the triangle as
numbers of k-subsets of Nn satisfying rules on disallowed differences also applies in the case
of the generalized triangles.

After introducing the two-parameter family of triangles (along with a less compact version
of the triangles which is used in some proofs) in §2, we show how entries of the triangles are
related to some generalized Fibonacci polynomials in §3. Then, in §4, we give a bijection
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between the tilings of an (n+(t−1)m)-board with k (1,m−1; t)-combs and n+(t−1)m−kt
squares and the k-subsets of Nn such that no two elements of the subset differ by any element
of the set {m, 2m, . . . , (t − 1)m}. This enables us to relate the number of such subsets to
coefficients of products of powers of two successive generalized Fibonacci polynomials. The
remainder of the paper concerns finding identities satisfied by entries in the triangle. Most of
the identities are obtained via the enumeration of metatiles with a certain length or number
of tiles, which can be problematic if the metatiles contain an arbitrary number of tiles. A
metatile is a gapless grouping of tiles that completely covers a whole number of cells and
cannot be split into smaller metatiles. In most cases, there are infinitely many possible
metatiles and there have been various approaches to the enumeration problem: obtaining
the symbolic representation of all the families of metatiles [7], obtaining a recursion relation
for the number of metatiles of a certain length and thus expressing the number in terms of a
known sequence [8], identifying a bijection between the metatiles and a set of objects whose
number is known [2], and constructing a directed pseudograph (that we refer to as a digraph)
to represent the placing of tiles [6]. We will use the first and last of these approaches and
these are described further in §5. Recursion relations for numbers of tilings corresponding
to a particular class of digraph are derived in the appendix and these are used to obtain
identities for the m = 2, t = 5 triangle in §6 where further identities concerning the triangles
are also derived, mostly via combinatorial proof.

2 The two-parameter family of triangles

For m = 1, 2, . . . and t = 2, 3, . . ., let 〈 nk 〉m,t denote the number of n-tile tilings of N -
boards that use k (1,m − 1; t)-combs (and n − k squares). We define 〈 00 〉m,t = 1 and that
〈 n
k<0 〉m,t = 〈 n

k>n 〉m,t = 0. As a (1, 0; t)-comb is just a t-omino and the number of n-tile tilings
using n t-ominoes and n − k squares is simply

(
n
k

)
for any t, we have 〈 nk 〉1,t≥2 =

(
n
k

)
, which

is Pascal’s triangle (A007318). The triangles corresponding to m = 2, 3, 4, 5 with t = 2 are
A059259, A350110, A350111, and A350112, respectively [3]. We show examples of the starts
of triangles for combs with at least 3 teeth in Figs. 1–4.

We can also create a triangle of [ nk ]m,t where this denotes the number of tilings of an
n-board that use k (1,m− 1; t)-combs (and therefore n− kt squares) again with [ 00 ]m,t = 1.
The two triangles are related via the following identity.

Identity 1. For m ≥ 1, t ≥ 2, and n ≥ k ≥ 0 we have[
n
k

]
m,t

=

〈
n− (t− 1)k

k

〉
m,t

.

Proof. If a tiling contains n− (t− 1)k tiles of which k are (1,m− 1; t)-combs (and so n− kt
are squares), the total length is n− kt+ kt = n.

We will refer to the ray of entries given by 〈 n−µk
k
〉m,t for k = 0, . . . , bn/(µ+1)c as the n-th

(1, µ)-antidiagonal. A (1, 1)-antidiagonal is therefore what is normally referred to simply as
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n \ k 0 1 2 3 4 5 6 7 8 9 10 11 12 13
0 1
1 1 0
2 1 0 1
3 1 1 2 0
4 1 2 4 0 1
5 1 3 6 3 3 0
6 1 4 9 8 9 0 1
7 1 5 13 17 18 6 4 0
8 1 6 18 30 36 20 16 0 1
9 1 7 24 48 66 55 40 10 5 0
10 1 8 31 72 114 120 100 40 25 0 1
11 1 9 39 103 186 234 221 135 75 15 6 0
12 1 10 48 142 289 420 456 350 225 70 36 0 1
13 1 11 58 190 431 709 876 805 581 280 126 21 7 0

Figure 1: The start of a Pascal-like triangle (A354665 in the OEIS [14]) whose (n, k)-th entry,
〈 nk 〉2,3, is the number of n-tile tilings using k (1, 1; 3)-combs (and n− k squares). Entries in
bold font (and those in bold font in Figs. 2–4) are covered by identities in §6.

n \ k 0 1 2 3 4 5 6 7 8 9 10 11 12 13
0 1
1 1 0
2 1 0 1
3 1 0 2 0
4 1 1 4 0 1
5 1 2 6 0 3 0
6 1 3 9 4 9 0 1
7 1 4 12 10 18 0 4 0
8 1 5 16 21 36 10 16 0 1
9 1 6 21 36 60 30 40 0 5 0
10 1 7 27 57 100 81 100 20 25 0 1
11 1 8 34 84 158 168 200 70 75 0 6 0
12 1 9 42 118 243 322 400 231 225 35 36 0 1
13 1 10 51 160 361 560 736 560 525 140 126 0 7 0

Figure 2: The start of a Pascal-like triangle (A354666) with entries 〈 nk 〉2,4.
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n \ k 0 1 2 3 4 5 6 7 8 9 10 11 12 13
0 1
1 1 0
2 1 0 1
3 1 0 2 0
4 1 0 4 0 1
5 1 1 6 0 3 0
6 1 2 9 0 9 0 1
7 1 3 12 5 18 0 4 0
8 1 4 16 12 36 0 16 0 1
9 1 5 20 25 60 15 40 0 5 0
10 1 6 25 42 100 42 100 0 25 0 1
11 1 7 31 66 150 112 200 35 75 0 6 0
12 1 8 38 96 225 224 400 112 225 0 36 0 1
13 1 9 46 134 325 424 700 364 525 70 126 0 7 0

Figure 3: The start of a Pascal-like triangle (A354667) with entries 〈 nk 〉2,5.

n \ k 0 1 2 3 4 5 6 7 8 9 10 11 12 13
0 1
1 1 0
2 1 0 0
3 1 0 0 1
4 1 0 1 2 0
5 1 1 3 4 0 0
6 1 2 5 8 0 0 1
7 1 3 8 12 0 3 3 0
8 1 4 12 18 9 12 9 0 0
9 1 5 16 27 25 29 27 0 0 1
10 1 6 21 42 51 66 54 0 6 4 0
11 1 7 27 62 95 135 108 36 30 16 0 0
12 1 8 34 88 160 234 216 126 95 64 0 0 1
13 1 9 42 122 252 396 432 321 280 160 0 10 5 0

Figure 4: The start of a Pascal-like triangle (A354668) with entries 〈 nk 〉3,3.
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an antidiagonal. As a consequence of Identity 1, the (1, t − 1)-antidiagonals of the 〈 nk 〉m,t
triangle are the rows of the [ nk ]m,t triangle. In the rest of the paper we therefore only give
identities for the 〈 nk 〉m,t triangle as it is more ‘compact’ in the sense that its rows contain
fewer trailing zeros. However, as in AE22, some of the identities are more straightforward
to prove by considering the tiling of an n-board, in which case we need to consider [ nk ]m,t.
The following bijection (which is established in the proof of Theorem 2.1 in [2]) will be used
in such proofs.

Lemma 2. For t ≥ 2, j ≥ 0, and r = 0, . . . ,m, where m ≥ 1, there is a bijection between
the tilings of an (mj + r)-board using k (1,m− 1; t)-combs and mj + r− kt squares and the
tilings of an ordered m-tuple of r (j+ 1)-boards followed by m− r j-boards using k t-ominoes
and mj + r − kt squares.

3 Relation of the triangles to polynomials

For t ≥ 2 we define a (1, t)-bonacci polynomial as follows:

f (t)
n (x) = f

(t)
n−1(x) + xf

(t)
n−t(x) + δn,0, f

(t)
n<0(x) = 0. (1)

The (1, 2)-bonacci polynomials f
(2)
n (x) are the Fibonacci polynomials used in AE22. We

refer to the sequence defined by

f (t)
n = f

(t)
n−1 + f

(t)
n−t + δn,0, f

(t)
n<0 = 0, (2)

for t ≥ 2 as the (1, t)-bonacci numbers. The t = 2, . . . , 8 cases are, respectively, the
Fibonacci numbers (A000045), the Narayana’s cows sequence (A000930) and sequences
A003269, A003520, A005708, A005709, and A005710 in the OEIS.

Lemma 3. The sum of the coefficients of f
(t)
n (x) is f

(t)
n (1) = f

(t)
n .

Proof. The sum of the coefficients of f
(t)
n (x) can be expressed as f

(t)
n (1). Putting x = 1 into

(1) gives (2) with f
(t)
n replaced by f

(t)
n (1).

In the next lemma and theorem (which are generalizations of Lemma 13 and Theorem 14
in AE22) we employ the coefficient operator [xk], which denotes the coefficient of xk in the
term it precedes.

Lemma 4. Let f(t, n, k) = [xk]f
(t)
n (x) and let b(t, n, k) be the number of tilings of an n-board

with squares and t-ominoes that use exactly k t-ominoes. Then f(t, n, k) = b(t, n, k) for all
n and k.

Proof. This follows from Theorem 10 of AE22. The metatiles are the square and t-omino.
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Theorem 5. For j ≥ 0, k ≥ 0, m ≥ 1, t ≥ 2, and r = 0, . . . ,m− 1 we have〈
mj + r − (t− 1)k

k

〉
m,t

= [xk]
(
f
(t)
j (x)

)m−r(
f
(t)
j+1(x)

)r
. (3)

Proof. Identity 1 gives us 〈mj+r−(t−1)k
k

〉m,t = [mj+r
k

]m,t. From Lemma 2, we have that

[mj+r
k

]m,t equals the number of ways to tile an ordered m-tuple of r (j + 1)-boards fol-
lowed by m− r j-boards using k t-ominoes (and mj + r− kt squares). The number of such
tilings of the m-tuple of boards is

∑
k1≥0, k2≥0, ..., km≥0,
k1+k2+···+km=k

(
r∏
i=1

b(t, j + 1, ki)

)(
m∏

i=r+1

b(t, j, ki)

)
,

in which the first product is omitted when r = 0. The coefficient of xk in
(
f
(t)
j+1(x)

)r(
f
(t)
j (x)

)m−r
is

[xk]

(
r∏
i=1

b(j+1)/tc∑
ki=0

f(t, j + 1, ki)x
ki

)(
m∏

i=r+1

bj/tc∑
ki=0

f(t, j, ki)x
ki

)

= [xk]
∑

k1≥0,k2≥0,...,km≥0

(
r∏
i=1

f(t, j + 1, ki)

)(
m∏

i=r+1

f(t, j, ki)

)
xk1+k2+···+km

=
∑

k1≥0, k2≥0, ..., km≥0,
k1+k2+···+km=k

(
r∏
i=1

f(t, j + 1, ki)

)(
r∏
i=1

f(t, j, ki)

)
.

The result then follows from Lemma 4.

The following identity gives the sums of the (1, t−1)-antidiagonals of the 〈 nk 〉m,t triangle.
It is a generalization of Identity 15 in AE22. This, in turn, is a generalization of the well-
known result that the sum of the elements in the n-th antidiagonal of Pascal’s triangle is the
Fibonacci number f

(2)
n , counting the initial 1 in the triangle as the zeroth antidiagonal.

Identity 6. For t ≥ 2, j ≥ 0, m ≥ 1, and r = 0, . . . ,m− 1 we have

b(mj+r)/tc∑
k=0

〈
mj + r − (t− 1)k

k

〉
m,t

=
(
f
(t)
j

)m−r(
f
(t)
j+1

)r
.

Proof. Summing (3) over all permitted k gives the sum of all coefficients of

F (x) =
(
f
(t)
j (x)

)m−r(
f
(t)
j+1(x)

)r
,

which is F (1) and equals
(
f
(t)
j

)m−r(
f
(t)
j+1

)r
by Lemma 3.
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4 Relation of the triangles to restricted combinations

We now look at S(m,t)(n, k), the number of subsets of Nn of size k such that the difference of
any two elements of the subset does not equal any element in the set Q = {m, 2m, . . . , (t−
1)m}. For example, S(2,3)(5, 0) = 1, S(2,3)(5, 1) = 5, S(2,3)(5, 2) = 6, and S(2,3)(5, k > 2) = 0
since the possible subsets of N5 such that no two elements in the subset differ by 2 or 4
are {}, {1}, {2}, {3}, {4}, {5}, {1, 2}, {2, 3}, {3, 4}, {4, 5}, {1, 4}, and {2, 5}. There is
a formula for S(m,t)(n, k) in terms of sums of products of binomial coefficients [12]. Here
we will show that S(m,t)(n, k) = 〈 n+(t−1)(m−k)

k
〉m,t and hence obtain an expression for the

number of subsets in terms of coefficients of products of (1, t)-bonacci polynomials, which is
a generalization of earlier results [11, 3]. We first establish the following bijection.

Lemma 7. For m,n ≥ 1, t ≥ 2, and k ≥ 0, there is a bijection between the k-subsets of Nn

such that all pairs of elements taken from a subset do not differ by an element from the set
Q = {m, 2m, . . . , (t−1)m}, and the tilings of an (n+(t−1)m)-board with k (1,m−1; t)-combs
and n+ (t− 1)m− kt squares.

Proof. We label the cells of the (n + (t− 1)m)-board from 1 to n + (t− 1)m. If a k-subset
contains element i then we place a comb so that its left tooth occupies cell i. Notice that
if i = n then the rightmost tooth occupies the final cell on the board. After placing combs
corresponding to each element of the subset, the rest of the board is filled with squares
of which there must be n + (t − 1)m − kt. Conversely, the tiling of any (n + (t − 1)m)-
board with k combs corresponds to a k-subset where no two elements differ by an element
of Q since the remaining teeth of a comb whose leftmost tooth occupies cell i lie on cells
i + m, i + 2m, . . . , i + (t − 1)m, which means none of these cells can be occupied by the
leftmost tooth of another comb.

Corollary 8. For m,n ≥ 1, t ≥ 2, and k ≥ 0 we have S(m,t)(n, k) = 〈 n+(t−1)(m−k)
k

〉m,t.

Proof. Lemma 7 gives us S(m,t)(n, k) = [ n+(t−1)m
k

]m,t. The result then follows from Identity 1.

Corollary 9. For m,n ≥ 1, and t ≥ 2, the sum of the elements in the n-th (1, t − 1)-
antidiagonal of 〈 nk 〉m,t is the number of subsets of Nn−(t−1)m chosen so that no two elements
of the subsets differ by any member of the set {m, . . . , (t− 1)m}.

Proof. The elements in the (1, t− 1)-antidiagonal are, for k ≥ 0,〈
n− (t− 1)k

k

〉
m,t

= S(m,t)(n− (t− 1)m, k)

by Corollary 8. Summing over all k then gives the result.

The next two corollaries follow from Theorem 5 and Identity 6, respectively.
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Corollary 10. For j, k ≥ 0, m ≥ 1, t ≥ 2, and r = 0, . . . ,m− 1 we have

S(m,t)(mj + r, k) = [xk]
(
f
(t)
j+t−1(x)

)m−r(
f
(t)
j+t(x)

)r
.

Corollary 11. For j ≥ 0, m ≥ 1, t ≥ 2, and r = 0, . . . ,m − 1, the number of subsets of
Nmj+r each of which lack pairs of elements that differ by a multiple of m up to (t − 1)m is(
f
(t)
j+t−1

)m−r(
f
(t)
j+t

)r
.

5 Metatiles and digraphs

The simplest metatiles when tiling with squares (S) and (1,m − 1; t)-combs (C) are the
free square (S), what we will refer to as an m-comb (Cm), which is m interlocking combs
with no gaps, and the filled comb (CS(m−1)(t−1)), which is a comb with all the gaps filled
with squares. The m = 2, t = 3 instances of these are the first three metatiles depicted in
Fig. 5(a).

When m = 1, the only metatiles are the two individual tiles themselves: a square and a
comb, which, as the gaps are of zero width, is just a t-omino. When m > 1, the only case
when there is a finite number of metatiles is when t = 2 [10]. There are two cases when there
is a single infinite sequence of metatiles: the (m, t) = (3, 2) case, which was dealt with in
AE22, and when m = 2 and t = 3. In the latter case, the metatiles are S, C2, and CSCjS
for j ≥ 0, as illustrated in Fig. 5(a). This infinite sequence of metatiles is analogous to that
found for the (m, t) = (3, 2) case [3, §6]: CS has a single remaining unit-width slot which
can be filled either with an S, thus completing the metatile, or with the left tooth of a C
(to give CSC) which again results in a slot of unit width.

S C
2

CS
2 CSCS CSC

2
S

C

C

S

010

(b)

0101

C
S

S

(a)

Figure 5: Metatiles when tiling with squares and (1, 1; 3)-combs (m = 2, t = 3). (a) A
31-board tiled with all the metatiles containing less than 6 tiles. Shaded (white) cells are
occupied by squares (combs). Bold lines indicate which teeth belong to the same comb.
Dashed lines show boundaries between metatiles. The symbolic representation is above each
metatile. (b) The digraph for generating metatiles.

9



For a particular choice of types of tiles, a systematic way to generate all metatiles and,
in the simpler cases, obtain finite-order recursion relations for the number of tilings is via
a directed pseudograph (henceforth referred to as a digraph) in which each arc represents
the addition of a tile and each node represents the current state of the yet-to-be-completed
metatile [6, 9]. Any such digraph contains a 0 node which represents the empty board or the
completed metatile. The remaining nodes are named using binary strings: the i-th digit of
the string is 0 (1) if the i-th cell, starting at the first unoccupied cell of the incomplete metatile
and ending at its last occupied cell, is empty (filled). Thus all nodes (except the 0 node)
start with 0 and end with 1. There is a bijection between each possible metatile and each
path on the digraph which starts and finishes at the 0 node without visiting it in between.
To obtain the symbolic representation of the metatile, one simply reads off the names of the
arcs along the path and then simplifies the resulting expression by, for example, replacing
CC by C2. The digraph for generating metatiles when tiling with squares and (1, 1; 3)-combs
is shown in Fig. 5(b).

In such metatile-generating digraphs, a cycle is a path starting and finishing at a given
node but not repeating any other node or arc in between [6]. Where there is no possibility
of ambiguity, we refer to cycles just by the arcs they contain. An inner cycle is a cycle that
does not include the 0 node. For example, the digraph in Fig. 5(b) has just one inner cycle,
i.e., C (which connects the 01 node to itself). Note that, as we have already seen in the
tiling corresponding to Fig. 5(b), if a digraph has an inner cycle, there are infinitely many
possible metatiles as, if the walk reaches a node in an inner cycle, the cycle can be traversed
an arbitrary number of times before it is exited and the walk returns to the 0 node.

If all of the inner cycles of a digraph have at least one node in common, that node (or
any one of those nodes) is said to be the common node. E.g., in the digraph in Fig. 5(b)
the 01 node is the common node. A common circuit is a simple path from the 0 node to
the common node (with no node or arc reached more than once) followed by a simple path
from the common node back to the 0 node. The nodes and arcs in the return journey, again,
cannot be repeated (although they can coincide with nodes or arcs traversed in the outward
journey). E.g., CSS is the common circuit in Fig. 5(b).

An outer cycle is a cycle that starts at the 0 node but never reaches the common node.
Thus there are two such cycles in Fig. 5(b): S and C2. In a digraph with a common node,
the outer cycles correspond to metatiles which are not members of an infinite family; the
remaining metatiles correspond to the outbound part of the common circuit followed by an
arbitrary number of trips around the inner cycle(s) (in any order, if there are more than
one) followed by the inbound part of the common circuit (these are the metatiles CSCjS
for j = 0, 1, 2, . . . in Fig. 5).

6 Further identities

We start by deriving identities that apply to all the triangles and later on obtain recursion
relations for some particular instances of the triangles after constructing the correspond-

10



ing metatile-generating digraphs. The following three identities arise from considering the
simplest types of n-tile tilings.

Identity 12. For n ≥ 0, m ≥ 1, and t ≥ 2 we have 〈 n0 〉m,t = 1.

Proof. There is only one way to create an n-tile tiling without using any combs, namely, the
all-square tiling.

Identity 13. For n ≥ 0, m ≥ 1, and t ≥ 2 we have 〈 nn 〉m,t = δn mod m,0.

Proof. The only way to tile without squares is the all m-comb tiling. This can only occur if
the number of tiles is a multiple of m.

Identity 14. For n,m ≥ 1 and t ≥ 2 we have〈
n
1

〉
m,t

=

{
0, if n < (m− 1)(t− 1) + 1;

n− (m− 1)(t− 1), otherwise.

Proof. Any n-tile tiling using exactly one (1,m− 1; t)-comb must have a filled comb, which
itself contains (m− 1)(t− 1) + 1 tiles. Thus there can be no n-tile tilings using 1 comb that
use less than this number of tiles. If n ≥ (m − 1)(t − 1) + 1, the tiling consists of a filled
comb and n − (m − 1)(t − 1) − 1 free squares, which gives a total of n − (m − 1)(t − 1)
metatile positions in which the filled comb can be placed.

The pattern of zeros seen in the triangles is a result of the following identity.

Identity 15. For j ≥ 1, m, t ≥ 2, p = 1, . . . ,m− 1, and r = 1− (t− 2)p, . . . , p we have〈
mj − r
mj − p

〉
m,t

= 0.

Proof. We first derive an expression for K, the maximum number of combs that can be used
in the tiling of an (mJ+R)-board, where R = 0, . . . ,m−1. From Lemma 2, we have that K
is also the maximum number of t-ominoes that can be used in the tiling of R (J + 1)-boards
and m−R J-boards. Then it is straightforward to show that

K =


m
(
J − (J mod t)

)
t

, if J mod t < t− 1;

m(J − t+ 1)

t
+R, if J mod t = t− 1.

(4)

From Identity 1 we have 〈
mj − r
mj − p

〉
m,t

=

[
tmj − r − (t− 1)p

mj − p

]
m,t

.

11



Writing tmj − r − (t − 1)p in the form mJ + R, if J = tj − s, where s = 1, . . . , t, then
R = sm− r − (t− 1)p. The condition that 0 ≤ R < m gives (s− 1)m < r + (t− 1)p ≤ sm.
This condition is compatible with the minimum and maximum values r + (t− 1)p can take
which are, respectively, 2 and tm. From (4) we find for s > 1 that K = m(j − 1), which is
always less than mj−p. When s = 1, we have K = mj−p−r−(t−2)p. Since r+(t−2)p ≥ 1
we have K < mj − p in this case as well.

The following identity explains the entries that appear at the vertical boundaries of the
nonzero parts of the triangles and start with rising powers of ascending positive integers.
Identities 16 and 17 reduce to Identity 24 of AE22 when t = 2.

Identity 16. For j,m ≥ 1, t ≥ 2, s = 0, . . . , t− 2, and r = 0, . . . ,m we have〈
m(j + s− 1) + r

m(j − 1)

〉
m,t

=

(
j + s− 1

s

)m−r(
j + s

s+ 1

)r

=

j
r, if s = 0;(
j(j + 1) · · · (j + s− 1)

s!

)m(
j + s

s+ 1

)r
, if s > 0.

Proof. From Identity 1 we have〈
m(j + s− 1) + r

m(j − 1)

〉
m,t

=

[
m(t(j − 1) + s) + r

m(j − 1)

]
m,t

.

By Lemma 2, this is the number of ways to tile m − r boards of length t(j − 1) + s and r
boards of length t(j−1) + s+ 1 with m(j−1) t-ominoes (and sm+ r squares). As s+ 1 < t,
each of the m boards always contains exactly j− 1 t-ominoes. A board of length t(j− 1) + s
has s squares and so there are j + s− 1 metatile positions in which to put the squares (the
rest being filled by t-ominoes) and thus

(
j+s−1
s

)
ways to tile it. Likewise, a board of length

t(j− 1) + s+ 1 has j + s metatile positions and so there are
(
j+s
s+1

)
ways to tile it. The result

follows from the numbers of each type of board.

The next identity explains the rising powers of integers on non-vertical rays of entries at
the boundaries of the nonzero parts of the triangles.

Identity 17. For m, j ≥ 1, t ≥ 2, and p = 0, . . . ,m we have〈
mj + (t− 2)p

mj − p

〉
m,t

=

(
j + t− 2

t− 1

)p
.

Proof. From Identity 1 we have〈
mj + (t− 2)p

mj − p

〉
m,t

=

[
tmj − p
mj − p

]
m,t

=

[
m(jt− 1) +m− p
(m− p)j + p(j − 1)

]
m,t

,

12



which is also the number of ways to tile m− p jt-boards and p boards of length jt− 1 using
(m− p)j + p(j − 1) t-ominoes and (t− 1)p squares. The jt-boards are completely filled by
j t-ominoes and the p (jt − 1)-boards each have j − 1 t-ominoes and t − 1 squares. As on
these p shorter boards there are j + t− 2 tiles in total, there are

(
j+t−2
t−1

)
ways to tile each of

them, which leads to a total of (
j + t− 2

t− 1

)p
tilings for the set of boards.

The following two identities are generalizations of Identities 25 and 26 in AE22.

Identity 18. For j,m ≥ 1 and t ≥ 2 we have〈
mj + t− 1
mj − 1

〉
m,t

= m

(
j + t− 1

t

)
.

Proof. From Identity 1 we obtain〈
mj + t− 1
mj − 1

〉
m,t

=

[
tmj

mj − 1

]
m,t

,

which, from Lemma 2, is the number of ways to tile an m-tuple of jt-boards with mj − 1
t-ominoes and t squares. As the length of each board is a multiple of t, all the squares must
lie on the same board. On such a board there are j − 1 t-ominoes and t squares making
j + t − 1 tiles in total. Hence there are

(
j+t−1
t

)
possible ways to tile it. As there are m

possible boards on which to place all the squares, the result follows.

Identity 19. For t ≥ 2 and m, j ≥ 1 provided mj ≥ 2 we have

〈
mj + 2(t− 1)

mj − 2

〉
m,t

=



(
m

2

)
, if j = 1,m > 1;

m

(
j + 2(t− 1)

2t

)
+

(
m

2

)(
j + t− 1

t

)2

, if m, j > 1;(
j + 2(t− 1)

2t

)
, if m = 1, j > 1.

Proof. From Identity 1 we obtain〈
mj + 2(t− 1)

mj − 2

〉
m,t

=

[
tmj

mj − 2

]
m,t

,

which, from Lemma 2, is the number of ways to tile an m-tuple of jt-boards with mj − 2
t-ominoes and 2t squares. If j > 1, all 2t squares can be on the same jt-board which, with
the j − 2 t-ominoes on that board, makes j − 2 + 2t tiles in total and hence

(
j+2(t−1)

2t

)
tilings

of it. With m boards to choose from, this gives the first term on the right-hand sides of the
identity when j > 1. Otherwise, if m > 1, two of the boards have t squares each. There are(
j+t−1
t

)
ways to tile each of those boards and

(
m
2

)
ways to choose them.

13



The following identity is a generalization of the previous two.

Identity 20. For s ≥ 1, t ≥ 2, and m, j ≥ 1 provided mj ≥ s we have〈
mj + s(t− 1)

mj − s

〉
m,t

=
∑
ri≥1;

r1+···+rp=s

(
m

p

) p∏
i=1

(
j + ri(t− 1)

rit

)
,

where the sum is over compositions of s, p is the number of parts of the composition, and(
a
b

)
is understood to equal zero if a < b.

Proof. From Identity 1 we have〈
mj + s(t− 1)

mj − s

〉
m,t

=

[
tmj

mj − s

]
m,t

,

which, from Lemma 2, is the number of ways to tile an m-tuple of jt-boards with mj − s
t-ominoes and st squares. We partition the squares into p parts of sizes rit where ri ∈ Z+

such that r1 + · · ·+ rp = s. A jt-board containing rit squares has j − ri t-ominoes and thus
j − ri + rit tiles in total and so (

j + ri(t− 1)

rit

)
possible ways to tile it. There are

(
m
p

)
ways to choose which of the m boards have any

squares.

In order to truly deserve to be called a Pascal-like triangle, a triangle ought to have a
portion where Pascal’s recurrence is obeyed. We now show that this is the case for our
triangles by using a result from a study on restricted combinations [12] to extend and prove
Conjecture 30 of AE22.

Theorem 21. For integers k ≥ 0, m ≥ 1, t ≥ 2, and n > (m− 1)(t− 1)k,〈
n
k

〉
m,t

=

〈
n− 1
k

〉
m,t

+

〈
n− 1
k − 1

〉
m,t

. (5)

Proof. The result holds for k = 0 since 〈 n≥01 〉m,t = 1 by Identity 12 and 〈 n<0
k 〉m,t =

〈 n
k<0 〉m,t = 0 by definition. Mansour and Sun give the result in Theorem 3.5 of their pa-

per [12], when rewritten in our own notation, that for any integers m, k ≥ 1, and t ≥ 2,

S(m,t)(N, k) = S(m,t)(N − 1, k) + S(m,t)(N − t, k − 1), (6)

provided that N ≥ m(t−1)(k−1). However, the condition for this relation between numbers
of subsets to hold should read N > m(t−1)(k−1) (personal communication with Mansour).
Corollary 8 gives us n = N + (t− 1)(m− k) and we can rewrite (6) as〈
N + (t− 1)(m− k)

k

〉
m,t

=

〈
N + (t− 1)(m− k)− 1

k

〉
m,t

+

〈
N + (t− 1)(m− k + 1)− t

k − 1

〉
m,t

,

14



which reduces to (5). The corrected condition becomes n− (t−1)(m−k) > m(t−1)(k−1),
which gives the condition in our theorem.

We now turn to obtaining recursion relations for particular instances of the triangles.
For all but the last triangle we consider, we require the following theorem which extends a
result proved elsewhere for tilings of an n-board when the digraph has a common node [6,
Theorem 5.4 and Identity 5.5] to also include n-tile tilings of boards.

Theorem 22. For a digraph possessing a common node, let loi be the length of the i-th outer
cycle (i = 1, . . . , No), let Lr be the length of the r-th inner cycle (r = 1, . . . , N) and let
Kr be the number of combs it contains, and let lci be the length of the i-th common circuit
(i = 1, . . . , Nc) and let kci be the number of combs it contains. Then for all integers n and
k,

Bn = δn,0 +
N∑
r=1

(Bn−Lr − δn,Lr) +
No∑
i=1

(
Bn−loi −

N∑
r=1

Bn−loi−Lr

)
+

Nc∑
i=1

Bn−lci , (7)

Bn,k = δn,0δk,0 +
N∑
r=1

(Bn−Lr,k−Kr − δn,Lrδk,Kr) +
No∑
i=1

(
Bn−loi,k−koi −

N∑
r=1

Bn−loi−Lr,k−koi−Kr

)

+
Nc∑
i=1

Bn−lci,k−kci , (8)

where Bn<0 = Bn,k<0 = Bn<k,k = 0. If the lengths of the cycles and circuits are calculated as
the number of tiles (the total contribution made to the number of cells occupied) then Bn is
the number of n-tile tilings (the number of tilings of an n-board) and Bn,k is the number of
such tilings that use k combs.

In the proofs of Identities 23, 24, 26, 27, 29, and 30, which use Theorem 22 (and Identities
32 and 33, which use Theorem 36), the lengths of the cycles and circuits are the number of
tiles they contain. In the proofs of Identities 25, 28, 31, and 34, the lengths of the cycles and
circuits are the total number of cells that the tiles along the arcs occupy. An S occupies 1
cell whereas a C occupies t cells. Thus if L is the length of a cycle or circuit containing K
combs when finding the recursion relations for n-tile tilings then L′ = L + (t − 1)K is the
length of that cycle or circuit when the recursion relations are for the tilings of an n-board.

Identity 23. For all n, k ∈ Z we have〈
n
k

〉
2,3

= δn,0δk,0 − δn,1δk,1 +

〈
n− 1
k

〉
2,3

+

〈
n− 1
k − 1

〉
2,3

−
〈
n− 2
k − 1

〉
2,3

+

〈
n− 2
k − 2

〉
2,3

+

〈
n− 3
k − 1

〉
2,3

−
〈
n− 3
k − 3

〉
2,3

. (9)
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Proof. The digraph for tiling with squares and (1, 1; 3)-combs has a single inner cycle connect-
ing the 01 node to itself by a C (Fig. 5(b)). Hence 01 is the common node and L1 = K1 = 1.
There are 2 outer cycles (S and C2) and so lo1 = 1, ko1 = 0, and lo2 = ko2 = 2. There is a
single common circuit (CS2) which gives lc1 = 3 and kc1 = 1.

Identity 24. If Bn is the sum of the n-th row of 〈 nk 〉2,3 then, for all n, we have

Bn = δn,0 − δn,1 − δn,2 + 2Bn−1,

where Bn<0 = 0.

Proof. Sum each term in (9) over all k or use (13).

As defined above, (Bn)n≥0 = 1, 1, 2, 4, 8, 16, 32, 64, 128, 256, . . . is A011782.

Identity 25. If An is the sum of the n-th (1, 2)-antidiagonal of 〈 nk 〉2,3 then, for all n, we
have

An = δn,0 − δn,3 + An−1 + An−3 − An−4 + An−5 + An−6 − An−9,

where An<0 = 0.

Proof. By Identity 1, the n-th (1, 2)-antidiagonal of 〈 nk 〉2,3 is the n-th row of [ nk ]2,3. From the
definition of the latter triangle, An is the number of tilings of an n-board using squares and
(1, 1; 3)-combs and is given by (13) (with Bn replaced by An) applied to the same digraph
as in the proof of Identity 23 but with the following changes made to the lengths: L1 = 3,
lo2 = 6, lc1 = 5.

As defined above, (An)n≥0 = 1, 1, 1, 1, 1, 2, 4, 6, 9, 12, 16, 24, 36, 54, 81, 117, . . . is A224809.
From Corollary 9, An is the number of subsets of Nn−4 chosen so that no two elements differ
by 2 or 4.

Identity 26. For all n, k ∈ Z we have〈
n
k

〉
2,4

= δn,0δk,0 − δn,2(δk,1 + δk,2) +

〈
n− 1
k

〉
2,4

+

〈
n− 2
k − 1

〉
2,4

+ 2

〈
n− 2
k − 2

〉
2,4

−
〈
n− 3
k − 1

〉
2,4

−
〈
n− 3
k − 2

〉
2,4

+

〈
n− 4
k − 1

〉
2,4

+

〈
n− 4
k − 2

〉
2,4

−
〈
n− 4
k − 3

〉
2,4

−
〈
n− 4
k − 4

〉
2,4

. (10)

Proof. The digraph for tiling with squares and (1, 1; 4)-combs has 2 inner cycles (SC and C2)
both of which pass though the 0101 and 01 nodes (Fig. 6). We choose 0101 as the common
node. We see that L1 = L2 = 2, K1 = 1, and K2 = 2. There are 2 outer cycles (S and C2)
and so lo1 = 1, ko1 = 0, and lo2 = ko2 = 2. There are 2 common circuits: CS{S,C}S where
X{Y, Z} means XY and XZ. Hence lc1 = lc2 = 4, kc1 = 1, and kc2 = 2.
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Figure 6: Digraph for generating metatiles when tiling with squares and (1, 1; 4)-combs
(m = 2, t = 4).

Identity 27. If Bn is the sum of the n-th row of 〈 nk 〉2,4 then, for all n, we have

Bn = δn,0 − 2δn,2 +Bn−1 + 3Bn−2 − 2Bn−3,

where Bn<0 = 0.

Proof. Sum each term in (10) over all k or use (13).

As defined above, (Bn)n≥0 = 1, 1, 2, 3, 7, 12, 27, 49, 106, 199, 419, . . . is A099163.
The proofs of the following identity and Identities 31 and 34 are analogous to that of

Identity 25. We just need to find the modified lengths of the cycles and circuits in the
digraph before using the theorem giving the recursion relation.

Identity 28. If An is the sum of the n-th (1, 3)-antidiagonal of 〈 nk 〉2,4 then, for all n, we
have

An = δn,0− δn,5− δn,8 +An−1 +An−5−An−6 +An−7 +2An−8−An−9 +An−10−An−13−An−16,

where An<0 = 0.

Proof. We use the same digraph and associated parameters as in the proof of Identity 26
except that L1 = 5, L2 = 8, lo2 = 8, lc1 = 7, and lc2 = 10.

As defined above, (An)n≥0 = 1, 1, 1, 1, 1, 1, 1, 2, 4, 6, 9, 12, 16, 20, 25, 35, . . . is A224808.
From Corollary 9 we have that An is the number of subsets of Nn−6 chosen so that no
two elements differ by 2, 4, or 6.

Identity 29. For all n, k ∈ Z we have〈
n
k

〉
4,2

= δn,0δk,0−δn,2δk,1−δn,3δk,2−δn,4δk,4+

〈
n− 1
k

〉
4,2

+

〈
n− 2
k − 1

〉
4,2

−
〈
n− 3
k − 1

〉
4,2

+

〈
n− 3
k − 2

〉
4,2

+

〈
n− 4
k − 1

〉
4,2

+

〈
n− 4
k − 3

〉
4,2

+ 2

〈
n− 4
k − 4

〉
4,2

+

〈
n− 5
k − 2

〉
4,2

+ 2

〈
n− 5
k − 3

〉
4,2

−
〈
n− 5
k − 4

〉
4,2

−
〈
n− 6
k − 3

〉
4,2

−
〈
n− 6
k − 5

〉
4,2

−
〈
n− 7
k − 4

〉
4,2

−
〈
n− 7
k − 5

〉
4,2

−
〈
n− 7
k − 6

〉
4,2

−
〈
n− 8
k − 7

〉
4,2

−
〈
n− 8
k − 8

〉
4,2

.

(11)
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Figure 7: Digraph for generating metatiles when tiling with squares and (1, 3; 2)-combs
(m = 4, t = 2).

Proof. The digraph for tiling with squares and (1, 3; 2)-combs (which are also called (1, 3)-
fences) has 3 inner cycles all of which contain the nodes 001 and 01 (Fig. 7). We choose 001
as the common node. The cycles, given as lists of arcs starting from 001, are {S,C{S,C2}}C.
Hence Li = 2, 3, 4 and Ki = 1, 2, 4, respectively, for i = 1, 2, 3. There are 5 outer cycles:
S,C2{S{S,CS}, C{S,C}}. Thus loi = 1, 4, 5, 4, 4 and koi = 0, 2, 3, 3, 4, respectively, for
i = 1, . . . , 5. There are 8 common circuits: C{S,CSC2}{S2, C{S2, C{S,CS}}}. Hence
lci = 4, 5, 5, 6, 7, 8, 8, 9 and kci = 1, 2, 3, 4, 4, 5, 6, 7, respectively, for i = 1, . . . , 8.

Identity 30. If Bn is the sum of the n-th row of 〈 nk 〉4,2 then for all n we have

Bn = δn,0 − δn,2 − δn,3 − δn,4 +Bn−1 +Bn−2 + 4Bn−4 + 2Bn−5 − 2Bn−6 − 3Bn−7 − 2Bn−8,

where Bn<0 = 0.

Proof. Sum each term in (11) over all k or use (13).

As defined above, (Bn)n≥0 = 1, 1, 1, 1, 5, 12, 21, 34, 70, 155, 318, 610, . . . has the generating
function (1− x− x3)/((1− 2x)(1− x2)(1 + 2x2 + x3 + x4)).

Identity 31. If An is the sum of the n-th antidiagonal of 〈 nk 〉4,2 then for all n we have

An = δn,0 − δn,3 − δn,5 − δn,8 + An−1 + An−3 − An−4 + 2An−5 + 2An−7 + 4An−8 − 2An−9

− 2An−11 − An−12 − An−13 − An−15 − An−16,

where An<0 = 0.

Proof. We use the same digraph and associated parameters as in the proof of Identity 29
except that L1 = 3, L2 = 5, L3 = 8, loi = 6, 8, 7, 8 for i = 2, . . . , 5, and for i = 1, . . . , 8,
lci = 5, 7, 8, 10, 11, 13, 14, 16.
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Figure 8: Digraph for generating metatiles when tiling with squares and (1, 1; 5)-combs
(m = 2, t = 5).

As defined above, (An)n≥0 = 1, 1, 1, 1, 1, 2, 4, 8, 16, 24, 36, 54, 81, 135, 225, . . . (after remov-
ing the first four 1s) is A031923. From Corollary 9 we have that An is the number of subsets
of Nn−4 chosen so that no two elements differ by 4.

Identity 32. For all n, k ∈ Z we have〈
n
k

〉
2,5

= δn,0δk,0 − δn,1δk,1 − δn,2δk,2 + δn,3(δk,3 − δk,1) +

〈
n− 1
k

〉
2,5

+

〈
n− 1
k − 1

〉
2,5

−
〈
n− 2
k − 1

〉
2,5

+ 2

〈
n− 2
k − 2

〉
2,5

+

〈
n− 3
k − 1

〉
2,5

−
〈
n− 3
k − 2

〉
2,5

− 2

〈
n− 3
k − 3

〉
2,5

−
〈
n− 4
k − 1

〉
2,5

+

〈
n− 4
k − 2

〉
2,5

+

〈
n− 4
k − 3

〉
2,5

−
〈
n− 4
k − 4

〉
2,5

+

〈
n− 5
k − 1

〉
2,5

− 2

〈
n− 5
k − 3

〉
2,5

+

〈
n− 5
k − 5

〉
2,5

. (12)

Proof. The digraph for tiling with squares and (1, 1; 5)-combs has 3 inner cycles but no
common node (Fig. 8). If the loop at the 0101 node were not present, the digraph would
have a common node. Using terminology and notation we introduce in the appendix, the
loop at 0101 is an errant loop and has length L0 = 1 and number of combs K0 = 1. We
take the 010101 node as the pseudo-common node (we could have also chosen the 01 node
instead). There are two common circuits, CSCS and CS4, the first of which is plain. Thus
lc1 = lpc1 = 4, kc1 = kpc1 = 2, lc2 = 5, kc2 = 1, Nc = 2, and Npc = 1. Of the other two inner
cycles, C2 is plain, S2C is not. Thus L1 = 2, K1 = 2, L2 = 3, and K2 = 1. The outer cycles
are S and C2 and are both plain. Hence lo1 = 1, ko1 = 0, lo2 = ko2 = 2, and No = 2. The
identity then follows from applying (14).

Identity 33. If Bn is the sum of the n-th row of 〈 nk 〉2,5 then for all n we have

Bn = δn,0 − δn,1 − δn,2 + 2Bn−1 +Bn−2 − 2Bn−3,

where Bn<0 = 0.

Proof. Sum each term in (12) over all k or use (13).
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As defined above, (Bn)n≥0 = 1, 1, 2, 3, 6, 11, 22, 43, 86, 171, 342, 683, . . . is A005578.

Identity 34. If An is the sum of the n-th (1, 4)-antidiagonal of 〈 nk 〉2,5 then for all n we have

An = δn,0 − δn,5 − δn,7 − δn,10 + δn,15 + An−1 + An−5 − An−6 + An−7 − An−8 + An−9

+ 2An−10 − An−11 + An−12 − 2An−15 + An−16 − 2An−17 − An−20 + An−25

where An<0 = 0.

Proof. We use the same digraph and associated parameters as in the proof of Identity 32
except that L0 = 5, L1 = 10, L2 = 7, lo2 = 10, lc1 = lpc1 = 12, and lpc2 = 9.

As defined above, (An)n≥0 = 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 4, 6, 9, 12, 16, 20, 25, 30, 36, 48, 64, . . .
is A224811. From Corollary 9 we have that An is the number of subsets of Nn−8 chosen so
that no two elements differ by 2, 4, 6, or 8.

7 Discussion

In this paper and AE22 we considered tiling-derived triangles whose entries were shown to
be numbers of k-subsets of Nn such that no two elements of the subset differ by an element
in a set Q of disallowed differences. In AE22, Q = {m} for fixed m ∈ Z+, whereas in
the present paper, Q = {m, 2m, . . . , (t − 1)m}, where t = 2, 3, . . .. One is then led to ask
whether there is a correspondence between restricted combinations specified by other types
of Q and tilings. When Q = Nq for some q ∈ Z+, using the same ideas as in the proof of
Lemma 7, it is straightforward to show that there is a bijection between the tilings of an
(n + q)-board using k (q + 1)-ominoes and squares and the number of k-subsets. However,
the corresponding n-tile tilings triangles are just Pascal’s triangle for any q. In order to
obtain a tiling interpretation of restricted combinations with other classes of Q one needs a
form of a tiling where some parts of the tiles are allowed to overlap with parts of other tiles.
This is explored in depth in other work [1]. Whether or not such tiling schemes can be used
to generate further aesthetically pleasing families of number triangles remains to be seen.

From some of the entries in the OEIS that give the sums of the (1, t − 1)-antidiagonals
of the triangle (see A224809, A224808, and A224811) it appears that the number of subsets
of Nn−(t−1)m whose elements do not differ by an element of the set {m, 2m, . . . , (t − 1)m}
is also the number of permutations π of Nn such that π(i) − i ∈ {−m, 0, (t − 1)m} for all
i ∈ Nn. This is indeed true in general as we demonstrate combinatorially using combs and
fences elsewhere [1].

In AE22 it was noted that the 〈 nk 〉1,2 and 〈 nk 〉2,2 triangles are row-reversed Riordan
arrays and it was shown (in Corollary 37 of AE22) that the 〈 nk 〉m>2,2 triangles are not. From
Theorem 35 of AE22, the 〈 nk 〉m≥2,t≥3 triangles are not row-reversed Riordan arrays since
when tiling with (1,m − 1; t)-combs and squares, the filled-comb metatile contains more
than one square if (m− 1)(t− 1) > 1. The same theorem tells us that, except for the m = 1
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cases, the triangles are also not Riordan arrays since there are metatiles containing more
than one comb.

There are a number of types of tiling that lead to common-node-free digraphs that have
only a few inner cycles. As far as we are aware, Theorem 36 is the first result giving
recursion relations for a class of such cases. The theorem can be modified or generalized
to cope with a wider variety of classes and we will present these results in future studies
involving applications of tilings where instances of such digraphs arise.

8 Appendix: Recursion relations for 3-inner-cycle di-

graphs with a pseudo-common node

For a digraph lacking a common node, we refer to an inner cycle that can be represented as
a single arc linking a node E to itself as an errant loop if the digraph would have a common
node P if the errant loop arc were removed. The node P is then referred to as a pseudo-
common node. Evidently, E and P cannot be the same node; if they were the same node,
the original digraph would have a true common node. For a digraph with an errant loop, a
common circuit is defined as two concatenated simple paths from the 0 node to P and from
P to the 0 node. We also need to modify the definition of an outer cycle: it is now a cycle
starting at the 0 node which does not include P . An outer cycle, inner cycle, or common
circuit is said to be plain if it does not include the errant loop node E . See the proof of
Identity 32 for examples.

We use the N = 2 case of the following lemma in the proof of Theorem 36.

Lemma 35. For positive integers j0, j1, . . . , jN , where N ≥ 2, we have(
j1 + · · ·+ jN
j1, . . . , jN

)(
j0 + jN − 1

j0

)
=
N−1∑
r=1

(
j1 + · · ·+ jN − 1

j1, . . . , jr − 1, . . .

)((
j0 + jN − 1

j0

)
−
(
j0 + jN − 2

j0 − 1

))

+

(
j1 + · · ·+ jN
j1, . . . , jN

)(
j0 + jN − 2

j0 − 1

)
+

(
j1 + · · ·+ jN − 1

j1, . . . , jN − 1

)(
j0 + jN − 2

j0

)
.

Proof. Using the result for multinomial coefficients that(
j1 + · · ·+ jN
j1, . . . , jN

)
=

N∑
r=1

(
j1 + · · ·+ jN − 1

j1, . . . , jr − 1, . . . , jN

)
,

we have(
j1 + · · ·+ jN
j1, . . . , jN

)(
j0 + jN − 1

j0

)
=

(
N−1∑
r=1

(
j1 + · · ·+ jN − 1

j1, . . . , jr − 1, . . .

)
+

(
j1 + · · ·+ jN − 1

j1, . . . , jN − 1

))(
j0 + jN − 1

j0

)
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=
N−1∑
r=1

(
j1 + · · ·+ jN − 1

j1, . . . , jr − 1, . . .

)(
j0 + jN − 1

j0

)

+

(
j1 + · · ·+ jN − 1

j1, . . . , jN − 1

)((
j0 + jN − 2

j0

)
+

(
j0 + jN − 1

j0 − 1

))

=
N−1∑
r=1

(
j1 + · · ·+ jN − 1

j1, . . . , jr − 1, . . .

)(
j0 + jN − 1

j0

)
+

(
j1 + · · ·+ jN − 1

j1, . . . , jN − 1

)(
j0 + jN − 2

j0

)

+

((
j1 + · · ·+ jN
j1, . . . , jN

)
−

N−1∑
r=1

(
j1 + · · ·+ jN − 1

j1, . . . , jr − 1, . . . , jN

))(
j0 + jN − 2

j0 − 1

)
,

which gives the required result on rearranging.

Theorem 36. For a digraph with an errant loop of length L0 containing K0 combs, a plain
inner cycle of length L1 containing K1 combs, a non-plain inner cycle of length L2 containing
K2 combs, and outer cycles that are all plain and have length loi and contain koi combs for
i = 1, . . . , No, let lci be the length of the i-th common circuit and let kci be the number of
combs it contains (i = 1, . . . , Nc), and let lpci be the length of the i-th plain common circuit
and let kpci be the number of combs it contains (i = 1, . . . , Npc). Then for all integers n and
k we have

Bn = δn,0 +
2∑
r=0

(Bn−Lr − δn,Lr) + δn,L0+L1 −Bn−L0−L1

+
No∑
i=1

(
Bn−loi +Bn−loi−L0−L1 −

N∑
r=0

Bn−loi−Lr

)
+

Nc∑
i=1

Bn−lci −
Npc∑
i=1

Bn−lpci−L0 ,

(13)

Bn,k = δn,0δk,0 +
2∑
r=0

(Bn−Lr,k−Kr − δn,Lrδk,Kr) + δn,L0+L1δk,K0+K1 −Bn−L0−L1,k−K0−K1

+
No∑
i=1

(
Bn−loi,k−koi +Bn−loi−L0−L1,k−koi−K0−K1 −

N∑
r=0

Bn−loi−Lr,k−koi−Kr

)

+
Nc∑
i=1

Bn−lci,k−kci −
Npc∑
i=1

Bn−lpci−L0,k−kpci−K0 , (14)

where Bn<0 = Bn,k<0 = Bn<k,k = 0. If the lengths of the cycles and circuits are calculated as
the number of tiles (the total contribution made to the number of cells occupied) then Bn is
the number of n-tile tilings (the number of tilings of an n-board) and Bn,k is the number of
such tilings that use k combs.

Proof. To keep the algebra looking as simple as possible while retaining the essentials at the
heart of the proof, we just prove the formula for Bn when there is a single outer cycle, one
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plain common circuit, and one non-plain common circuit. Their respective lengths are lo,
lpc, and lnpc. It is straightforward to modify the proof we give here to include the sums over
outer cycles and common circuits.

Conditioning on the final metatile gives

Bn = δn,0 +Bn−lo +
∑
j1≥0

Bn−lpc−j1L1 +
∑

j0,j1≥0,
j2≥1

(
j1 + j2
j1

)(
j0 + j2 − 1

j0

)
Bn−lpc−j0L0−j1L1−j2L2

+
∑
e,j1≥0

Bn−lnpc−eL0−j1L1 +
∑

e,j0,j1≥0,
j2≥1

(
j1 + j2
j1

)(
j0 + j2 − 1

j0

)
Bn−lnpc−(j0+e)L0−j1L1−j2L2 (15)

with Bn<0 = 0. We now explain the origin of the four sums in (15) while referring to the
digraph in Fig. 8 (taking the 010101 node as P) for examples of metatiles. The first sum
is from metatiles obtained by taking the first part of the plain common circuit to P , then
following the plain inner cycle j1 times, and then returning to the 0 node via the second half
of the plain common circuit (e.g., CSC2j1CS is the symbolic representation of the metatiles
corresponding to the terms in the sum).

The second sum corresponds to metatiles with the same start and end as with the first
sum but on reaching P the plain and non-plain inner cycles are executed j1 and j2 times,
respectively, in any order but the non-plain inner cycle is executed at least once. The number
of ways of choosing the order is

(
j1+j2
j1

)
. The errant loop is also traversed a total of j0 times.

Each time the path reaches E (during an execution of the non-plain inner cycle), it can
detour and traverse the errant loop any number of times. This is the origin of the

(
j0+j2−1

j0

)
factor which has j2 − 1 rather than j2 as the non-plain inner cycle must be started before
the errant loop can be traversed. E.g., the metatiles corresponding to the terms in the sum
when j0 = j1 = j2 = 1 are CS{C2SCS, SCSC2}CS.

The third and fourth sums are analogous to the first and second but P is reached via
the first half of the non-plain common circuit, and after the inner cycles have been traversed
jr times (with r = 1 in the third sum and r = 0, 1, 2 in the fourth), the 0 node is returned
to via the second half of the non-plain common circuit but the errant loop is executed an
extra e times when the path reaches E . E.g., the metatiles corresponding to the terms in
the third sum are CSC2j1SCeS2, and in the fourth sum when j0 = j1 = j2 = 1 they are
CS{C2SCS, SCSC2}SCeS2.

Representing (15) by E(n), we write down

E(n)− E(n− L0)− E(n− L1) + E(n− L0 − L1)− E(n− L2)

and re-index the sums so that, where possible, the Bn−α inside the sums for any α appear
the same as for E(n) (e.g.,

∑
j1≥0Bn−L1−lpc−j1L1 =

∑
j1≥1Bn−lpc−j1L1). This leaves

Bn −
2∑
r=0

Bn−Lr +Bn−L0−L1 = δn,0 +Bn−lo −
2∑
r=0

(δn,Lr +Bn−lo−Lr) + δn,L0+L1 +Bn−lo−L0−L1
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+
∑
j1≥0

βj1L1 −
∑
j1≥1

βj1L1 −
∑
j1≥0

βL0+j1L1 +
∑
j1≥1

βL0+j1L1 −
∑
j1≥0

βj1L1+L2

+
∑
e,j1≥0

β̂j1L1 −
∑
e≥0,
j1≥1

β̂j1L1 −
∑
e≥1,
j1≥0

β̂j1L1 +
∑
e,j1≥1

β̂j1L1 −
∑
e,j1≥0

β̂j1L1+L2

+
∑

j0,j1≥0,
j2≥1

(
j1 + j2
j1

)(
j0 + j2 − 1

j0

)
βλ −

∑
j0≥0,
j1,j2≥1

(
j1 + j2 − 1

j1 − 1

)(
j0 + j2 − 1

j0

)
βλ

−
∑

j0,j2≥1,
j1≥0

(
j1 + j2
j1

)(
j0 + j2 − 2

j0 − 1

)
βλ +

∑
j0,j1,j2≥1

(
j1 + j2 − 1

j1 − 1

)(
j0 + j2 − 2

j0 − 1

)
βλ

−
∑

j0,j1≥0,
j2≥2

(
j1 + j2 − 1

j1

)(
j0 + j2 − 2

j0

)
βλ

+ the above 3 lines with βλ replaced by β̂λ and also summed over all e ≥ 0, (16)

where βa = Bn−lpc−a, β̂a = Bn−lnpc−eL0−a, and λ = j0L0 + j1L1 + j2L2. On rearranging
(16) it is immediately apparent where all but the last two sums in (13) come from. The
first two sums in the second line of (16) reduce to β0 = Bn−lpc . The next two sums reduce
to −βL0 = −Bn−lpc−L0 , which accounts for the final sum in (13). The first four sums in
the third line of (16) reduce to Bn−lnpc , which, when added to the Bn−lpc , accounts for the
penultimate sum in (13).

We now complete the proof by showing that the remaining terms in (16) cancel out. We
regroup terms in each of the sums in the fourth, fifth, and sixth lines in (16) to give∑
j0,j1≥0,
j2≥1

(
j1 + j2
j1

)(
j0 + j2 − 1

j0

)
βλ =

∑
j0,j1≥1,
j2≥2

(
j1 + j2
j1

)(
j0 + j2 − 1

j0

)
βλ

+
∑
j0,j1≥1

(
j1 + 1

j1

)
βj0L0+j1L1+L2 +

∑
j0≥1,
j2≥2

(
j0 + j2 − 1

j0

)
βj0L0+j2L2 +

∑
j1≥1,
j2≥2

(
j1 + j2
j1

)
βj1L1+j2L2

+
∑
j0≥1

βj0L0+L2 +
∑
j1≥1

(
j1 + 1

j1

)
βj1L1+L2 +

∑
j2≥2

βj2L2 + βL2 , (17a)

∑
j0≥0,
j1,j2≥1

(
j1 + j2 − 1

j1 − 1

)(
j0 + j2 − 1

j0

)
βλ =

∑
j0,j1≥1,
j2≥2

(
j1 + j2 − 1

j1 − 1

)(
j0 + j2 − 1

j0

)
βλ

+
∑
j0,j1≥1

(
j1

j1 − 1

)
βj0L0+j1L1+L2 +

∑
j1≥1,
j2≥2

(
j1 + j2 − 1

j1 − 1

)
βj1L1+j2L2 +

∑
j1≥1

(
j1

j1 − 1

)
βj1L1+L2 ,

(17b)
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∑
j0,j2≥1,
j1≥0

(
j1 + j2
j1

)(
j0 + j2 − 2

j0 − 1

)
βλ =

∑
j0,j1≥1,
j2≥2

(
j1 + j2
j1

)(
j0 + j2 − 2

j0 − 1

)
βλ

+
∑
j0,j1≥1

(
j1 + 1

j1

)
βj0L0+j1L1+L2 +

∑
j0≥1,
j2≥2

(
j0 + j2 − 1

j0 − 1

)
βj0L0+j2L2 +

∑
j0≥1

βj0L0+L2 , (17c)

∑
j0,j1,j2≥1

(
j1 + j2 − 1

j1 − 1

)(
j0 + j2 − 2

j0 − 1

)
βλ =

∑
j0,j1≥1,
j2≥2

(
j1 + j2 − 1

j1 − 1

)(
j0 + j2 − 2

j0 − 1

)
βλ

+
∑
j0,j1≥1

(
j1

j1 − 1

)
βj0L0+j1L1+L2 , (17d)

∑
j0,j1≥0,
j2≥2

(
j1 + j2 − 1

j1

)(
j0 + j2 − 2

j0

)
βλ =

∑
j0,j1≥1,
j2≥2

(
j1 + j2 − 1

j1

)(
j0 + j2 − 2

j0

)
βλ

+
∑
j0≥1,
j2≥2

(
j0 + j2 − 1

j0

)
βj0L0+j2L2 +

∑
j1≥1,
j2≥2

(
j1 + j2 − 1

j1

)
βj1L1+j2L2 +

∑
j2≥2

βj2L2 . (17e)

We denote the p-th sum (or term) on the right-hand side of (17x) by xp where x is a–e.
Then a1 − b1 − c1 + d1 − e1 = 0 by virtue of Lemma 35, a2 cancels c2, a3 cancels c3 + e2, a4

cancels b3 + e3, a5 cancels c4, a6 − b4 + a8 =
∑

j1≥0 βj1L1+L2 and therefore cancels the last
sum in the second line of (16), a7 cancels e4, and b2 cancels d2. The simplification works
in the same way for the terms represented by the last line of (16). Denoting sums or terms
in the corresponding set of equations by x̂p, â6 − b̂4 + â8 =

∑
e,j1≥0 β̂j1L1+L2 and therefore

cancels the last sum in the third line of (16).
The proof of (14) proceeds in an analogous way. Again considering the case where there

is a single outer cycle (with ko combs), a plain common circuit (with kpc combs), and a
non-plain common circuit (with knpc combs), conditioning on the final metatile gives

Bn,k = δn,0δk,0 +Bn−lo,k−ko +
∑
j1≥0

Bn−lpc−j1L1,n−kpc−j1K1

+
∑

j0,j1≥0,
j2≥1

(
j1 + j2
j1

)(
j0 + j2 − 1

j0

)
Bn−lpc−λ,k−kpc−κ +

∑
e,j1≥0

Bn−lnpc−eL0−j1L1,k−knpc−eK0−j1K1

+
∑

e,j0,j1≥0,
j2≥1

(
j1 + j2
j1

)(
j0 + j2 − 1

j0

)
Bn−lnpc−eL0−λ,k−knpc−eK0−κ (18)

with Bn,k>n = Bn,k<0 = 0 and where κ = j0K0 + j1K1 + j2K2. Denoting (18) by E(n, k),
writing down

E(n, k)−E(n−L0, k−K0)−E(n−L1, k−K1)+E(n−L0−L1, k−K0−K1)−E(n−L2, k−K2),
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and then proceeding in the same way as for the proof of (13) gives the required result.
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