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Abstract

We present a new form of the Machin-like formula for π that can be generated by
using iteration. This form of the Machin-like formula may be promising for computa-
tion of the constant π due to rapidly increasing integers at each step of the iteration.
The computational test we performed shows that, with an integer k ≥ 17, the Lehmer
measure remains small and practically does not increase after 18 steps of iteration.
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1 Introduction

A remarkable discovery, made in 1706 by English astronomer and mathematician John
Machin [7, 8, 9]

π

4
= 4 arctan

1

5
− arctan

1

239
, (1)

had a great impact on the mathematical society of that time. Specifically, due to relatively
rapid convergence, he was the first to calculate 100 digits of π. Nowadays Equation (1) is
named as the Machin formula for π, in his honor.

The equations of the kind [1]

π

4
=

J∑
j=1

αj arctan
1

βj
, αj, βj ∈ R, (2)

are known to be the Machin-like formulas for π. Historically, some of the earliest formulas
are

π

4
= arctan

1

2
+ arctan

1

3
, (3)

π

4
= 2 arctan

1

2
− arctan

1

7
, (4)

π

4
= 2 arctan

1

3
+ arctan

1

7
, (5)

due to Euler, Hermann, and Hutton, respectively.
Since the Maclaurin series expansion of the arctangent function is given by

arctanx = x− 1

3
x3 +

1

5
x5 − 1

7
x7 + · · · = x+O(x3), (6)

we can see that it is very desirable to get the arguments of the arctangent function as small
as possible to improve the convergence rate in the Machin-like formula (2) for π.

In 1938 Lehmer introduced a measure [16, 22, 1, 23]

µ =
J∑
j=1

1

log10 |βj|
. (7)

showing how much computational labor is needed to compute a given Machin-like formula
for π. In particular, a given Machin-like formula for π is more efficient if its constants βj are
larger by absolute value and if the number J of the terms in Equation (2) is smaller. More
detailed description and significance of Lehmer’s measure in the computation of constant π
by using the Machin-like formulas can be found in [23].

Application of the Machin-like formulas with small Lehmer measure is one of the most
efficient ways to compute digits of π. In particular, in 2002, Kanada computed over one
trillion digits of π by using a pair of self-checking Machin-like formulas [10, 5].
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In 1997, Chien-Lih published a remarkable six-term Machin-like formula for π [12]

π

4
= 183 arctan

1

239
+ 32 arctan

1

1023
− 68 arctan

1

5832

+ 12 arctan
1

110443
− 12 arctan

1

4841182
− 100 arctan

1

6826318

with relatively small Lehmer measure µ ≈ 1.51244. Later Chien-Lih showed how to reduce
Lehmer’s measure even further by generating the two-term Machin-like formulas for π by
iteration involving Euler-type identities. However, his method is not simple and requires
some algorithmic manipulations at each step of the iteration [13].

Previously, Abrarov et al. [2] developed a new method of generating the two-term Machin-
like formulas for π

π

4
= 2k−1 arctan

1

β1
+ arctan

1

β2
, (8)

where the constant β1 can be chosen as a positive integer

β1 =

⌊
ak√

2− ak−1

⌋
(9)

such that the nested radicals are defined as ak =
√

2 + ak−1 and a0 = 0. Unlike Chien-Lih’s
method of generating the two-term Machin-like formulas for π, this method is significantly
easier in implementation as it is based on simple two-step iteration (12) below. Therefore,
this method is more efficient to reduce the Lehmer measure than the method proposed by
Chien-Lih in his work [13].

In general, the constants βj in Equation (2) may not necessarily be integers. In particu-
lar, Chien-Lih [13] and Abrarov et al. [2] methods of generating the two-terms Machin-like
formulas for π result in quotients with rapidly increasing number of digits in their numer-
ators and denominators. As a consequence, this makes the computation of the arctangent
function difficult due to exponentiation with increasing orders. In this work, we propose a
method showing how this problem can be effectively resolved by generating a new form of
the Machin-like formula for π. This method is based on simple iteration and, due to rapidly
increasing values of integers, may be promising for computation of π with rapid convergence.

2 Results and discussion

2.1 Methodology

The first constant β1 from Equation (8) that was derived from the following identity [2]

π

4
= 2k−1 arctan

√
2− ak−1
ak

, k ≥ 1, k ∈ Z.
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can be chosen arbitrarily. However, it would be reasonable to choose it in such a way that
the ratio

2k−1

β1
≈ π

4
.

Therefore, if we imply that β1 is an integer, the best choice is given either by Equation (9)
or by Equation

β1 =

⌈
ak√

2− ak−1

⌉
, (10)

based on floor and ceiling functions, respectively. Once the constant β1 is chosen, the second
constant can be found as [2]

β2 =
2

((β1 + i)/(β1 − i))2
k−1 − i

− i. (11)

It is interesting to note that all four earliest two-term Machin-like formulas (1), (3), (4)
and (5) for π can be readily found with help of Equations (8) and (11). In particular, the orig-
inal Machin formula (1) for π can be obtained by substituting k = 3 into Equations (9), (11)
and then (8). The Euler Equation (3) can be obtained by substituting k = 1 and β1 = 2 into
Equation (11) and then (8). The Hutton Equation (4) can be found by substituting k = 2
into Equations (9), (11) and then (8). Finally, the Hermann Equation (5) can be found by
substituting k = 2 into Equations (10), (11) and then (8).

While Equation (11) is useful when integer k is small, its application becomes problematic
when k increases. Such a problem arises as a result of rapidly increasing power 2k−1 in the
denominator of Equation (11). However, as we have shown in publication [2], this problem
can be resolved by using simple two-step iteration

σn = σ2
n−1 − τ 2n−1

τn = 2σn−1τn−1

}
, n = {2, 3, 4, . . . , k} , (12)

with initial values defined as

σ1 =
β2
1 − 1

β2
1 + 1

and

τ1 =
2β1
β2
1 + 1

such that the second constant can be found from the ratio

β2 =
σk

1− τk
. (13)

There is an identity for the arctangent function

arctanx+ arctan y = arctan
x+ y

1− xy
.
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It is not difficult to see that from this identity we get

arctan(x+ y) = arctan x+ arctan
y

1 + (x+ y)x
. (14)

Let z ∈ R and z = x + y such that its integer and fractional parts are given by x = bzc
and y = frac(z), respectively. Then, using Equation (14) we have

arctan(bzc+ frac(z)) = arctanbzc+ arctan
frac(z)

1 + (bzc+ frac(z))bzc

or

arctan z = arctanbzc+ arctan
z − bzc
1 + zbzc

from which it follows that

arctan
1

z
=


π
2
− arctan z−bzc

1+zbzc , if z ∈ (0, 1);

undefined, if z = 0;

arctan 1
bzc − arctan z−bzc

1+zbzc , otherwise,

since

arctan z =


π
2
− arctan 1

z
, if z > 0;

0, if z = 0;

−π
2
− arctan 1

z
, otherwise.

Consequently, we can write

arctan
1

z
= arctan

1

bzc
− arctan

z − bzc
1 + zbzc

, z /∈ [0, 1)

or

arctan
1

z
= arctan

1

bzc
+ arctan

bzc − z
1 + zbzc

, z /∈ [0, 1). (15)

Fig. 1 shows the function

f(z) = arctan
1

bzc
+ arctan

bzc − z
1 + zbzc

,

defined according to the right side of Equation (15). Open and filled circles along broken
blue curve in Fig. 1 indicate two points (0,−π/2) and (1, π/4), where the function f(z)
interrupts and resumes again. The dashed black curve, where the function f(z) is not valid
due to restriction z /∈ [0, 1), is also shown for clarity.
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Figure 1: Function f(z) undefined at 0 ≤ z < 1.

Equation (15) is essential for generating a new form of the Machin-like formula for π.
Consider a few examples showing how we can apply Equation (15). Taking k = 6 and using
Equation (9) we can find that

β1 =



√√√√
2 +

√
2 +

√
2 +

√
2 +

√
2 +
√

2√√√√
2−

√
2 +

√
2 +

√
2 +

√
2 +
√

2

 = 40.

With β1 = 40 the Equation (13) based on two-step iteration (12) leads to a quotient

β2 = −2634699316100146880926635665506082395762836079845121

38035138859000075702655846657186322249216830232319

consisting of 52 and 50 digits in its numerator and denominator, respectively. Consequently,
according to Equation (7), we can generate the two-term Machin-like formula for π

π

4
= 32 arctan

1

40
+ arctan

1

β2
. (16)

The two-term Machin-like formula (16) for π has the Lehmer measure µ ≈ 1.16751.
Although this value is smaller than the Lehmer measure µ ≈ 1.51244 corresponding to Chien-
Lih’s equation above, its application for the computation of π may not be more efficient due
to quotient consisting of many digits in its numerator and denominator. As mentioned
already, this problem occurs due to exponentiation with increasing orders that is needed
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for computation of the arctangent function by using a series expansion like (6). Therefore,
it would be very desirable to obtain a Machin-like formula for π with a reduced number
of the digits in the numerator and an increased number of the digits in the denominator.
Application of Equation (15) may be one of the efficient ways to resolve such a problem.

Assuming that z = β2 and using Equation (15), we can rewrite Equation (16) as

π

4
= 32 arctan

1

40
− arctan

1

70
+ arctan

1

β3
, (17)

where the quotient

β3 = −184466987265869281740567152432082954025647742419390789

27760404029858418259273600496960161682342036417209
,

consists of 54 and 50 digits in its numerator and denominator. The three-term Machin-like
formula (17) for π does not look interesting since its second integer 70 has the same order
as the first integer 40. However, if we repeat again the same procedure for Equation (17) by
assuming that z = β3, then using Equation (15) we can observe that in the next Machin-like
formula for π

π

4
= 32 arctan

1

40
− arctan

1

70
− arctan

1

6645
+ arctan

1

β4
, (18)

where

β4 = −612891579071052703512243493592395863230295465359444105057

448756269953796152961435108660176757544786481508
,

the third constant 6645 is by two order of the magnitude larger than the second integer 70
(the quotient β4 consists of 57 and 48 digits in its numerator and denominator). Repeating
same procedure again for Equation (18) by assuming that z = β4, with help of Equation (15)
we get

π

4
= 32 arctan

1

40
− arctan

1

70
− arctan

1

6645

− arctan
1

1365756025
+ arctan

1

β 5

,
(19)

where the quotient

β5 = −837060366788054133363141482594659697353287103005016334 · · ·
677117199933 / 374870864016658098706770220951460879098657 · · ·
980643

consists of 66 and 48 digits in its numerator and denominator, respectively.
As we can see, the fourth integer in Equation (19), 1365756025, is significantly larger

than the third integer 6645. Repeating the same procedure over and over again, we notice
that each next integer is larger than the previous one by many orders of magnitude.
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Let us show how this methodology can also be used to modify the Machin-like formulas
for π. Consider, as an example, the following identity that was found by Wetherfield in
2004 [24]

π

4
= 83 arctan

1

107
+ 17 arctan

1

1710
− 22 arctan

1

103697

− 12 arctan
2

2513489
− 22 arctan

2

18280007883
.

Although the Lehmer measure of this formula is small µ ≈ 1.26579, the arguments in the last
two arctangent functions are not the integer reciprocals. However, applying Equation (15)
in a sequence first for

z = −2513489

2

and then for

z = −18280007883

2
,

we obtain the identity

π

4
= 83 arctan

1

107
+ 17 arctan

1

1710
− 22 arctan

1

103697

− 12 arctan
1

1256744
− 22 arctan

1

9140003941

+ 12 arctan
1

3158812219818
+ 22 arctan

1

167079344092131066905
,

where all arguments are the integer reciprocals. The Lehmer measure for this identity is
µ ≈ 1.39524.

2.2 Generalization

It is not difficult to see by induction that the procedure described above can be generalized
as a new form of the Machin-like formula for π

π

4
= 2k−1 arctan

1

Ak
+

(
M∑
m=1

arctan
1

bBm,kc

)
+ arctan

1

BM+1,k

, (20)

where Ak is the integer defined by Equation (9) and

Bm,k =
1 + bBm−1,kcBm−1,k

bBm−1,kc −Bm−1,k
, m ≥ 2 (21)

with initial integer B1,k that can be computed either by using Equation (11) or, more effi-
ciently, by using Equation (13) based on the two-step iteration (12).
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Algorithmic implementation of Equation (20) implies two important rules. First, since
the integer B0,k is not defined, it follows that at M = 0 the sum of arctangent functions

M∑
m=1

arctan
1

bBm,kc

∣∣∣∣∣
M=0

= 0.

Second, if
bBM+1,kc −BM+1,k = 0,

then no further iteration is required, as the fractional part of the number BM+1,k does not
exist.

As a simplest example, consider k = 4. Using Equation (9) we can find that

A4 =


√

2 +

√
2 +

√
2 +
√

2√
2−

√
2 +

√
2 +
√

2

 = 10.

Then, using two-step iteration (13), we have

σ1 =
A2

4 − 1

A2
4 + 1

=
99

101
, τ1 =

2A4

A2
4 + 1

=
20

101
,

σ2 = σ2
1 − τ 21 =

9401

10201
, τ2 = 2σ1τ1 =

3960

10201
,

σ3 = σ2
2 − τ 22 =

72697201

104060401
, τ3 = 2σ2τ2 =

74455920

104060401
,

σ4 = σ2
3 − τ 23 = − 258800989811999

10828567056280801
, τ4 = 2σ3τ3 =

10825473963759840

10828567056280801
.

Substituting σ4 and τ4 into Equation (14) leads to

B1,4 =
σ4

1− τ4
= −147153121

1758719
.

Therefore, Equation (8) yields

π

4
= 8 arctan

1

10
− arctan

1758719

147153121
. (22)

As we can see, at M = 0 the identity (22) is consistent with Equation (20).
Using k = 4 and M = 2 in Equation (20), we obtain

π

4
= 8 arctan

1

10
− arctan

1

84
− arctan

1

21342

− arctan
266167

263843055464261
.

(23)
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The argument of the last arctangent function in Equation (23) is not an integer reciprocal.
Therefore, we can use iteration formula (21) again. However, at k = 4 and M = 5, the
Equation (20) results in

π

4
= 8 arctan

1

10
− arctan

1

84
− arctan

1

21342

− arctan
1

991268848
− arctan

1

193018008592515208050

− 1

197967899896401851763240424238758988350338
− arctan

1

Ω
,

Ω = 11757386816817535293027775284419412676799191500853701 · · ·
8836932014293678271636885792397,

(24)

where Ω is an integer consisting of 84 digits. Consequently, no further iteration is required
since the last argument of the arctangent function is an integer reciprocal now. As we can
see, starting from the second arctangent term, the integers in Equation (24) increase by
many orders of the magnitude at each step of the iteration.

To generate the multi-term Machin-like formulas for π with only the integer reciprocals, a
method known as Todd’s process is commonly applied [23, 6, 21]. Generally, Todd’s process
is quite complicated and requires matrix manipulations based on a set of primes. However,
considering Equation (24) as an example, we can conclude that the proposed iterative method
can be used as a simple alternative to Todd’s process to generate the multi-term Machin-like
formulas for π consisting of only integer reciprocals.

2.3 Approximation

Since iteration (21) leads to

|bBm,kc| � |bBm−1,kc| � |bBm−2,kc| � · · · � |bB2,kc|, (25)

we can infer that BM+1,k is the largest by absolute value. Consequently, it is reasonable to
approximate the last arctangent function term in Equation (20) as

arctan
1

BM+1,k

≈ 1

BM+1,k

, if BM+1,k 6= bBM+1,kc (26)

in accordance with the Maclaurin series expansion (6). Thus, we can write the following
approximation

π

4
≈ 2k−1 arctan

1

Ak
+

(
M∑
m=1

arctan
1

bBm,kc

)
+

1

BM+1,k

. (27)
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Table 1 shows quantity of correct digits depending on the integer M in Equation (27).
As we can see from this table, starting from M = 2, each increment of the integer M in
approximation (27) doubles the number of correct digits of π. Consequently, we can estimate
that, at M = 26, the approximation (27) can provide more than a billion digits of π.

Integer M Correct digits of π
0 5
1 11
2 27
3 54
4 98
5 222
6 444
7 889
8 1783
9 3567
10 7136
11 14273
12 28546

Table 1: Correct digits of π for different M in Equation (27).

Since the initial values Ak and B1,k are larger with increasing k, we may reduce the
number of the summation terms in approximation (27). For example, even at relatively
small value k = 17, a computational test shows that at M = 0 in Equation (27), the number
of correct digits of π is 19. Therefore, by doubling digits after each step of iteration, we
can estimate that at k = 17 and M = 24, the approximation (27) can provide more than a
billion digits of π.

Application of the approximation (27) may be advantageous. Due to the large absolute
magnitude of the number BM+1,k, the last arctangent function can be replaced by its argu-
ment in accordance with Equation (27). As a result, we do not need to include the quotient
BM+1,k in computation of the Lehmer measure (7). Moreover, this approach does not require
exponentiation in the computation of the arctangent function with a problematic quotient
and, if we need to improve the accuracy, we can increase the integer M in approximation (27).

It should be noted that increasing the number of the summation terms in Equation (27)
increases the Lehmer measure µ. However, our empirical results show that at k ≥ 17,
only the first 18 terms actually contribute for µ. Due to condition (25) the contribution of
the additional arctangent function terms to the Lehmer measure of Equation (27) becomes
vanishingly small. For example, at k = 17 and M = 0, Equation (27) gives Lehmer’s
measure µ ≈ 0.203195. The value µ increases with increasing M since more and more
arctangent function terms are added as M increases. However, after 18 steps of iteration, the
Lehmer measure reaches the value µ ≈ 0.50222 and further remains practically unchanged
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with increasing M . This stabilization is due to rapidly increasing magnitude of integers
bBm,kc that becomes particularly evident at k ≥ 17. Therefore, the presence of very large
integers bBm,kc and exclusion of the arctangent function arctan (1/BM+1,k) indicate that the
approximation (27) may be promising for computing π with rapid convergence.

2.4 Arctangent function

Apart from the Maclaurin series expansion (6), the following limit [4]

arctanx = lim
N→∞

N∑
n=1

Nx

N2 + (n− 1)nx2

can also be used for computation of the arctangent function terms. Although both these
equations are simple, their implementation provides relatively slow convergence. There are
several other interesting equations for the arctangent function that do not need irrational
(surd) numbers in computation [19, 15, 18, 17, 20]. However, the following two series expan-
sions [11, 14]

arctanx =
x

1 + x2
2F1

(
1, 1;

3

2
;

x2

1 + x2

)
=
∞∑
n=0

22n(n!)2

(2n+ 1)!

x2n+1

(1 + x2)n+1
, (28)

where 2F1(a, b; c; z) denotes the hypergeometric function, and

arctanx = 2
∞∑
n=1

1

2n− 1

gn(x)

g2n(x) + h2n(x)
, (29)

where the expansion coefficients are computed by iteration

g1(x) = 2/x, h1(x) = 1,

gn(x) = gn−1(x)(1− 4/x2) + 4hn−1(x)/x,

hn(x) = hn−1(x)(1− 4/x2)− 4gn−1(x)/x,

are found to be most suitable for computation due to their rapid convergence.
Chien-Lih showed a simple and elegant derivation of the Euler’s series expansion (28) by

taking the integral

arctanx =

∫ π/2

0

x sinu

1 + x2
1(

1− x2 sin2 u
1+x2

)du
in terms of geometric series [14]

1

1− x2 sin2 u
1+x2

=
∞∑
n=0

x2n sin2n u

(1 + x2)n
.

12



The series expansion (29) represents a trivial rearrangement of the Equation

arctanx = i
∞∑
n=1

1

2n− 1

(
1

(1 + 2i/x)2n−1
− 1

(1− 2i/x)2n−1

)
that was derived in [3]. The computational test we performed shows that Equation (29) is
more rapid in convergence than Equation (28). Therefore, the application of the iteration-
based series expansion (29) may be more preferable for computation of the arctangent func-
tion terms in the approximation (27) [2].

3 Alternative method

It is convenient to use calligraphic letters A and B to keep consistency with Equation (20).
Using the methodology described above in the section 2, we can also derive the Machin-like
formula for π in an alternative form as

π

4
= 2k−1

((
M∑
m=1

arctan
1

bAm,`,kc

)
+ arctan

1

AM+1,`,k

)
+ arctan

1

B`,k
, (30)

where the constants Am,`,k can be computed by iteration

Am,`,k =
1 +Am−1,`,kbAm−1,`,kc
bAm−1,`,kc − Am−1,`,k

(31)

with initial number defined as

A1,`,k =
1

10`

⌊
10`

ak√
2− ak−1

⌋
. (32)

Similar to the Machin-like formula (20) for π this equation also implies the same two
rules. Since Ak,`,0 is not defined, we imply that

M∑
m=1

arctan
1

bAm,`,kc

∣∣∣∣∣
M=0

= 0

and if the following condition

AM+1,`,k − bAM+1,`,kc = 0

is satisfied, further iteration is not needed since the number AM+1,`,k is an integer.
Consider the following examples. At ` = 2 and k = 4, from Equation (32) it follows that

the initial number is

A1,2,4 =
1

102

⌊
102 a4√

2− a3

⌋
=

1

102

102

√
2 +

√
2 +

√
2 +
√

2√
2−

√
2 +

√
2 +
√

2

 =
203

20
.
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Consequently, substituting A1,2,4 into Equation (11) for β1 or using Equation (13) based on
two-step iteration (12) we can find that

B`,k = −4239006656613482881

1033248635280959
.

Thus, at M = 0, ` = 2 and k = 4 Equation (30) leads to

π

4
= 8 arctan

20

203
− arctan

1033248635280959

4239006656613482881
. (33)

At M = 3, ` = 2 and k = 4 Equation (30) gives

π

4
= 8

(
arctan

1

10
− arctan

1

684
− arctan

2

1402203

)
− arctan

1033248635280959

4239006656613482881
.

(34)

Since in Equation (34)

A3,2,4 = −1402203

2

is not an integer, we can apply iteration formula (31) again. This leads to

π

4
= 8

(
arctan

1

10
− arctan

1

684
− arctan

1

701102

− arctan
1

983087327708

)
− arctan

1033248635280959

4239006656613482881
.

(35)

As we can see
A4,2,4 = −983087327708

is an integer now. Therefore, no further iteration is required.
The last term in Equation (35)

arctan
1

B2,4
= − arctan

1033248635280959

4239006656613482881

= arctan

(
− 1033248635280959

4239006656613482881

)
can also be represented as a sum of the arctangent functions with the integer reciprocals by
using the identity (15).

When ` or k increases, the constant B`,k also increases by absolute value. Therefore,
according to series expansion (6), we can write

arctan
1

B`,k
≈ 1

B`,k
, `� 1 or k � 1
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and modify Equation (30) as

π

4
≈ 2k−1

((
M∑
m=1

arctan
1

bAm,`,kc

)
+ arctan

1

AM+1,`,k

)
+

1

B`,k
(36)

to approximate π. However, in contrast to Equation (27) approximation (36) does not
improve accuracy with increasing M since the constant B`,k is independent of M .

4 Supplement

The file https://cs.uwaterloo.ca/journals/JIS/VOL25/Abrarov/supplement.txt pro-
vides Mathematica programs that can be copy-pasted to the Mathematica notebook to
validate the main results obtained in this study.

5 Conclusion

In this work, we propose a new form of the Machin-like formula (20) for π that is generated
by using iteration formula (21). Due to condition (25), the application of this form of
the Machin-like formula may be promising for computation of the constant π with rapid
convergence. Approximation (27) shows that, at k ≥ 17, the Lehmer measure remains small
and practically does not increase after 18 steps of iteration.
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