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Abstract

We consider composite numbers n such that ϕ(n) divides ℓ(n−1) for some squarefree
divisor ℓ of n − 1. We discuss two cases, according to whether the number of prime
factors of ℓ is bounded or not. We give a few instances and upper bounds for the
number of such integers below a given number.

1 Introduction

Let ϕ(n) denote the Euler totient function of n. Clearly, ϕ(p) = p − 1 for any prime p.
Lehmer [8] conjectured that there exists no composite number n such that ϕ(n) divides
n− 1 and showed that such an integer must be an odd squarefree integer with at least seven
prime factors. In other words, if ϕ(n) | (n − 1) and n is composite, then n is odd and
ω(n) = Ω(n) ≥ 7, where ω(n) and Ω(n) respectively denote the number of distinct and not
necessarily distinct prime factors of n.

For such an integer n, Cohen and Hagis [4] showed that ω(n) ≥ 14 and n > 1020, Renze’s
notebook [15] shows that ω(n) ≥ 15 and n > 1026, and Pinch claims that n > 1030 at his
research page [13]. Pomerance [14] showed that the number of such an integer n ≤ x is
O(x1/2 log3/4 x) and n ≤ r2

r

if 2 ≤ ω(n) ≤ r additionally. Luca and Pomerance [9] showed
that the number of such an integer n ≤ x is at most

x1/2

log1/2+o(1) x
.
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Furthermore, Burek and Żmija [2] showed that n ≤ 22r − 22r−1

if ϕ(n) divides n − 1 and
2 ≤ ω(n) ≤ r.

Weakening the condition ϕ(n) | (n − 1), Grau and Oller-Marcén [6] introduced the k-
Lehmer property that ϕ(n) | (n − 1)k and called a composite number with this property
to be a k-Lehmer number. The first few 2-Lehmer numbers are 561, 1105, 1729, 2465, . . .
(sequence A173703). McNew [10] showed that for each k, the number of k-Lehmer numbers
is O(x1−1/(4k−1)) and the number of integers which are k-Lehmer numbers for some k is at
most x exp(−(1 + o(1)) log x log log log x/ log log x). McNew and Wright [11] showed that for
each k ≥ 3, there exist at least x1/(k−1)+o(1) integers n ≤ x which are k-Lehmer but not
(k − 1)-Lehmer numbers.

In this paper, we would like to discuss intermediate properties between the 1-Lehmer
(that is, ordinary Lehmer) property and 2-Lehmer property.

We call a composite number n to be an almost Lehmer number if ϕ(n) divides ℓ(n−1) for
some squarefree divisor ℓ of n−1 and an r-nearly Lehmer number if ϕ(n) divides ℓ(n−1) for
some squarefree divisor ℓ of n−1 with ω(ℓ) ≤ r. The ordinary Lehmer property is equivalent
to the 0-nearly Lehmer property and an almost Lehmer number can be called an ∞-nearly
Lehmer number.

The first few almost Lehmer numbers are

1729, 12801, 247105, 1224721, 2704801, 5079361, 8355841, . . . ,

given in A337316. There exist exactly 38 almost Lehmer numbers below 232. There exist
only five 1-nearly Lehmer numbers 1729, 12801, 5079361, 34479361, and 3069196417 below
232 as given in A338998.

For r = 1, 2, . . . ,∞, let Ur be the set of composite numbers n for which ϕ(n) divides
ℓ(n − 1) for some squarefree divisor ℓ of n − 1 with ω(ℓ) ≤ r. Thus, U∞ denotes the set of
almost Lehmer numbers. We also use the general notion that S(x) = {n ≤ x, n ∈ S} denote
the set of integers S up to x for a set S of positive integers. Then McNew’s upper bound
for 2-Lehmer numbers immediately yields that #Ur(x) ≤ #U∞(x) = O(x6/7). The purpose
of this paper is to give stronger upper bounds for #Ur(x) and #U∞(x).

Theorem 1. Let ar be the number of partitions of the multiset {1, 1, 2, 2, . . . , r, r} of r
integers repeated twice. Then, there exist two absolute constants c and c1 such that for each

integer r ≥ 1,
#Ur(x) < car(x log x)2/3(c1 log log x)2r+2/3. (1)

Moreover, we have

#U∞(x) < x4/5 exp

((

4

5
+ o(1)

)

log x log log log x

log log x

)

, (2)

where o(1) → 0 ad x → ∞.
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The first few terms of the sequence (ar) are 2, 9, 66, 712, 10457, . . . given in A020555.
Bender’s asymptotic formula [1, Theorem 1] yields that

log ar < 2r

(

log(2r) − log log(2r) − 1 − log 2

2
+ o(1)

)

(3)

as r grows. Hence, we obtain the following estimates.

Corollary 2. Setting c and c1 as in Theorem 1, we have

#U1(x) < 2c(x log x)2/3(c1 log log x)2r+2/3 (4)

and

#Ur(x) <

(

(e
√

2 + or(1))r

log r

)2r

(x log x)2/3(c1 log log x)2r+2/3, (5)

where or(1) tends to zero as r tends to infinity.

Our estimates depend on numbers of multiplicative partitions of integers, which will
be discussed in the next section. Thus, fast growth of ar prevents us from showing that
#U∞(x) < x2/3+o(1).

On the other hand, the above instances lead us to conjecture that there exist infinitely
many almost Lehmer numbers. Moreover, there may be infinitely many 1-nearly Lehmer
numbers, although such integers are distributed very rarely below our search limit. However,
these also seem to be difficult to prove or disprove; it is even not known whether there exist
infinitely many 2-Lehmer numbers or not!

2 Preliminary estimates

Let τ(s) be the number of multiplicative partitions of s = s1s2 · · · sr with s1 ≤ s2 ≤ · · · ≤ sr.
The values of τ(s) for positive integers s are given in A001055.

Lemma 3. For each integer s ≥ 1, let S(s; x) denote the set of positive integers n ≤ x such

that s divides ϕ(n). Then

#S(s; x) ≤ τ(s)x(c1 log log x)Ω(s)

s
, (6)

where c1 is an absolute constant.

Proof. We observe that if s | ϕ(n), then qf11 qf22 · · · qftt qt+1 · · · qr | n for some integers f1, f2, . . . , ft ≥
2 and distinct primes q1, q2, . . . , qr such that

s | qf1−1
1 qf2−1

2 · · · qft−1
t (q1 − 1)(q2 − 1) · · · (qr − 1).
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Moreover, we can take such qi’s in the way that there exists a factorization of s = s1s2 · · · sr+1

with 1 < s1 ≤ s2 ≤ · · · ≤ sr such that qi ≡ 1 (mod si) for i = 1, 2, . . . , r and sr+1 divides
qf1−1
1 qf2−1

2 · · · qft−1
t .

For each factorization s = s1s2 · · · sr+1, the number of such integers n ≤ x does not
exceed

∑

qi≤x,
qi≡1 (mod si)(i=1,2,...,r)

x

q1q2 · · · qrsr+1

=
x

sr+1

r
∏

i=1









∑

qi≤x,
qi≡1 (mod si)

1

qi









.

We obtain from Erdős, Granville, Pomerance, and Spiro [5, (3.1)] that for i = 1, 2, . . . , r,

∑

qi≤x,
qi≡1 (mod si)

1

qi
<

c1 log log x

si
(7)

with some absolute constant c1. Thus, we conclude that the number of integers n ≤ x such
that s divides ϕ(n) corresponding to each factorization s = s1s2 · · · sr+1 can be bounded
from above by

x(c1 log log x)r

s1s2 · · · srsr+1

=
x(c1 log log x)r

s
.

Now the lemma immediately follows noting that r ≤ Ω(s).

We must note that although τ(s) is relatively small when Ω(s) is small but not when
Ω(s) is large. Indeed, Canfield, Erdős, and Pomerance [3] showed that τ(s) = s exp(−(1 +
o(1)) log s log log log s/ log log s) for highly factorable integers s, which are given in A033833.
So that, the above lemma cannot be used in order to bound the number of integers n such
that ϕ(n) are multiples of s for an arbitrary integer s. Nevertheless, we can show the
following upper bound for a certain sum involving τ(s).

Lemma 4. As x tends to infinity, we have

∑

s≤x

τ(s)

s
<

(1 + o(1))e2
√
log x log1/4 x

2
√
π

. (8)

Proof. Oppenheim [12] proved that

∑

s≤x

τ(s) =
(1 + o(1))xe2

√
log x

2
√
π log3/4 x

. (9)

By partial summation, we immediately obtain (8).
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3 Proof of the theorem

Let r be a positive integer or ∞, x denotes a sufficiently large real number, and n ≤ x be
an r-nearly Lehmer number. In this section, the implied constants in ≪ and the O-symbols
are absolute and each o(1) tends to zero as x goes to infinity.

We begin by writing (n − 1)/ϕ(n) = k/ℓ, where k and ℓ are coprime integers and ℓ is a
squarefree integer with at most r distinct prime factors dividing n− 1. We note that n must
be odd and squarefree since ϕ(n) and n are coprime and n is composite.

Take an arbitrary divisor d of n and write n = md. Since n is squarefree, we have
ℓ(md− 1) = kϕ(n) = kϕ(m)ϕ(d) and

md ≡ 1

(

mod
ϕ(d)

ℓ0

)

, (10)

where ℓ0 = gcd(ℓ, ϕ(d)).
It is clear that ℓ0 | ℓ | (n− 1) and therefore both ϕ(d)/ℓ0 and ℓ0 divide md− 1. Let a || b

denote that a | b and gcd(a, b/a) = 1. We observe that if pe || ϕ(d), then pe−1 | ϕ(d)/ℓ0 |
(md − 1) and if p || ϕ(d), then p | ϕ(d) | ℓ(n − 1) | (n − 1)2 = (md − 1)2 and therefore
p | (md− 1). Hence, decomposing ℓ0 = ℓ1ℓ2, where each prime factor p of ℓ0 divides ℓ1 if and
only if p || ϕ(d), we obtain

md ≡ 1

(

mod
ϕ(d)

ℓ2

)

. (11)

Now let L1 > x1/3 and L2 = L2
1 be real numbers which will be chosen later in different

manners according to whether r is an integer or r = ∞. We can easily see that n cannot have
a prime factor p > L2. If n = mp with p > L2, then the above observation yields that mp ≡
1 (mod (p− 1)/ℓ2). Since p ≡ 1 (mod (p− 1)/ℓ2) clearly, we have m ≡ 1 (mod (p− 1)/ℓ2)
and therefore m ≥ (p− 1)/ℓ2. However, we see that p ≡ 1 (mod ℓ22) since ℓ22 | ϕ(p) = p− 1.
Thus, we must have p < m2 = (n/p)2 < (x/p)2 and p < x2/3 ≤ L2, which is a contradiction.

Hence, n must have a prime factor p ≤ L2. If n ≥ L1 and n has no prime divisor p ≥ L1,
then the smallest divisor d ≥ L1 of n must satisfy L1 ≤ d ≤ L2

1 = L2. Clearly, if n has a
prime factor p in the range L1 ≤ d ≤ L2, then n has a divisor d = p with L1 ≤ d ≤ L2.
Thus, we observe that n has a divisor d in the range L1 ≤ d ≤ L2 if n ≥ L1.

For each d, the number of integers n = md ≤ x satisfying (11) is at most 1+⌊ℓ2x/(dϕ(d))⌋.
We note that ℓ2 ≤

√

ϕ(d) ≤ L1. Hence, using the inequality d/ϕ(d) ≪ log log d ≤ log log x,
which follows from Theorem 328 of Hardy and Wright [7], we have

#Ur(x) ≤ L1 +
∑

ℓ2≤L1

∑

L1≤d≤L2,
ℓ2
2
|ϕ(d)

(

1 +
ℓ2x

dϕ(d)

)

≪
∑

ℓ2≤L1









#S(ℓ22;L2) +
∑

L1≤d≤L2,
ℓ2
2
|ϕ(d)

ℓ2x log log x

d2









.

(12)
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Let us estimate #Ur(x) for r < ∞. Recalling the definition of ar, it is clear that τ(s2) =
aω(s) for any squarefree integer s. Thus, we have τ(ℓ22) ≤ τ(ℓ2) ≤ ar. Using Lemma 3 and
partial summation, we obtain

#Ur(x) ≪ ar
∑

ℓ2≤L1

(

L2(c1 log log x)Ω(ℓ2
2
)

ℓ22
+

x(c1 log log x)Ω(ℓ2
2
)+1

L1ℓ2

)

≪ ar

(

L2(c1 log log x)2r +
x(log x)(c1 log log x)2r+1

L1

)

.

(13)

Taking L1 = (c1x log x log log x)1/3, we obtain the theorem.
Finally, we shall estimate #U∞(x). Since ℓ22 | ϕ(d), we have ϕ(d)/ℓ2 ≥

√

ϕ(d) ≫
(d/ log log d)1/2 using Theorem 328 of Hardy and Wright [7] again. Now, instead of the
bottom line of (12), we obtain

#U∞(x) ≪
∑

ℓ2<L1









#S(ℓ22;L2) +
∑

L1≤d≤L2,
ℓ2
2
|ϕ(d)

x(log log x)1/2

d3/2









≪
∑

ℓ2≤L1

τ(ℓ22)

ℓ22

(

L2(c1 log log x)Ω(ℓ2) +
x(c1 log log x)Ω(ℓ2)+1/2

L
1/2
1

)

.

(14)

Since ℓ2 is squarefree, we have Ω(ℓ22) = 2ω(ℓ2). Hence, from Hardy and Wright [7, Chapter
22.10], we see that

Ω(ℓ22) <
2(1 + oℓ2(1)) log ℓ2

log log ℓ2
<

(1 + o(1)) logL2

log log x
, (15)

where the former oℓ2(1) tends to zero as ℓ2 goes to infinity but the latter o(1) tends to zero
as L2 (and therefore x) goes to infinity. By Lemma 4, we have

∑

ℓ2<L1

τ(ℓ22)

ℓ22
≤
∑

s<L2

τ(s)

s
≪ e2

√
log x log1/4 x. (16)

Inserting (15) and (16) into (14), we obtain

#U∞(x) ≪ e(1+o(1)) logL2 log log log x/ log log x

(

L2 +
x

L
1/2
1

)

. (17)

Now the theorem immediately follows taking L1 = x2/5. This completes the proof.
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