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Abstract

We study prime numbers p that have the property that the numbers (bq−1)/(b−1)
are quadratic residues modulo p for all sufficiently large primes q. We give a practical
criterion for testing for such primes with respect to the base b and, for certain values of
b, we find a connection between these primes and anti-elite primes, i.e., where b2

n

+ 1
are quadratic residues modulo p for all large n.

1 Introduction

Aigner [1] called a prime number p elite if the Fermat numbers Fn := 22
n

+ 1 are quadratic
non-residues modulo p for all sufficiently large values of n. Such primes p play a role in Pepin’s
primality criterion for Fermat numbers, i.e., that Fn is prime if and only if p

Fn−1

2 ≡ −1 (mod
Fn).

Müller [5] defined a prime p to be anti-elite if the numbers Fn are quadratic residues
modulo p for all large n. Despite their name, anti-elite primes are still elite in the sense
of being rare, as their elite counterparts are, but without the privilege of having a role in
primality testing.

Meanwhile, the counterparts to the Fermat numbers are the Mersenne numbers Mq :=
2q − 1, where q is a prime. Both Fermat and Mersenne numbers belong to the simplest class
of the Cunningham numbers bN ± 1, in this case with b = 2, which are of great interest as
far as primality and factorization are concerned.

1

mailto:awitno@gmail.com


We explored the analogous idea of elite primes with respect to Mersenne numbers in
place of the Fermat numbers and noted immediately that if a prime q = (p− 1)k + 1 (with
infinitely many choices for k, says Dirichlet’s theorem), then clearly Mq ≡ 1 (mod p) by
Fermat’s theorem, hence a quadratic residue. Therefore, a prime p cannot be “elite” with
respect to Mersenne numbers, but perhaps p can be “anti-elite,” i.e., where Mq is a quadratic
residue modulo p for all large primes q.

With this definition, and after establishing a practical computational criterion for finding
such primes (Theorem 5), we looked through the primes p < 109 and found no result except
p = 2 and 3. So we extended the domain of Mq to include a generalization of Mersenne num-
bers in the form Mb,q :=

bq−1

b−1
, where b ≥ 2 and q is prime. This time the numerical results,

collected in Table 1, were encouraging enough for us to continue with the investigation.
Thus, in this article we study the primes p modulo which Mb,q are quadratic residues for

all large primes q. Some results relate back to Fermat numbers, presumably not surprising,
and with respect to certain bases these primes can also be anti-elite with respect to the
generalized Fermat numbers b2

n

+ 1.
We should mention that the numbers Mb,n in general are also known as repunits, since

their base-b representations consist of a string of ones.

2 First observations

Definition 1. For all b ≥ 2 and m ≥ 1, we fix the notation

Mb,m =
bm − 1

b− 1
.

We reserve the variables p, q for prime numbers only, and we use the notation
(

a
p

)

for the

Legendre/Jacobi symbol. Now let P stand for the set of all prime numbers, and define

Pb =

{

p ∈ P :

(

Mb,q

p

)

= +1 for all sufficiently large primes q

}

.

(Since the property p ∈ Pb is hypothetical, perhaps we should call such primes hypo-elite to

the base b.)

Table 1 displays the elements of Pb up to five billion with b ≤ 10. They can be obtained
using an algorithm based on a criterion for p ∈ Pb explained in Theorem 5 later in this
section, after some preliminary observations.

Theorem 2. If p | b(b + 1), then p ∈ Pb. If 2 < p | (b − 1), then p 6∈ Pb. In particular,

2 ∈ Pb for all b ≥ 2, and 3 ∈ Pb if and only if b 6≡ 1 (mod 3).
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b p ∈ Pb

2 2, 3
3 2, 3, 7, 13, 61, 73, 547, 757, 1093, 4561, 6481, 368089,

398581, 530713, 797161, 42521761, 47763361, 2413941289
4 2, 5, 13, 17, 41, 241, 257, 61681, 65537, 15790321,

4278255361, 4562284561
5 2, 3, 5, 7, 521, 601, 5167, 390001, 234750601
6 2, 3, 7, 31, 97, 101
7 2, 7, 43, 1201, 2801, 117307, 6568801
8 2, 3, 19, 73, 87211, 262657, 18837001
9 2, 3, 5, 13, 41, 73, 757, 1093, 1181, 4561, 6481, 368089,

530713, 797161, 21523361, 42521761, 47763361, 2413941289
10 2, 5, 7, 11, 13, 37, 52579, 459691, 2906161

Table 1: The primes p ∈ Pb up to p < 5 · 109 and 2 ≤ b ≤ 10.

Proof. Since Mb,q = 1+ b+ b2+ · · ·+ bq−1, then p | b(b+1) implies that Mb,q ≡ 1 (mod p) for
all primes q > 2. In that case Mb,q is a quadratic residue modulo p and p ∈ Pb. Now if p > 2
and p | (b− 1), then Mb,q ≡ q (mod p). By Dirichlet’s theorem, we know there are infinitely
many primes q in an arbitrary reduced residue class modulo p, in particular the class of a
quadratic non-residue; hence p 6∈ Mb in this case. The second part of the claim follows as
2 | b(b+ 1) and that {b− 1, b, b+ 1} is a complete residue system modulo 3.

Remark 3. In particular, Pb contains all the prime factors of b. Hence, given an arbitrarily
large number L, we can find a base b such that |Pb| ≥ L, e.g., by considering b which is the
product of L distinct primes.

Remark 4. It is clear from the definition that we have p ∈ Pb if and only if p ∈ PB for
all B ≡ b (mod p). Hence, for a fixed prime p, we can identify all the bases b for which
p ∈ Pb once they have been determined up to b < p, such as what we have in Table 1. For
convenience, based on Theorem 2, we may set P1 = {2} and P0 = P . Then, for instance, we
observe from Table 1 that 11 ∈ Pb only for b = 0 and 10, so we may conclude that 11 ∈ Pb

if and only if b ≡ 0, 10 (mod 11).

In what follows, the notation |b|p stands for the multiplicative order of b modulo p.

Theorem 5. Let p ∤ b(b − 1), and let R = Rb,p be a reduced residue system modulo |b|p.
Then the prime p ∈ Pb if and only if Mb,n is a quadratic residue modulo p for every n ∈ R.

Proof. The condition p ∤ b(b − 1) ensures that k := |b|p ≥ 2. If q is a large prime, then q
belongs to a residue class modulo k represented by one of the elements in R, say n, so that
Mb,q ≡ Mb,n (mod p) since q ≡ n (mod k). Conversely by Dirichlet’s theorem, for every
n ∈ R, we have an infinite class of primes congruent to n modulo k. Thus the condition
that Mb,n be quadratic residue for all n ∈ R is sufficient as well as necessary for having
p ∈ Pb.
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Furthermore, we can reduce computation by observing that only half the elements of R
in the preceding theorem need to be tested:

Theorem 6. Let k = |b|p, where p ∤ b(b − 1), and let H = {x : 1 < x < k
2
, gcd(x, k) = 1}.

Then the prime p ∈ Pb if and only if −b and Mb,n are quadratic residues modulo p for all

n ∈ H.

For example, every Mersenne prime Mq 6∈ P2, except M2 = 3, because
(

−2

2q−1

)

=
(

−1

2q−1

)(

2

2q−1

)

= (−1)(+1) = −1. As for primes Mb,q in general bases, we do have some
positive results stated in the next theorem.

Proof. Let R = {x : 1 ≤ x ≤ k, gcd(x, k) = 1}. By Theorem 5, we have p ∈ Pb if and only

if
(Mb,n

p

)

= +1 for all n ∈ R. Note that as n ranges through elements of R, so does k − n,
only in reverse order. Moreover,

bn − 1

b− 1
(−bk−n) =

−bk + bk−n

b− 1
≡

bk−n − 1

b− 1
(mod p).

Therefore,
(

Mb,n

p

)(

Mb,k−n

p

)

=

(

−bk−n

p

)

=

(

−bk+n

p

)

=

(

−bn

p

)

.

Now if n is odd, then
(

−bn

p

)

=
(

−b
p

)

. But if n is even, then k is odd, in which case k | p−1

2

since k | (p − 1) by Fermat’s theorem. It would follow that
(

b
p

)

≡ b
p−1

2 ≡ +1 (mod p), so

again
(

−bn

p

)

=
(

−b
p

)

. We have shown that for all n ∈ R,

(

Mb,n

p

)(

Mb,k−n

p

)

=

(

−b

p

)

.

In particular, if
(

−b
p

)

= −1, then Mb,k−1 is a non-residue modulo p and p 6∈ Pb. But if
(

−b
p

)

=

+1, then
(Mb,k−n

p

)

=
(Mb,n

p

)

, in which case the set R may be replaced by R∩ {1, 2, . . . , ⌊k
2
⌋}.

The case n = 1 is trivially redundant, as is the case k
2
∈ R, which can occur only when k = 2

and n = 1.

Remark 7. The necessary condition
(

−b
p

)

= +1 translates into a congruence class criterion
on the prime p which, for small b, is not hard to formulate. For b ≤ 10, these criteria are
displayed in Table 2, with the purpose of checking against the primes we have obtained in
the first table.
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b Criteria for p such that
(

−b
p

)

= +1

2 p ≡ 1, 3 (mod 8)
3 p ≡ 1 (mod 6)
4 p ≡ 1 (mod 4)
5 p ≡ 1, 3, 7, 9 (mod 20)
6 p ≡ 1, 5, 7, 11 (mod 24)
7 p ≡ 1, 9, 11 (mod 14)
8 p ≡ 1, 3 (mod 8)
9 p ≡ 1 (mod 4)
10 p ≡ 1, 7, 9, 11, 13, 19, 23, 37 (mod 40)

Table 2: Congruence condition necessary for the prime p ∈ Pb.

Theorem 8. Suppose that b mod 4 ∈ {0, 3}. If Mb,q is a prime number, then Mb,q ∈ Pbk for

all k ≥ 1 such that q ∤ k.

Dubner [2] provides us with a table of primes Mb,q up to b = 99, e.g., for b = 3, we can
take q = 3, 7, 13, 71, 103, 541. The first three of these, corresponding to p = 13, 1093, 797161,
appear in our Table 1, belonging to both P3 and P9.

Proof. We shall show first that for arbitrary m and n with gcd(m,n) = 1,

(

Mb,n

Mb,m

)

= +1.

Note that Mb,m ≡ 1 (mod 4) when b mod 4 = 0, as well as when b mod 4 = 3 provided that
m is odd. So let us assume now that m is odd. (For m even, we reverse the roles of m and
n.) Moreover, similar to what we have seen in the proof of Theorem 6, we have that

(

Mb,n

Mb,m

)(

Mb,m−n

Mb,m

)

=

(

−bn

Mb,m

)

.

And since Mb,m ≡ 1 (mod 4), we have

(

−bn

Mb,m

)

=

(

b

Mb,m

)n

=

(

1

b

)n

= +1,

when b is odd, i.e., when b ≡ 3 (mod 4), as well as when b ≡ 0 (mod 4) by involving the
Kronecker symbol. (In the case b ≡ 4 (mod 8), the claim holds without further justification,
whereas if b ≡ 0 (mod 8), the same result holds as Mb,m ≡ 1 (mod 8).) It follows that

(

Mb,n

Mb,m

)

=

(

Mb,m−n

Mb,m

)

.
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Using the fact that Mb,n mod Mb,m = Mb,n mod m, we then apply the reciprocity law and
remainder mod operations to get

(

Mb,n

Mb,m

)

=

(

Mb,n1

Mb,m

)

=

(

Mb,m

Mb,n1

)

=

(

Mb,n2

Mb,n1

)

= · · ·

where n1 = n mod m or m − (n mod m), whichever is odd, and n2 = m mod n1 or n1 −
(m mod n1), whichever is odd, etc., in order to maintain Mb,nj

≡ 1 (mod 4), thereby each
reciprocal remains free of minus sign. Hence with gcd(m,n) = 1, this process will terminate

with
(Mb,n

Mb,m

)

= · · · =
( Mb,1

Mb,nt

)

= +1.

Now letting m = q, a fixed odd prime, and n be any larger prime, we have proved that
if Mb,q is prime, then Mb,q ∈ Pb. (The case q = 2 deals with the prime p = b + 1, to which
Theorem 2 applies.) As for the base bk, note the identity Mb,kn = Mbk,nMb,k. So if q ∤ k,
then the same arguments as before yield

(

Mbk,n

Mb,q

)

=

(

Mb,kn

Mb,q

)(

Mb,k

Mb,q

)

= (+1)(+1) = +1,

establishing the claim.

Remark 9. We can also show that Mb,q 6∈ Pb in the case b ≡ 2 (mod 4). Note, for instance,
when q and q′ ≡ 2 (mod q) are primes,

(

Mb,q′

Mb,q

)

=

(

Mb,2

Mb,q

)

=

(

b+ 1

Mb,q

)

= −

(

Mb,q

b+ 1

)

= −

(

1

3

)

= −1.

This observation agrees with the known fact that the Mersenne numbers Mq cannot be a
perfect square, for otherwise the Jacobi symbol would equal +1. (An old result by Lebesgue
[4] states that xm − 1 = y2 is not solvable.)

3 Results involving Fermat numbers

Table 1 shows that the Fermat primes Fm ∈ P4 for m = 1, 2, 3, 4. Although it is unknown
if there exists another Fermat prime after F4, we will prove in Corollary 14 that all Fermat
primes belong in P4. Other results in this section concern the idea of a prime being anti-elite
with respect to Fermat numbers in general bases:

Definition 10. Recall the generalized Fermat numbers Fb,n = b2
n

+ 1. Let a prime p be
considered anti-elite to the base b if Fb,n, when sufficiently large, are all quadratic residues
modulo p.

Theorem 11. Fix an even base b, and let m = 2sr, with 0 ≤ s ≤ n and 2 ∤ r. The following

results apply to the Jacobi symbol
(Mb,m

Fb,n

)

with n ≥ 1.
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1. For s = 0, we have
(Mb,m

Fb,n

)

= +1 if b ≡ 0 (mod 4), and indeterminate if b ≡ 2 (mod 4).

2. For s = 1, we have
(Mb,m

Fb,n

)

= +1 if b ≡ 0, 6 (mod 8), and
(Mb,m

Fb,n

)

= −1 if b ≡ 2, 4

(mod 8).

3. For s ≥ 2, we have
(Mb,m

Fb,n

)

= +1 if b ≡ 0, 2 (mod 8), and
(Mb,m

Fb,n

)

= −1 if b ≡ 4, 6

(mod 8).

Proof. The condition s ≤ n implies that gcd(bm − 1, b2
n

+ 1) = 1. Let us perform Bezout’s
algorithm for evaluating gcd(2n−s, r) = 1, and where in each iteration we multiply the
equation by 2s:

2n = (2sr)u+ 2sr1

2sr = (2sr1)u1 + 2sr2

2sr1 = (2sr2)u2 + 2sr3
...

2srt−1 = (2srt)ut + 2s.

Note that r > r1 > r2 > · · · > rt > 1. With these, we apply the reciprocal law to the Jacobi
symbol

(

bm−1

b2
n
+1

)

repeatedly,

(

b2
sr − 1

b2n + 1

)

=

(

b2
n

+ 1

b2sr − 1

)

=

(

b2
sr1 + 1

b2sr − 1

)

=

(

b2
sr − 1

b2sr1 + 1

)

=

(

(−1)u1b2
sr2 − 1

b2sr1 + 1

)

Note that
(

−1

b2
sr1+1

)

= +1. Depending on the parity of u1, we continue,

(

(−1)u1b2
sr2 − 1

b2sr1 + 1

)

=

(

±b2
sr2 − 1

b2sr1 + 1

)

=

(

b2
sr2 ∓ 1

b2sr1 + 1

)

=

(

b2
sr1 + 1

b2sr2 ∓ 1

)

.

At this point, there are three ways to go with the +/− sign:
(

b2
sr1 + 1

b2sr2 ∓ 1

)

=

(

b2
sr3 + 1

b2sr2 − 1

)

or

(

b2
sr3 + 1

b2sr2 + 1

)

or

(

b2
sr3 − 1

b2sr2 + 1

)

.

In fact, these three are the only possible forms until we reach the t-th iteration, i.e.,
(

b2
sr − 1

b2n + 1

)

=

(

b2
s

+ 1

b2srt − 1

)

or

(

b2
s

+ 1

b2srt + 1

)

or

(

b2
s

− 1

b2srt + 1

)

.

We proceed case by case, respectively:

Case 1. Note that here rt must be odd since we start off with the Jacobi symbol
(

bm−1

b2
n
+1

)

having gcd(bm − 1, b2
n

+ 1) = 1. Hence,
(

b2
s

+ 1

b2srt − 1

)

=

(

b2
srt − 1

b2s + 1

)

=

(

(−1)rt − 1

b2s + 1

)

=

(

−2

b2s + 1

)

.
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Case 2. This time, rt is even:

(

b2
s

+ 1

b2srt + 1

)

=

(

b2
srt + 1

b2s + 1

)

=

(

(−1)rt + 1

b2s + 1

)

=

(

2

b2s + 1

)

.

Case 3. Similarly,
(

b2
s

− 1

b2srt + 1

)

=

(

b2
srt + 1

b2s − 1

)

=

(

2

b2s − 1

)

.

From all these we collect the following results.

1. For s = 0, we have
(

bm−1

b2
n
+1

)

= +1 if b ≡ 0 (mod 8), and
(

bm−1

b2
n
+1

)

= −1 if b ≡ 4 (mod 8),
and indeterminate if b ≡ 2 (mod 4).

2. For s = 1, we have
(

bm−1

b2
n
+1

)

= +1 if b ≡ 0 (mod 4), and
(

bm−1

b2
n
+1

)

= −1 if b ≡ 2 (mod 4).

3. For s ≥ 2, we have
(

bm−1

b2
n
+1

)

= +1 in all cases.

We also verify easily that
(

b−1

b2
n
+1

)

= +1 if b ≡ 0, 2 (mod 8), and
(

b−1

b2
n
+1

)

= −1 if b ≡ 2, 4

(mod 8). Lastly, we use the relation
(Mb,m

Fb,n

)

=
(

bm−1

b2
n
+1

)(

b−1

b2
n
+1

)

to put together the desired

claim.

Corollary 12. Suppose that b ≡ 0 (mod 4). Then
(Mb,q

Fb,n

)

= +1 for any odd number q.

Hence, if Fb,n is prime, then Fb,n ∈ Pb. In reciprocal, if Mb,q is prime, then Mb,q is anti-elite

to the base b.

Remark 13. This corollary is the case s = 0 in Theorem 11. Primes Mb,q, being scarce,
are typically discovered having large values of q. Now, since Fermat numbers are recursive,
they are periodic modulo p. In the case of p = Mb,q, the period length is given by |2|q,
hence expectedly large too. For instance, the fourteenth repunit prime base 12, according to
A004064 in OEIS [6], is M12,769543. Since 12 is a multiple of 4, this prime is anti-elite to this
base with period |2|769543 = 384771.

Corollary 14. Suppose that Fb,n is a prime number for some n ≥ 1. If b ≡ 0 (mod 4), then
Fb,n ∈ Pbk for all k ≥ 1 such that 2n+1 ∤ k. If b ≡ 2 (mod 4), then Fb,n ∈ Pb2k for all k ≥ 1
such that 2n ∤ k. In particular, all Fermat primes Fn ∈ P4k for all such k.

Proof. The identityMb,km = Mbk,mMb,k gives
(M

bk,m

Fb,n

)

=
(Mb,km

Fb,n

)(Mb,k

Fb,n

)

. Note that ifm is odd,

the factor of 2 dividing k and km are of the same multiplicity. In that case
(Mb,km

Fb,n

)

=
(Mb,k

Fb,n

)

by Theorem 11, provided that we require k to be even when b ≡ 2 (mod 4) in order to avoid

the indeterminate case. Hence,
(M

bk,q

Fb,n

)

= +1 for all odd prime q.

Remark 15. We can extend the proof of Theorem 11 to include
(M

bk,m

Fb,n

)

= +1 if m is even,

provided that k is also even, or a multiple of 4 when b ≡ 2 (mod 4). In particular, with
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m = 2 and k = 2r, we have Mb2
r
, 2 = Fb,r. Then

(Fb,n

Fb,r

)

=
( Fb,r

Fb,n

)

= +1 for all n > r. Hence,

we can show that generalized Fermat primes Fb,r, for r ≥ 2, are anti-elite to their own base.
However, this is a fact already known [5] and easy to obtain due to the relation Fb,n ≡ 2
(mod Fb,r) for all n > r. And unfortunately, no other anti-elite primes can be identified in
this manner as it has been observed that Mb,q is always composite when b is a perfect power,
except possibly for q = 2, i.e., the Fermat primes already considered.

We do not observe a general pattern for odd bases b. The following theorem deals with
an isolated result for b = 3.

Theorem 16. If the number
F3,n

2
is prime, then

F3,n

2
∈ P9k for all k odd.

Primes of the form F3,n

2
are currently known with n = 0, 1, 2, 4, 5, 6 [A275377]. Four of

these are included in Table 1, belonging in P9.

Proof. We exclude n = 0, although it is valid, and introduce the notation Er =
9r+1

2
. Hence

F3,n

2
= E2n−1 . Note the following facts.

1. We have Er ≡ 1 (mod 4) for all r ≥ 0.

2. The number M9,m is odd only when m is odd.

3. We have gcd(E2n−1 ,M9,m) = 1 for all n ≥ 1 when m is odd.

We first show that
(

M9,m

E
2n−1

)

= +1 for all odd m, then it would follow that
(M

9k,m

E
2n−1

)

=
(M9,km

E
2n−1

)( M9,k

E
2n−1

)

= (+1)(+1) = +1 for all odd k.

Let us fix an odd m, and let r1 = 2n−1 mod m. By the congruence 9m ≡ 1 (mod M9,m),
we get

(

E2n−1

M9,m

)

=

(

2

M9,m

)

(

92
n−1

+ 1

M9,m

)

=

(

2

M9,m

)(

9r1 + 1

M9,m

)

=

(

Er1

M9,m

)

.

Now by the congruence 9r1 ≡ −1 (mod Er1), this Jacobi symbol equals to
(

M9,m

Er1

)

=

(

8

Er1

)(

9m − 1

Er1

)

=

(

8

Er1

)(

±9r2 − 1

Er1

)

,

where r2 = m mod r1. In the plus case, we have
(

E2n−1

M9,m

)

=

(

8

Er1

)(

9r2 − 1

Er1

)

=

(

M9,r2

Er1

)

=

(

Er1

M9,r2

)

,

noting that if r2 is even, then the Jacobi symbol is temporarily replaced by Kronecker symbol.
Similarly, in the minus case,

(

E2n−1

M9,m

)

=

(

8

Er1

)(

−9r2 − 1

Er1

)

=

(

2

Er1

)(

9r2 + 1

Er1

)

=

(

Er2

Er1

)

=

(

Er1

Er2

)

.
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This process terminates, say at the t-th iteration, having produced the remainders r1 > r2 >
· · · > rt > 1. Observe that there are only three possible final forms.
Case 1. We have

(E
2n−1

M9,m

)

= · · · =
(

M9,1

Ert

)

= +1.

Case 2. The case where we must have rt odd, since gcd(E2n−1 ,M9,m) = 1:

(

E2n−1

M9,m

)

= · · · =

(

E1

M9,rt

)

=

(

M9,rt

5

)

=

(

8

5

)(

9rt − 1

5

)

= −

(

−2

5

)

= +1.

Case 3. The last case, where we would have rt even:

(

E2n−1

M9,m

)

= · · · =

(

E1

Ert

)

=

(

5

Ert

)

=

(

2

5

)(

9rt + 1

5

)

=

(

2

5

)(

2

5

)

= +1.

And the proof is complete.

Our last observation in connection with anti-elite primes is irrespective of the family to
which the prime p belongs, but is given by the multiplicative order of the base b.

Theorem 17. Suppose that |b|p is an odd number. If p ∈ Pb, then p is anti-elite to the base

b.

Table 1 contains quite a number of occurrences with odd |b|p, thus anti-elite primes, e.g.,
2906161 in base 10 and 2413941289 in base 3, as well as the repunit M3,13 = 797161 ∈ P3.

Proof. Note that Fb,nMb,2n = Mb,2n+1 and that gcd(2n, |b|p) = 1 for all n. Hence, if p ∈ Pb,
then by Theorem 5, both Mb,2n and Mb,2n+1 are quadratic residues modulo p, and so is
Fb,n.

Corollary 18. Every repunit prime Mb,q is anti-elite to its base, if b ≡ 0, 3 (mod 4).

Proof. The case b mod 4 = 0 overlaps with Corollary 12. Regardless, for these two classes
of b, we have Mb,q ∈ Pb if prime, by Theorem 8. Such an event comes with |b|Mb,q

= q, which
is necessarily an odd prime.

4 For further research

This has been an initial investigation on primes p elements of Pb, i.e., such that
(Mb,q

p

)

= +1

for all large primes q, and motivated by the search for new insight into elite/anti-elite primes.
If the subject is proven worthwhile, we would invite the readers to look into the infinitude
of Pb, for all or specific values of b. The facts that some Pb can be large (Remark 3) and
that some contain repunit primes naturally suggest that there may indeed be infinitely many
such primes for a fixed base. However, our numerical data also suggest that we may have a
convergent reciprocal sum

∑

p∈Pb
1/p, in line with the reciprocal sum of elite primes, which

has been proved convergent by Kř́ıžek et al. [3].
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[1] A. Aigner, Über Primzahlen, nach denen (fast) alle Fermatschen Zahlen quadratische
Nichtreste sind, Monatsh. Math. 101 (1986), 85–93.

[2] H. Dubner, Generalized repunit primes, Math. Comp. 61 (1993), 927–930.
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