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Abstract

We consider two families of Pascal-like triangles that have all ones on the left side
and ones separated by m − 1 zeros on the right side. The m = 1 cases are Pascal’s
triangle and the two families also coincide when m = 2. Members of the first family
obey Pascal’s recurrence everywhere inside the triangle. We show that them-th triangle
can also be obtained by reversing the elements up to and including the main diagonal
in each row of the (1/(1 − xm), x/(1 − x)) Riordan array. Properties of this family of
triangles can be obtained quickly as a result. The (n, k)-th entry in the m-th member
of the second family of triangles is the number of tilings of an (n + k) × 1 board
that use k (1,m − 1)-fences and n − k unit squares. A (1, g)-fence is composed of
two unit square sub-tiles separated by a gap of width g. We show that the entries
in the antidiagonals of these triangles are coefficients of products of powers of two
consecutive Fibonacci polynomials and give a bijective proof that these coefficients
give the number of k-subsets of {1, 2, . . . , n−m} such that no two elements of a subset
differ by m. Other properties of the second family of triangles are also obtained via
a combinatorial approach. Finally, we give necessary and sufficient conditions for any
Pascal-like triangle (or its row-reversed version) derived from tiling (n × 1)-boards to
be a Riordan array.
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1 Introduction

Pascal’s triangle, whose entries
(

n
k

)

satisfy Pascal’s recurrence,

(

n

k

)

=

(

n− 1

k

)

+

(

n− 1

k − 1

)

,

is also the (1/(1− x), x/(1− x)) Riordan array. A (p(x), q(x)) Riordan array, where p(x) =
p0 + p1x + p2x

2 + · · · and q(x) = q1x + q2x
2 + · · · , is an infinite lower triangular matrix

whose (n, k)-th entry (where n ≥ 0, k ≥ 0) is denoted and defined by (p(x), q(x))n,k =
[xn]p(x)(q(x))k, where the coefficient operator [xn] gives the coefficient of xn in the series
expansion of the term it precedes [17, 3]. We define the row-reversed (p, q) Riordan array
as the lower triangular matrix obtained by reversing the elements of each row up to and
including the main diagonal of the (p, q) Riordan array, i.e., the (n, k)-th element of the
row-reversed (p, q) Riordan array is (p(x), q(x))n,n−k for 0 ≤ k ≤ n and 0 for k > n. Notice
that whereas the definition of a (p, q) Riordan array implies that the zeroth column of the
array gives the coefficients of the generating function of p(x), it is the main diagonal of the
row-reversed Riordan array where these coefficients appear. Owing to the symmetry of its
rows, Pascal’s triangle is also the row-reversed (1/(1 − x), x/(1 − x)) Riordan array. Note,
however, that in general, a row-reversed Riordan array is not necessarily a Riordan array.

Pascal’s triangle also has tiling interpretations. The (n, k)-th entry (when written as a
lower triangular matrix with the first 1 taken as the (0, 0)-th entry) is the number of square-
and-domino tilings of N -boards for any N (where an N -board is a linear array of N unit
square cells) that use n tiles in total of which k are dominoes (and therefore n−k are squares).
This is easily seen since there are

(

n
k

)

ways to choose which k of the n tiles are dominoes.
As there are 2n different possible square-and-domino n-tile tilings, one immediately has a
combinatorial proof that

∑n
k=0

(

n
k

)

= 2n [4]. Also, the k-th entry in the n-th antidiagonal

(i.e.,
(

n−k
k

)

) is the number of tilings of an n-board that use k dominoes and n− 2k squares.
The number of ways to tile an n-board using squares and dominoes is the Fibonacci number
fn given by fn = fn−1+fn−2 when n > 0, f0 = 1, fn<0 = 0 (A000045 in the OEIS [18]). This
is one way to show that the sum of elements of the n-th antidiagonal of Pascal’s triangle is
fn [4].

A (w, g)-fence is a tile composed of two sub-tiles (called posts) of dimensions w×1 which
are separated by a gap of width g. Fences have been used to give tiling interpretations of
various sequences [6, 8, 9, 11]. They have also been employed in combinatorial proofs relating
to strongly restricted permutations [7] and a probability problem [5].

A (1,m− 1)-fence for m = 2, 3, . . . can be regarded as a generalization of a domino since
the m = 1 case is effectively a domino. If one creates a Pascal-like triangle by specifying
that the (n, k)-th entry is the number of n-tile tilings of boards that use k (1, 1)-fences and
n − k squares one arrives at the triangle A059259 whose entries satisfy Pascal’s recurrence
[11] (Fig. 1). The triangle is also the row-reversed (1/(1−x2), x/(1−x)) Riordan array. One
naturally asks whether the triangle generated by tiling boards with (1,m − 1)-fences and
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n \ k 0 1 2 3 4 5 6 7 8 9 10 11 12
0 1
1 1 0
2 1 1 1
3 1 2 2 0
4 1 3 4 2 1
5 1 4 7 6 3 0
6 1 5 11 13 9 3 1
7 1 6 16 24 22 12 4 0
8 1 7 22 40 46 34 16 4 1
9 1 8 29 62 86 80 50 20 5 0
10 1 9 37 91 148 166 130 70 25 5 1
11 1 10 46 128 239 314 296 200 95 30 6 0
12 1 11 56 174 367 553 610 496 295 125 36 6 1

Figure 1: The start of a Pascal-like triangle (A059259) whose (n, k)-th entry,
(

n
k

)

2
= 〈 n

k 〉2, is
the (n, k)-th element of the row-reversed (1/(1− x2), x/(1− x)) Riordan array and also the
number of n-tile tilings using k (1, 1)-fences (and n− k squares). Entries in bold font (and
those in bold font in Figs. 4 and 5) are covered by identities in §7.

squares for a given fixed m is the row-reversed (1/(1 − xm), x/(1 − x)) array. The answer
for m > 2, as we will show here, is no, and so we obtain two separate families of triangles
which only coincide for the m = 1, 2 cases. However, one feature that the families have in
common is their sides: the left sides are all ones and the right side of the m-th member of
each family is the repetition of 1 followed by m− 1 zeros.

Our main concern here are triangles generated from tiling with squares and (1,m − 1)-
fences. However, for completeness, in §2 we look at triangles with the sides specified above
that obey Pascal’s recurrence everywhere in the interior. These turn out to be the same
as the row-reversed (1/(1 − xm), x/(1 − x)) Riordan arrays. The start of the section also
serves as an introduction to §8 where we discuss in general which tiling-derived triangles
can be Riordan arrays or their row-reversed versions, and the remainder of §2 gives us
the opportunity to illustrate how to obtain generating functions for sums of antidiagonals
and bivariate generating functions for row-reversed Riordan arrays which does not seem
to have been addressed elsewhere in the literature. In §3 we introduce the tiling-derived
family of triangles along with a closely related family which is helpful in proving some of the
properties of the triangles; the rows of the latter family are the antidiagonals of the former.
The tiling-derived triangles are shown to be related to Fibonacci polynomials and restricted
combinations in §4 and §5, respectively. In §6 we give general results on tiling with squares
and (1,m− 1)-fences which are used in the proofs of identities in §7.

3

https://oeis.org/A059259


n \ k 0 1 2 3 4 5 6 7 8 9 10 11 12
0 1
1 1 0
2 1 1 0
3 1 2 1 1
4 1 3 3 2 0
5 1 4 6 5 2 0
6 1 5 10 11 7 2 1
7 1 6 15 21 18 9 3 0
8 1 7 21 36 39 27 12 3 0
9 1 8 28 57 75 66 39 15 3 1
10 1 9 36 85 132 141 105 54 18 4 0
11 1 10 45 121 217 273 246 159 72 22 4 0
12 1 11 55 166 338 490 519 405 231 94 26 4 1

Figure 2: The start of a Pascal-like triangle (A118923) with entries
(

n
k

)

3
.

2 Triangles obtained from Pascal’s recurrence

We denote the (n, k)-th entry of the m-th member of our first family of generalizations of
Pascal’s triangle by

(

n
k

)

m
. By definition, we require that for n ≥ 0,

(

n
0

)

m
= 1 and

(

n
n

)

m
= 1

if n is a multiple of m and 0 otherwise, and that inside the triangle we have
(

n

k

)

m

=

(

n− 1

k

)

m

+

(

n− 1

k − 1

)

m

, 0 < k < n. (1)

For m = 1, . . . , 5 the triangles are Pascal’s triangle (A007318), A059259, A118923, A349839,
and A349841, respectively. The starts of the m = 2, 3, 4 triangles are displayed in Figs. 1, 2,
and 3, respectively.

In the following theorem we link this family of triangles to Riordan arrays. To do so we
need the result that if

(p, q)n,k = A0(p, q)n−1,k−1 + A1(p, q)n−1,k + · · ·+ Aj(p, q)n−1,k−1+j + · · · , (2)

where A0, A1, A2, . . . form the so-called A-sequence [16] and are the coefficients of the gen-
erating function A(x), then q(x) = xA(q(x)) [19, Theorem 1.3].

Theorem 1. For m ≥ 1, the triangle whose entries are
(

n
k

)

m
as defined above is the row-

reversed (1/(1− xm), x/(1− x)) Riordan array.

Proof. Row-reversing the elements of the triangle gives a lower triangular matrix whose
zeroth column is the repetition of 1 followed by m − 1 zeros, i.e., the coefficients of the
series expansion of 1/(1 − xm). Hence if the triangle is a row-reversed (p, q) Riordan array
then p = 1/(1 − xm). Rewriting the recursion relation (1) in terms of the elements of the
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n \ k 0 1 2 3 4 5 6 7 8 9 10 11 12
0 1
1 1 0
2 1 1 0
3 1 2 1 0
4 1 3 3 1 1
5 1 4 6 4 2 0
6 1 5 10 10 6 2 0
7 1 6 15 20 16 8 2 0
8 1 7 21 35 36 24 10 2 1
9 1 8 28 56 71 60 34 12 3 0
10 1 9 36 84 127 131 94 46 15 3 0
11 1 10 45 120 211 258 225 140 61 18 3 0
12 1 11 55 165 331 469 483 365 201 79 21 3 1

Figure 3: The start of a Pascal-like triangle (A349839) with entries
(

n
k

)

4
.

row-reversed array gives (p, q)n,n−k = (p, q)n−1,n−1−k + (p, q)n−1,n−k which on replacing n− k
by k gives

(p, q)n,k = (p, q)n−1,k−1 + (p, q)n−1,k.

Hence A(x) = 1 + x and so q = xA(q) = x(1 + q) from which q = x/(1− x).

A number of properties of the triangles can then be obtained easily. The first of these
follows immediately from the definition of a Riordan array.

Corollary 2. For m ≥ 1 and 0 ≤ k ≤ n,
(

n

k

)

m

= [xn]
1

1− xm

(

x

1− x

)n−k

. (3)

The next result is a more explicit expression for the (n, k)-th entry in the triangles.

Corollary 3. For m ≥ 1 and 0 ≤ k < n,

(

n

k

)

m

=

⌊k/m⌋
∑

j=0

(

n−mj − 1

n− k − 1

)

. (4)

Proof. We start with the definition of the (n, k)-th element of the Riordan array which for
k > 0 gives

(

1

1− xm
,

x

1− x

)

n,k

= [xn]
1

1− xm

xk

(1− x)k
= [xn−k]

1

1− xm

1

(1− x)k

= [xn−k]
∞
∑

j=0

xmj

∞
∑

r=0

(

k + r − 1

r

)

xr.
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To obtain the coefficient of xn−k we only require the r = n − k −mj term in the sum over
r, and as r cannot be negative, j cannot exceed (n− k)/m. This leaves

(

1

1− xm
,

x

1− x

)

n,k

=

⌊(n−k)/m⌋
∑

j=0

(

n−mj − 1

n− k −mj

)

=

⌊(n−k)/m⌋
∑

j=0

(

n−mj − 1

k − 1

)

.

The result then follows from Theorem 1.

The k-th column of a (p, q) Riordan array, whose generating function is pqk, becomes the
k-th subdiagonal (counting the main diagonal as the zeroth subdiagonal) of the row-reversed
(p, q) Riordan array after removing the initial k zeros. Hence the corresponding generating
function is p(x)(q(x)/x)k and we have the following result.

Corollary 4. For m ≥ 1 and k ≥ 0 the generating function for the k-th subdiagonal of the
m-th triangle is 1/((1− xm)(1− x)k).

The next result follows from the fact that the generating function for the sums of the
rows of a (p, q) Riordan array (and therefore also the corresponding row-reversed array) is
p(x)/(1− q(x)) [19].

Corollary 5. The generating function gr(x) for the row sums of the m-th triangle (where
m ≥ 1) is given by

gr(x) =
1− x

(1− xm)(1− 2x)
=

1

(1 + x+ · · ·+ xm−1)(1− 2x)
. (5)

From (5), the recursion relation giving rn, the sum of the n-th row, can be expressed as,
for n > 1, rn = 2rn−1 + rn−m − 2rn−m−1 with r1 = 2 if m = 1 and r1 = 1 if m > 1, or as, for
n > 0, rn = rn−1 + · · ·+ rn−m+1 + 2rn−m, where for both relations r0 = 1 and rn<0 = 0. For
m = 1, . . . , 5 these correspond to the sequences A000079, A001045, A077947, A115451, and
A349842, respectively.

The remaining two corollaries require results that we prove in the appendix.

Corollary 6. For the m-th triangle (where m ≥ 1), the generating function ga for the
antidiagonal sums is given by

ga(x) =
1− x2

(1− x2m)(1− x− x2)
=

1

(1 + x2 + · · ·+ x2(m−1))(1− x− x2)
. (6)

Proof. The result follows from Lemma 38.

Thus the recursion relation for an, the sum of the n-th antidiagonal, can be written, for
n 6= 0, 2, as an = an−1+an−2+an−2m−an−2m−1−an−2m−2 with a2 = 3 if m = 1 and a2 = 2 if
m > 1, or, for n > 0, as an = an−1 + an−3 + · · ·+ an−2m+1 + an−2m, where for both relations,
a0 = 1 and an<0 = 0. For m = 1, . . . , 5 these correspond to the sequences A000045, A006498,
A079962, A349840, and A349843, respectively.
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n \ k 0 1 2 3 4 5 6 7 8 9 10 11 12 13
0 1
1 1 0
2 1 0 0
3 1 1 1 1
4 1 2 3 2 0
5 1 3 5 4 0 0
6 1 4 8 8 4 2 1
7 1 5 12 16 13 9 3 0
8 1 6 17 28 30 22 9 0 0
9 1 7 23 45 58 51 27 9 3 1
10 1 8 30 68 103 108 78 40 18 4 0
11 1 9 38 98 171 211 187 123 58 16 0 0
12 1 10 47 136 269 382 399 310 176 64 16 4 1
13 1 11 57 183 405 651 781 708 480 240 90 30 5 0

Figure 4: The start of a Pascal-like triangle (A350110) with entries 〈 n
k 〉3.

Corollary 7. The bivariate generating function for the m-th triangle (where m ≥ 1) is given
by

gm(x, y) =
1− xy

(1− (xy)m)(1− x− xy)
=

1

(1 + xy + · · ·+ (xy)m−1)(1− x− xy)
. (7)

Proof. The result follows from Lemma 39.

Note that it is a generating function in the sense that
(

n
k

)

m
= [xnyk]gm(x, y).

3 Triangles derived from tiling

For m = 1, 2, . . . , let 〈 n
k 〉m denote the number of n-tile tilings that use k (1,m − 1)-fences

(and n− k squares). We choose to make 〈 0
0 〉m = 1 and for k < 0 or k > n, 〈 n

k 〉m = 0. The
starts of the m = 2, 3, 4 triangles are shown in Figs. 1, 4, and 5. The triangles m = 1, . . . , 5
are sequences A007318, A059259, A350110, A350111, and A350112, respectively.

We can also create a triangle of [ nk ]m where this denotes the number of tilings of an
n-board that use k (1,m− 1)-fences (and n− 2k squares). We also make [ 00 ]m = 1. The two
triangles are related via the following identity.

Identity 8. For m ≥ 1 and n ≥ k ≥ 0,
[

n
k

]

m

=

〈

n− k
k

〉

m

.

Proof. If a tiling contains n− k tiles of which k are fences, the total length is n− 2k+2k =
n.
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n \ k 0 1 2 3 4 5 6 7 8 9 10 11 12 13
0 1
1 1 0
2 1 0 0
3 1 0 0 0
4 1 1 1 1 1
5 1 2 3 4 2 0
6 1 3 6 7 4 0 0
7 1 4 9 12 8 0 0 0
8 1 5 13 20 16 8 4 2 1
9 1 6 18 32 36 28 19 12 3 0
10 1 7 24 50 69 69 58 31 9 0 0
11 1 8 31 74 120 144 127 78 27 0 0 0
12 1 9 39 105 195 264 265 189 81 27 9 3 1
13 1 10 48 144 300 458 522 432 270 132 58 24 4 0

Figure 5: The start of a Pascal-like triangle (A350111) with entries 〈 n
k 〉4.

As a consequence of Identity 8, the antidiagonals of the 〈 n
k 〉m triangle are the rows of the

[ nk ]m triangle. In the rest of the paper we therefore only give identities for one of the two
families of tiling triangles and choose 〈 n

k 〉m as it is more ‘compact’ in the sense that its rows
contain fewer trailing zeros. Some of the identities, however, are more straightforward to
prove by considering the tiling of an n-board. The following bijection (which is established
in the proof of Theorem 5 in [11]) will be used in such proofs. Note that for convenience in
some of the proofs, we have extended the result to include r = m. This is clearly valid as it
is equivalent to changing r to zero and increasing j by 1.

Lemma 9. For j ≥ 0 and r = 0, . . . ,m, where m ≥ 1, there is a bijection between the
tilings of an (mj+ r)-board using k (1,m− 1)-fences and mj+ r− 2k squares and the tilings
of an ordered m-tuple of r (j + 1)-boards followed by m − r j-boards using k dominoes and
mj + r − 2k squares.

Since a (1, 0)-fence is just a domino, 〈 n
k 〉1 =

(

n
k

)

and so the corresponding triangle is
Pascal’s triangle (A007318), and [ nk ]1 are the entries of the triangle A011973.

4 Relation of tiling triangles to polynomials

Before examining the connection between the tiling triangles we consider here and polynomi-
als, we give a general result connecting polynomials to triangles derived from arbitrary-length
tilings when the set of possible metatiles is finite. A metatile is a grouping of tiles that com-
pletely covers an integer number of cells and cannot be split into smaller metatiles, and so
any tiling of an integer-length board can be expressed as a tiling using metatiles [6]. For
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example, when tiling with squares and (1, 1)-fences (the m = 2 case), there are three types
of metatile: the square tile on its own (a free square), a fence whose gap is filled by a square
(a filled fence), and two interlocking fences (a bifence) [11].

We consider arbitrary-length tilings of boards that in general use at least two types of
tile, some but not all of which are regarded as being special, and where the set of all possible
metatiles is of finite size M . We then define the following polynomial:

pn(x) =
M
∑

i=1

xsipn−li(x) when n > 0, p0(x) = 1, pn<0(x) = 0, (8)

where si is the number of special tiles in the i-th metatile, and li is the length of the i-th
metatile. The following theorem (which is a generalization of Combinatorial Theorem 12 in
the book by Benjamin and Quinn [4]) relates the coefficients of pn(x) to the n-th row of the
triangle whose (n, k)-th entry is the number of tilings of an n-board that use k special tiles.

Theorem 10. Let p(n, k) = [xk]pn(x) and let t(n, k) be the number of tilings of an n-board
that use exactly k special tiles. Then p(n, k) = t(n, k) for all n and k.

Proof. Substituting pn(x) =
∑∞

k=0 p(n, k)x
k into (8) gives

pn(x) = δn,0 +
M
∑

i=1

∞
∑

k=0

p(n− li, k)x
k+si = δn,0 +

M
∑

i=1

∞
∑

k=si

p(n− li, k − si)x
k,

where δi,j is 1 if i = j and zero otherwise. Since p(n, k) = 0 if k < 0, the sum over k can
instead start from zero. Then equating coefficients of xk gives

p(n, k) = δn,0δk,0 +
M
∑

i=1

p(n− li, k − si).

For a tiling of an n-board containing k special tiles, if the final metatile has length l and
contains s special tiles then there are t(n− l, k−s) ways to tile the rest of the board. Hence,
summing over all possible metatiles,

t(n, k) = δn,0δk,0 +
M
∑

i=1

t(n− li, k − si),

where we regard there as being one way to tile a 0-board with no special tiles. Since there
are no ways to tile an n-board with with k dominoes if k < 0, we also have t(n, k) = 0 if
k < 0.

Example 11. When tiling an n-board with squares and (1
2
, 1)-fences there are M = 3 types

of metatile, namely, a square by itself, a fence with its gap filled by a square, and three
interlocking fences [6]. If we regard the fence as the special tile, in this case we have l1 = 1,
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l2 = 2, l3 = 3, s1 = 0, s2 = 1, and s3 = 3. Hence row n in the triangle whose (n, k)-th entry
is the number of tilings of an n-board that use k (1

2
, 1)-fences (A157897) gives the coefficients

of one form of tribonacci polynomial tn(x) which is given by

tn(x) = tn−1(x) + xtn−2 + x3tn−3 when n > 0, t0(x) = 1, tn<0(x) = 0.

Remark 12. One can of course obtain an analogous polynomial to (8) and an analogous
result to Theorem 10 by instead considering n-tile tilings of boards in which case li is then
the number of tiles that the i-th metatile contains.

We define the Fibonacci polynomials fn(x) by

fn(x) = fn−1(x) + xfn−2(x) when n > 0, f0(x) = 1, fn<0(x) = 0. (9)

Note that Fibonacci polynomials are often instead defined as f̄n(x) = xf̄n−1(x) + f̄n−2(x)
when n > 0, f̄0 = 1, f̄n<0(x) = 0, which leads to a different family of polynomials [4, p. 141].
The definition we use here gives f0(x) = f1(x) = 1, f2(x) = 1 + x, f3(x) = 1 + 2x, f4(x) =
1+ 3x+ x2, f5(x) = 1+ 4x+3x2, etc. It is clear from the definition that deg fn(x) = ⌊n/2⌋.
Notice also that putting x = 1 gives the sum of the coefficients and hence for both definitions,
the sum of the coefficients is the Fibonacci number fn.

The following Lemma (which is analogous to Combinatorial Theorem 12 concerning f̄n(x)
in the book by Benjamin and Quinn [4]) relates tilings of an n-board using squares and
dominoes to the coefficients of fn(x).

Lemma 13. Let f(n, k) = [xk]fn(x) and let t(n, k) be the number of tilings of an n-board
with squares and dominoes that use exactly k dominoes. Then f(n, k) = t(n, k) for all n and
k.

Proof. This and the corresponding polynomial (9) is a particular case of Theorem 10 and
(8) where the metatiles are the square and domino and the special tile is the domino.

Note that when tiling an n-board with exactly k dominoes there will be n − k tiles in
total. Counting the ways to place the k dominoes gives f(n, k) =

(

n−k
k

)

which is A011973,
and coefficients of ascending powers of x in fn(x) therefore give the n-th antidiagonal of
Pascal’s triangle (A007318), counting the initial 1 in the triangle as the zeroth antidiagonal.
The following theorem is a generalization of this result.

Theorem 14. For j ≥ 0, k ≥ 0, m ≥ 1, and r = 0, . . . ,m− 1,
〈

mj + r − k
k

〉

m

= [xk]fm−r
j (x)f r

j+1(x). (10)

Proof. From Identity 8, [mj+r
k

]m = 〈mj+r−k
k

〉m. From Lemma 9, [mj+r
k

]m equals the number
of ways to tile an ordered m-tuple of r (j + 1)-boards followed by m − r j-boards using k
dominoes (and mj+ r− 2k squares). The number of such tilings of the m-tuple of boards is

∑

k1≥0, k2≥0, ..., km≥0,
k1+k2+···+km=k

(

r
∏

i=1

t(j + 1, ki)

)(

m
∏

i=r+1

t(j, ki)

)
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in which the first product is omitted when r = 0. The coefficient of xk in f r
j+1(x)f

m−r
j (x) is

[xk]

(

r
∏

i=1

⌊(j+1)/2⌋
∑

ki=0

f(j + 1, ki)x
ki

)(

m
∏

i=r+1

⌊j/2⌋
∑

ki=0

f(j, ki)x
ki

)

= [xk]
∑

k1≥0,k2≥0,...,km≥0

(

r
∏

i=1

f(j + 1, ki)

)(

m
∏

i=r+1

f(j, ki)

)

xk1+k2+···+km

=
∑

k1≥0, k2≥0, ..., km≥0,
k1+k2+···+km=k

(

r
∏

i=1

f(j + 1, ki)

)(

r
∏

i=1

f(j, ki)

)

.

The result then follows from Lemma 13.

Our first identity, which gives the sums of the antidiagonals, follows immediately from
Theorem 14.

Identity 15. For j ≥ 0, m ≥ 1, r = 0, . . . ,m− 1,

⌊(mj+r)/2⌋
∑

k=0

〈

mj + r − k
k

〉

m

= fm−r
j f r

j+1.

5 Tiling and restricted combinations

We now turn to the problem of determining an expression for S(m)(n, k), the number of
subsets of Nn = {1, . . . , n} of size k such that the difference of any two elements of the
subset does not equal m. For example, S(1)(3, 0) = S(1)(3, 2) = 1 and S(1)(3, 1) = 3 since the
possible subsets of {1, 2, 3} satisfying the m = 1 restriction are {}, {1}, {2}, {3}, and {1, 3}.
It has been established that S(1)(n, k) =

(

n+1−k
k

)

[12], and there is a formula for S(m)(n, k) in
terms of sums of products of binomial coefficients [15] along with one in terms of products
of powers of consecutive Fibonacci numbers for the number of subsets of Nn of all sizes for
a given m [13]. Here we will show that S(m)(n, k) = 〈 n+m−k

k 〉m and hence obtain the latter
of these previous results via combinatorial proof. We first establish the following bijection.

Lemma 16. For m,n ≥ 1 and k ≥ 0, there is a bijection between the k-subsets of Nn

such that all pairs of elements taken from a subset do not differ by m, and the tilings of an
(n+m)-board with k (1,m− 1)-fences and n+m− 2k squares.

Proof. We label the cells of the (n+m)-board from 1 to n+m. If a k-subset contains element
i then we place a fence so that its left post occupies cell i. Notice that if i = n then the right
post occupies the final cell on the board. After placing fences corresponding to each element
of the subset, the rest of the board is filled with squares of which there must be n+m− 2k.
In reverse, the tiling of any (n+m)-board tiled with k fences will generate a k-subset where
no two elements differ by m since the right post of a fence starting at cell i is on cell i+m
which means it cannot be occupied by the left post of another fence.

11



Corollary 17. For m,n ≥ 1 and k ≥ 0, S(m)(n, k) = 〈 n+m−k
k 〉m.

Proof. From Lemma 16, S(m)(n, k) = [ n+m
k ]m. Identity 8 then gives the result.

The next two corollaries follow from Theorem 14 and Identity 15, respectively.

Corollary 18. For j, k ≥ 0, m ≥ 1, r = 0, . . . ,m−1, S(m)(mj+r, k) = [xk]fm−r
j+1 (x)f r

j+2(x).

Corollary 19. For j ≥ 0, m ≥ 1, r = 0, . . . ,m− 1, the number of subsets of Nmj+r each of
which lack pairs of elements that differ by m is fm−r

j+1 f r
j+2.

6 Metatiles when tiling with squares and fences

The simplest metatiles are the free square (S), m interlocking fences with no gaps (Fm) which
we will refer to as an m-fence (since the m = 2 and m = 3 cases have already been referred
to as bifences [8, 11] and trifences [6, 9], respectively), and, for m > 1 and r = 1, . . . ,m− 1,
the filled r-fence (F rSm−r) which is r interlocking fences with the remaining gap filled with
squares. We refer to a filled 1-fence (FSm−1) simply as a filled fence. Note that a 1-fence is
just a domino, and that S and Fm−1S are the only metatiles that contain a single square.

S F 3 F 2S FS2 FSFS FSF 2S

Figure 6: A 30-board tiled with all metatiles containing less than 6 tiles in the m = 3 case.
Dashed lines show boundaries between metatiles. The symbolic representation is above each
metatile.

When m = 1, the only metatiles are the two individual tiles themselves: a square and a
domino. When m = 2, the metatiles are S, FS, and F 2 [11]. For m > 2, in each case there
are an infinite number of metatiles. However, when m = 3 (Fig. 6), aside from the simplest
metatiles (S, F 3, F 2S, and FS2) there is just one infinite sequence of metatiles, namely,
FSF j−1S for j > 1. To see this, notice that FS has a single remaining slot of unit width.
This can be either filled with an S, which then completes the metatile, or with an F which
again results in a unit-width slot at the end of the yet-to-be-completed metatile.

7 Further identities concerning entries in the n-tile

tilings triangles

These first three identities follow immediately by considering properties of the simplest
metatiles.

Identity 20. For n ≥ 0 and m ≥ 1, 〈 n
0 〉m = 1.

12



Proof. There is only one way to create an n-tile tiling without using any (1,m − 1)-fences:
the all-square tiling.

Identity 21. For n ≥ 1 and m ≥ 1,

〈

n
1

〉

m

=

{

0, if n < m;

n−m+ 1, if n ≥ m.

Proof. Any n-tile tiling using exactly 1 fence must have a filled fence which itself contains m
tiles. Thus there can be no n-tile tilings using 1 fence that use less than m tiles. If n ≥ m,
the tiling consists of a filled fence and n −m free squares which gives a total of n −m + 1
metatile positions in which the filled fence can be placed.

Identity 22. For n ≥ 0 and m ≥ 1, 〈 n
n 〉m = 1 if n is a multiple of m and 0 otherwise.

Proof. The only way to tile without squares is the all m-fence tiling which can only occur if
the number of tiles is a multiple of m.

The pattern of zeros seen in the triangles is a result of the following identity.

Identity 23. For j ≥ 1, m ≥ 2, p = 1, . . . ,m− 1, and r = 1, . . . , p,

〈

mj − r
mj − p

〉

m

= 0.

Proof. We first derive an expression for K, the maximum number of fences that can be used
in the tiling of an (mJ + R)-board where R = 0, . . . ,m − 1. From Lemma 9, K is also the
maximum number of dominoes that can be used in the tiling of R (J +1)-boards and m−R
J-boards. Then it is easily seen that

K =

{

1
2
mJ, if J even;

1
2
m(J − 1) +R, if J odd.

From Identity 8,
〈

mj − r
mj − p

〉

m

=

[

2mj − r − p
mj − p

]

m

.

If r + p > m, then 2mj − r − p = mJ + R where J = 2(j − 1) and R = 2m− r − p. Then
K = m(j − 1) which is always less than mj − p. If r + p ≤ m then 2mj − r − p = mJ + R
where J = 2j − 1 and R = m− r − p and so K = mj − p− r which is also always less than
mj − p.

The following identity accounts for the rising and falling powers of ascending positive
integers that form the right boundary of the nonzero parts of the triangles.
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Identity 24. For j ≥ 1, m ≥ 1, and p = 0, . . . ,m,

〈

m(j − 1) + p
m(j − 1)

〉

m

=

〈

mj
mj − p

〉

m

= jp.

Proof. From Identity 8,

〈

m(j − 1) + p
m(j − 1)

〉

m

=

[

2m(j − 1) + p
m(j − 1)

]

m

.

By Lemma 9, this is the number of ways to tile m−p boards of length 2(j−1) and p boards
of length 2(j − 1) + 1 with m(j − 1) dominoes and p squares. Putting j − 1 dominoes in
each of the m boards leaves room for the remaining p squares in the set of p longer boards.
On each of these boards there are j tiles and hence j ways to tile each of them leading to jp

ways to tile all the boards. From Identity 8 we have

〈

mj
mj − p

〉

m

=

[

2mj − p
mj − p

]

m

=

[

m(2j − 1) +m− p
(m− p)j + p(j − 1)

]

m

,

which is also the number of ways to tile m − p 2j-boards and p boards of length 2j − 1
using (m− p)j + p(j − 1) dominoes and p squares. The 2j-boards are completely filled by j
dominoes and the p (2j − 1)-boards each have j − 1 dominoes and one square which can be
placed in j positions leading again to a total of jp tilings for the set of boards.

Identity 25. For j ≥ 1 and m ≥ 1,

〈

mj + 1
mj − 1

〉

m

= mTj,

where Tj = j(j + 1)/2 is the j-th triangle number (A000217).

Proof. From Identity 8, 〈mj+1
mj−1 〉m = [ 2mj

mj−1 ]m, which, from Lemma 9, is the number of ways
to tile an m-tuple of 2j-boards with mj − 1 dominoes and 2 squares. As the boards are of
even length, both squares must lie on the same board. On such a board there are j +1 tiles
in total which means there are

(

j+1
2

)

= j(j + 1)/2 possible ways to tile it. As there are m
possible boards on which to place the two squares, the result follows.

Identity 26. For j ≥ 1 and m ≥ 2,

〈

mj + 2
mj − 2

〉

m

=















(

m

2

)

, if j = 1;

m

(

j + 2

4

)

+

(

m

2

)(

j + 1

2

)2

, if j > 1.
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Proof. From Identity 8, 〈mj+2
mj−2 〉m = [ 2mj

mj−2 ]m, which, from Lemma 9, is the number of ways
to tile an m-tuple of 2j-boards with mj−2 dominoes and 4 squares. If j > 1, all four squares
can be on the same 2j-board which means there are j+2 tiles on that board and hence

(

j+2
4

)

tilings of it. With m boards to choose from, this gives the first term on the right-hand side
of the identity for j > 1. The other possibility is that two of the boards have two squares
each. There are

(

j+1
2

)

ways to tile each such board and
(

m
2

)

ways to choose the boards.

We find that 〈 2n+2
2n−2 〉2 is A006324.

As the metatiles containing a given number of tiles are easily enumerated, it is straight-
forward to obtain recursion relations for the row sums and for the elements of the triangle
in the m = 3 case, as shown in the proofs of the following two identities.

Identity 27. Bn =
∑n

k=0〈
n
k 〉3, the number of n-tile tilings using squares and (1, 2)-fences,

satisfies

Bn = 2Bn−1 − Bn−2 + 3Bn−3 − 2Bn−4 when n > 1, B0 = B1 = 1, Bn<0 = 0. (11)

Proof. We condition on the final metatile in the n-tile tiling. If it contains p tiles then there
are Bn−p possibilities for the remaining tiles. The possible metatiles, namely, S, F 3, F 2S,
FS2, and FSF j−1S for j > 1 contain 1, 3, 3, 3, and 2 + j tiles, respectively. Summing over
these gives

Bn = δn,0 + Bn−1 + 3Bn−3 +
n
∑

p=4

Bn−p, (12)

where the δn,0 is needed so that we obtain one tiling for each metatile with p tiles (putting
n = p). Subtracting (12) with n replaced by n− 1 from (12) gives the identity.

Identity 28. For all n, k ∈ Z,

〈

n
k

〉

3

= δn,0δk,0 − δn,1δk,1 +

〈

n− 1
k

〉

3

+

〈

n− 1
k − 1

〉

3

−

〈

n− 2
k − 1

〉

3

+

〈

n− 3
k − 1

〉

3

+

〈

n− 3
k − 2

〉

3

+

〈

n− 3
k − 3

〉

3

−

〈

n− 4
k − 3

〉

3

−

〈

n− 4
k − 4

〉

3

. (13)

Proof. We count 〈 n
k 〉3 by conditioning on the last metatile on the board. If the metatile

contains p tiles of which j are fences, for the remaining tiles the number of (n−p)-tile tilings
is 〈 n−p

k−j 〉3. Summing over all possible metatiles gives

〈

n
k

〉

3

= δn,0δk,0 +

〈

n− 1
k

〉

3

+

〈

n− 3
k − 3

〉

3

+

〈

n− 3
k − 1

〉

3

+

〈

n− 3
k − 2

〉

3

+
n
∑

p=4

〈

n− p
k + 2− p

〉

3

. (14)

Replacing n by n − 1 and k by k − 1 in (14) and then subtracting the resulting equation
from (14) gives the identity.
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Corollary 29. For n ≥ 2k + 1 when k ≥ 0,
〈

n
k

〉

3

=

〈

n− 1
k

〉

3

+

〈

n− 1
k − 1

〉

3

.

Proof. We define what we might call a Pascal recurrence operator by

P (n, k) =

〈

n
k

〉

3

−

〈

n− 1
k

〉

3

−

〈

n− 1
k − 1

〉

3

.

Notice that P (n, k) = 0 if the (n, k)-th entry of the triangle is the sum of the entry directly
above it and the entry above and one place to the left. It can be seen that P (n, k < 0) = 0
and P (n > 0, 0) = 0. Rewriting (13) in terms of P (n, k) gives

P (n, k) = δn,0δk,0 − δn,1δk,1 − P (n− 2, k − 1) + P (n− 3, k − 3),

and hence for k > 0 and r ≥ 0,

P (2k + 1 + r, k) = −P (2(k − 1) + 1 + r, k − 1) + P (2k − 2 + r, k − 3).

Applying this recursively until the second argument of P is zero or negative in each case, we
see that the first term on the right-hand side will eventually generate (−1)kP (1+r, 0) and all
other terms will be of the form σP (a, 0) for various a > 1+ r or σP (a, b) with b ∈ {−1,−2}
where σ is 1 or −1. Hence P (2k + 1 + r, k) = 0 for k ≥ 0 which is equivalent to the result
we wish to prove.

The following conjecture has been shown to be true for the cases m = 1, 2, 3.

Conjecture 30. For n ≥ (m− 1)k + 1 when k ≥ 0,
〈

n
k

〉

m

=

〈

n− 1
k

〉

m

+

〈

n− 1
k − 1

〉

m

.

8 Tiling triangles and Riordan arrays

It is well known that an array is a Riordan array if and only if there is an A-sequence as
given by (2) in the present paper [16]. The problem with such a recursion relation in tiling-
triangle applications is that the expression for a given element is in terms of elements only
in the row above whereas the most readily obtained recursion relations for tiling triangles
tend to be higher than first order in the row number n. In such cases, the following more
general characterization of Riordan arrays (using an ‘A-matrix’ rather than an A-sequence)
is needed to show whether or not a triangle (or its row-reversed version) is a Riordan array.

Theorem 31 (Theorem 2.5 of [14]). A matrix {Rn,k}n,k∈N, where N = {0, 1, . . .}, is a
Riordan array if and only if there is another matrix {Ai,j}i,j∈N with A0,0 6= 0 such that every
Rn,k for n, k ≥ 1 can be expressed as Rn,k =

∑

i≥1

∑

j≥−1 Ai,jRn−i,k+j.
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Notice that the above theorem means that an element in a Riordan array can depend on
any elements above it as long as they are not more than 1 column before it.

Remark 32. As the recursion relation for elements T (n, k) of tiling triangles are constructed
by conditioning on the final metatile (as in the proof of Identity 28), such recursion relations
will only involve terms T (n− a, k − b) where a, b ∈ N. Furthermore, the tiling triangle will
only be a lower triangular matrix (and hence it or its row-reversed version a candidate for a
Riordan array) if a ≥ b. Recursion relations with terms having b > a can occur if k counts
tiles whose sub-tiles have a total length of less than 1.

Theorem 33. Suppose a triangle is constructed by letting the (n, k)-th entry be the number
of ways to tile an n-board that use k special tiles. The triangle is a Riordan array if and only
if there is a metatile of length 1 that contains exactly one special tile and there is no metatile
that contains more than one special tile. The triangle is a row-reversed Riordan array if and
only if there is a metatile of length 1 that lacks special tiles and for all metatiles l − s is 0
or 1, where l is the length of the metatile and s is the number of special tiles it contains.

Proof. If T (n, k) is the (n, k)-th entry, then conditioning on the final metatile gives

T (n, k) = δn,0δk,0 +
∑

i

T (n− li, k − si), (15)

where li is the length of the i-th metatile and si is the number of special tiles it contains. In
order that T (n, k) meets the condition to be a Riordan array, we require at least one i with
li = si = 1 (so that A0,0 6= 0 in Theorem 31) and si cannot exceed 1. Let T̄ (n, k) be the
(n, k)-th entry in the row-reversed triangle (reversing entries in each row up to and including
the main diagonal). Replacing T (a, b) by T̄ (a, a− b) in (15) and then replacing n− k by k
leaves

T̄ (n, k) = δn,0δk,0 +
∑

i

T̄ (n− li, k − (li − si)). (16)

The reversed triangle is a Riordan array if and only if there is an i such that li = 1 and
si = 0 (i.e., there is a metatile of length 1 that lacks special tiles) and if li − si is 0 or 1 for
all i (since li − si cannot exceed 1 by Theorem 31 and cannot be negative as discussed in
Remark 32).

Example 34. When tiling an n-board with half-squares (i.e., 1
2
× 1 tiles always placed with

the shorter sides horizontal) and (1
2
, 1
2
)-fences, all metatiles contain not more than 2 half-

squares [8]. If the fence is regarded as the special tile, the associated triangle (A123521) is a
row-reversed Riordan array since two half-squares make a metatile of length 1 and since, for
this type of tiling, li − si equates to the total length of the half-squares in the i-th metatile,
li−si is either 0 or 1. The triangle is in fact the row-reversed (1/(1−x2), x/(1−x)2) Riordan
array [10].

Theorem 35. Suppose a triangle is constructed by letting the (n, k)-th entry be the number
of n-tile tilings of boards that use k special tiles. The triangle is a Riordan array if and
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only if the special tiles are metatiles consisting of just one tile and there is no metatile that
contains more than one special tile. The triangle is a row-reversed Riordan array if and only
if there is a metatile consisting of a single tile which is not a special tile and no metatile
contains more than one non-special tile.

Proof. If T (n, k) is the (n, k)-th entry, then conditioning on the final metatile gives

T (n, k) = δn,0δk,0 +
∑

i

T (n− pi, k − si), (17)

where pi is the number of tiles contained in the i-th metatile and si is the number of special
tiles it contains. For the triangle to be a Riordan array, we require at least one i with
pi = si = 1 (which means the special tiles are themselves metatiles) and si cannot exceed
1 (which means no metatile can contain more than one special tile). Let T̄ (n, k) be the
(n, k)-th entry in the row-reversed triangle. Then

T̄ (n, k) = δn,0δk,0 +
∑

i

T̄ (n− pi, k − (pi − si)). (18)

The reversed triangle is a Riordan array if and only if there is an i such that pi = 1 and
si = 0 (i.e., there is a metatile composed of a single non-special tile) and if pi − si is 1 or 0
for all i (for reasons given in the proof of Theorem 33).

In some instances, every other row of a tiling triangle or its row-reversed version are
Riordan arrays [11]. Analogous theorems can be applied to test for this.

Remark 36. If a tiling triangle or its row-reversed version is a (p, q) Riordan array, then
determining the functions p and q is straightforward. If it turns out that the tiling triangle
is a Riordan array (row-reversed Riordan array) then p is the generating function for tilings
with no (with only) special tiles. To find q(x), each term T (n− a, k− b) (or T̄ (n− a, k− b))
in the recursion relation is replaced by xapqk−b [11]. As b is either 0 or 1, dividing by pqk−1

gives an equation which is linear in q.

We end by giving a corollary of Theorem 35 applied to the n-tile tiling family of triangles.

Corollary 37. The 〈 n
k 〉m triangles for m > 2 are not row-reversed Riordan arrays.

Proof. When m > 2 there is at least one metatile containing 2 squares (namely, the filled
fence FSm−1).

9 Discussion

Further generalizations of the tiling triangles presented here are possible if one tiles with
squares and combs (which are generalizations of fences that can have more than two sub-
tiles [1, 2]). This will be the subject of a future article.
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Just as tiling an n-board with (1
2
, g)-fences turned out to be a natural way to envisage

permutations of {1, 2, . . . , n} [7], we have shown here that a natural representation of the
subsets of {1, 2, . . . , n} where no two elements differ by m is the tilings of an (n+m)-board
using squares and (1,m− 1)-fences. This representation can be extended to the case where
there are multiple disallowed differences of the subset elements by tiling with squares and
combs, but we will address this elsewhere.

We have given conditions for a tiling triangle or its row-reversed version to be a Riordan
array. An open question is whether it is possible to find a tiling interpretation of an arbitrary
(possibly row-reversed) Riordan array. We have been unable to do so for the first family of
triangles we considered here for m > 2.

Sprugnoli derived an expression for the generating function giving sums of antidiagonals
in a Riordan array [19, p. 270]. Lemma 38 gives the analogous generating function for a
row-reversed Riordan array. This result, which is also the generating function for the sum of
elements along a particular ray of elements in the original (unreversed) Riordan array, can
be generalized to deal with sums over other rays. We will present this in another paper.

10 Appendix: Generating functions for row-reversed

Riordan arrays and the sums of their antidiagonals

Lemma 38. The sum of the n-th antidiagonal of a row-reversed (p, q) Riordan array (count-
ing the (0, 0)-th element as the zeroth antidiagonal) can be obtained from the generating
function p(x2)/(1− q(x2)/x).

Proof. The k-th term in the sum of the n-th antidiagonal of the row-reversed (p, q) Riordan
array is the (n− k, k)-th entry in that array. Hence the required sum an is given by

an =

⌊n/2⌋
∑

k=0

(p, q)n−k,n−2k =

⌊n/2⌋
∑

k=0

[xn−k]pqn−2k = [xn]p

⌊n/2⌋
∑

k=0

xkqn−2k = [xn]pqn
⌊n/2⌋
∑

k=0

(

x

q2

)k

= [xn]pqn
1− (x/q2)⌊n/2⌋+1

1− x/q2
= [xn]pqn

(x/q2)⌊n/2⌋ − q2/x

1− q2/x
= [xn]pqn

(x/q2)⌊n/2⌋

1− q2/x
,

where the final step of removing the q2/x term from the numerator follows from the fact that
q = q1x + q2x

2 + · · · and so there can be no contribution from that term (when multiplied
by pqn) to the coefficient of xn in the whole expression. Since ⌊n/2⌋ is n/2 ((n− 1)/2) when
n is even (odd), on making the arguments of p and q explicit, we have

an =















[xn]
p(x)xn/2

1− q2(x)/x
= [xn/2]

p(x)

1− q2(x)/x
= [xn]

p(x2)

1− q2(x2)/x2
, if n even;

[xn]
p(x)q(x)x(n−1)/2

1− q2(x)/x
= [x(n+1)/2]

p(x)q(x)

1− q2(x)/x
= [xn]

p(x2)q(x2)/x

1− q2(x2)/x2
, if n odd.
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We can now add the expressions after the coefficient operator for even and odd n (noticing
that they are of opposite parity) to obtain

an = [xn]
p(x2)(1 + q(x2)/x)

1− q2(x2)/x2
= [xn]

p(x2)

1− q(x2)/x
,

which gives us the generating function.

Lemma 39. The bivariate generating function for the row-reversed (p, q) Riordan array is
p(xy)/(1− q(xy)/y).

Proof. Let g(x, y) = p(xy)/(1− q(xy)/y). Applying [xn] to the expansion of g(x, y) gives

[xn]g(x, y) = [xn]p(xy) + [xn]
p(xy)q(xy)

y
+ · · ·+ [xn]

p(xy)qr(xy)

yr
+ · · ·

= yn(p, q)n,0 +
yn

y
(p, q)n,1 + · · ·+

yn

yr
(p, q)n,r + · · ·

by the definition of a (p, q) Riordan array. Then [xnyk]g(x, y) is (p, q)n,r where n − r = k.
Since (p, q)n,n−k is the (n, k)-th entry in the row-reversed (p, q) Riordan array, g(x, y) is the
bivariate generating function of the row-reversed array.
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