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Abstract

We consider integer sequences that satisfy a recursion of the form xn+1 = P (xn)
for some polynomial P of degree d > 1. If such a sequence tends to infinity, then it
satisfies an asymptotic formula of the form xn ∼ Aαdn , but little can be said about the
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constant α. In this paper, we show that α is always irrational or an integer. In fact,
we prove a stronger statement: if a sequence (Gn)n≥0 satisfies an asymptotic formula
of the form Gn = Aαn + B + O(α−ǫn), where A,B are algebraic and α > 1, and the
sequence contains infinitely many integers, then α is irrational or an integer.

1 Introduction

Integer sequences obtained by polynomial iteration, i.e., sequences that satisfy a recursion
of the form

xn+1 = P (xn),

occur in several areas of mathematics. One can find many interesting examples in Finch’s
book on mathematical constants [2, Chapter 6.10].

Let us give two concrete examples: the first is the sequence given by x0 = 0 and xn+1 =
x2
n + 1 for n ≥ 0, which is entry A003095 in the On-Line Encyclopedia of Integer Sequences

(OEIS) [6]. Among other things, xn is the number of binary trees whose height (greatest
distance from the root to a leaf) is less than n. This sequence grows very rapidly: there exists
a constant β ≈ 1.2259024435 (the digits are A076949 in the OEIS) such that xn = ⌊β2n⌋.
However, this formula is not as explicit as it may seem, since the only known way to evaluate
the constant β numerically involves all elements of the sequence: it can be expressed as

β =
∞
∏

n=1

(

1 + x−2
n

)2−n−1

.

Another well-known example is Sylvester’s sequence (A000058 in the OEIS), which is given
by y0 = 2 and yn+1 = y2n − yn + 1. It arises in the context of Egyptian fractions, yn being
the smallest positive integer for each n such that

1

y0
+

1

y1
+

1

y2
+ · · ·+ 1

yn
< 1.

There is also a pseudo-explicit formula for this sequence: for a constant γ ≈ 1.5979102180,
we have yn = ⌊γ2n + 1

2
⌋. However, again no formula for γ is known that does not involve the

sequence elements. This is also the reason why little is known about the constants β and
γ in these two examples and generally growth constants associated with similar sequences
that satisfy a polynomial recursion.

In this short note, we will prove that the constants β and γ in these examples are—
perhaps unsurprisingly—irrational, as are all non-integer growth constants associated with
similar sequences that follow a polynomial recursion. The precise statement reads as follows:

Theorem 1. Suppose that an integer sequence satisfies a recursion of the form xn+1 = P (xn)
for some polynomial P of degree d > 1 with rational coefficients. Assume further that

xn → ∞ as n → ∞. Set

α = lim
n→∞

(xn)
d−n

.
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Then α is a real number greater than 1 that is either irrational or an integer.

It is natural to conjecture that the constants β and γ in our first two examples are not
only irrational, but even transcendental. This is not always true for polynomial recursions
in general, though: for example, consider the sequence given by z1 = 3 and zn+1 = z2n − 2.
It is not difficult to prove that

zn = L2n =
(1 +

√
5

2

)2n

+
(1−

√
5

2

)2n

for all n ≥ 1, where Ln denotes the n-th Lucas number. Thus the constant α in Theorem 1
would be the golden ratio in this example.

In the following section, we briefly review the classical method to determine the asymp-
totic behavior of polynomially recurrent sequences. Theorem 1 will follow as a consequence
of a somewhat stronger result, Theorem 2. This theorem and its proof, which makes use of
the subspace theorem, will be given in Section 3.

2 Asymptotic formulas for polynomially recurrent se-

quences

There is a classical technique for the analysis of polynomial recursions. The 1973 paper of
Aho and Sloane [1] already contains a treatment of the two examples given in the introduction
(along with many other examples). See also the book of Greene and Knuth [3, Chapter 2.2.3]
for a discussion of the method.

Let the polynomial P in the recursion xn+1 = P (xn) be given by

P (x) = cdx
d + cd−1x

d−1 + · · ·+ c0.

Note that

P (x) = cd

(

x+
cd−1

dcd

)d

+O(xd−2).

So if we perform the substitution yn = c
1/(d−1)
d (xn +

cd−1

dcd
), the recursion becomes

yn+1 = c
1/(d−1)
d

(

P (xn) +
cd−1

dcd

)

= c
d/(d−1)
d

(

xn +
cd−1

dcd

)d

+O(xd−2
n )

= ydn +O(yd−2
n ).

Let us assume that xn → ∞, thus also yn → ∞. It is easy to see that the sequences (xn)n≥0

and (yn)n≥0 are increasing from some point onwards in this case. We can also assume, without
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loss of generality, that none of the yn is zero: if not, we simply choose a later starting point.
Taking the logarithm, we obtain

log yn+1 = d log yn +O(y−2
n )

or equivalently

log
(yn+1

ydn

)

= O(y−2
n ). (1)

Next express log yn as follows:

log yn = d log yn−1 + log
( yn
ydn−1

)

= d2 log yn−2 + d log
(yn−1

ydn−2

)

+ log
( yn
ydn−1

)

= · · · = dn log y0 +
n−1
∑

k=0

dn−k−1 log
(yk+1

ydk

)

.

Extending to an infinite sum (which converges since log(yk+1/y
d
k) is bounded) yields

log yn = dn
(

log y0 +
∞
∑

k=0

d−k−1 log
(yk+1

ydk

))

−
∞
∑

k=n

dn−k−1 log
(yk+1

ydk

)

.

Set

logα = log y0 +
∞
∑

k=0

d−k−1 log
(yk+1

ydk

)

,

so that

log yn = dn logα−
∞
∑

k=n

dn−k−1 log
(yk+1

ydk

)

.

In view of (1) and the fact that yn ≤ yn+1 ≤ · · · for sufficiently large n, this gives

log yn = dn logα +O(y−2
n ),

and thus finally
yn = αdn +O

(

α−dn
)

.

This means that
xn = c

−1/(d−1)
d αdn − cd−1

dcd
+O

(

α−dn
)

.

3 Application of the subspace theorem

We now combine the asymptotic formula from the previous section with an application of
the subspace theorem to prove our main result on polynomial recursions. In fact, we first
state and prove a somewhat stronger result that implies Theorem 1.
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Theorem 2. Assume that the sequence (Gn)n≥0 attains an integral value infinitely often,

and that it satisfies an asymptotic formula of the form

Gn = Aαn + B +O(α−ǫn),

where α > 1, A and B are algebraic numbers with A 6= 0, ǫ > 0, and the constant implied

by the O-term does not depend on n. Then the number α is either irrational or an integer.

In order to prove the irrationality of α we make use of the following version of the subspace
theorem, which is most suitable for our purposes, cf. [5, Chapter V, Theorem 1D].

Theorem 3 (Subspace theorem). Let K be an algebraic number field, let aK be its maximal

order, and let M(K) be the set of canonical absolute values of K. Moreover, let S ⊂ M(K)
be a finite set of absolute values that contains all of the Archimedian ones. For each ν ∈ S,
| · |ν denotes the valuation corresponding to ν, and nν denotes the local degree. For x =
(x1, x2, . . . , xN) ∈ aNK, we define

|x| = max
1≤i≤N

1≤j≤degK

|x(j)
i |,

the maximum being taken over all conjugates x
(j)
i of all entries xi of x. Finally, for each

ν ∈ S, let Lν,1, . . . , Lν,N be N linearly independent linear forms in n variables with coefficients

in K. Then for given δ > 0, the solutions of the inequality

∏

ν∈S

N
∏

i=1

|Lν,i(x)|nν

ν < |x|−δ
,

with x = (x1, x2, . . . , xN ) ∈ aNK and x 6= 0, lie in finitely many proper subspaces of KN .

Proof of Theorem 2. Let us assume contrary to the statement of Theorem 2 that α = p/q is
rational, where p and q are coprime positive integers, p > q, and q 6= 1. Moreover, assume
that their prime factorizations are

p = pn1

1 · · · pnk

k and q = qm1

1 · · · qmℓ

ℓ .

We choose K in the subspace theorem to be the normal closure of Q(A,B), and we write
D = [K : Q]. We fix one embedding of K into C, so that we can assume that K ⊆ C.
Moreover, let us write A and B as A = β1/Q and B = β2/Q, where β1 and β2 lie in the
maximal order aK of K, and Q is a positive integer such that the ideals (β1, β2) and (Q) are
coprime.

If n is an index such that Gn is an integer, we deduce that there exists an algebraic
integer a which may depend on n such that

Gn =
β1p

n + β2q
n + a

Qqn
= Aαn + B +

a

Qqn
= Aαn + B +O(α−ǫn).
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Since we are assuming that Gn is a rational integer, we can write the algebraic integer a in
the form a = X − β1p

n − β2q
n, with X ∈ Z. Moreover, we know that

|a| < CQ

(

q1+ǫ

pǫ

)n

, (2)

where C is the constant implied by the O-term.
Assume that K has signature (r, s). We choose

S = {∞1, . . . ,∞r+s, p1,1, . . . , pk,tk , q1,1, . . . , qℓ,uℓ
},

where the valuations pi,1, . . . , pi,ti are all valuations lying above pi for 1 ≤ i ≤ k, and the
valuations qj,1, . . . , qj,uj

are all valuations lying above qj for 1 ≤ j ≤ ℓ. Moreover, let

Gal(K/Q) = {σ1, . . . , σr, σr+1, σ̄r+1, . . . , σr+s, σ̄r+s},

so that the valuation ∞i is given by |x|∞i
= |σ−1

i x|, where | · | is the usual absolute value of

C. Finally, the conjugates of β1 and β2 are denoted by β
(i)
j = σi(βj). We have the formula

|x1β
(i)
1 + x2β

(i)
2 + x3|∞i

= |x1β1 + x2β2 + x3|

for arbitrary rational numbers x1, x2, x3.
Next, we construct suitable linear forms to apply the subspace theorem. Let us write

x1 = pn, x2 = qn, and x3 = a, thus N = 3. We choose our linear forms as Lν,1(x) =
x1, Lν,2(x) = x2 for all ν ∈ S, and Lν,3(x) = x3 if ν lies above one of the valuations p1, . . . , pk.
We choose Lν,3(x) = β1x1+β2x2+x3 if ν lies above one of the valuations q1, . . . , qℓ. Finally,

if ν = ∞i, then we put L∞i,3(x) = (β1 − β
(i)
1 )x1 + (β2 − β

(i)
2 )x2 + x3.

Using the product formula, cf. [4, pp. 99–100], and trivial estimates we obtain
∏

ν∈S

|Lν,1(x)|nν

ν = 1,
∏

ν∈S

|Lν,2(x)|nν

ν = 1,

∏

ν|qj
1≤j≤ℓ

|Lν,3(x)|nν

ν ≤ q−Dn,
∏

ν|pi
1≤i≤k

|Lν,3(x)|nν

ν ≤ 1.

Thus we are left to compute the quantities |L∞i,3(x)|∞i
. We obtain

|L∞i,3(x)|∞i
= |(β1 − β

(i)
1 )x1 + (β2 − β

(i)
2 )x2 + x3|∞i

= |β1p
n + β2q

n + a− β
(i)
1 pn − β

(i)
2 qn|∞i

= |X − β
(i)
1 pn − β

(i)
2 qn|∞i

= |X − β1p
n − β2q

n| = |a|.

Combining all inequalities, we have

∏

ν∈S

3
∏

i=1

|Lν,i(x)|nν

ν ≤ q−Dn|a|D < (CQ)D
(

q

p

)ǫDn

. (3)
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Now choose δ > 0 small enough so that
(

q

p

)ǫD

< p−δ.

In view of (2), the inequality |a|ν ≤ pn holds for all valuations ν lying above∞ for sufficiently
large n, so that |x| = |x1| = pn. Hence we obtain

(CQ)D
(

q

p

)ǫDn

< (pn)−δ = |x|−δ

for sufficiently large n. In view of (3), we have shown that

∏

ν∈S

n
∏

i=1

|Lν,i(x)|nν

ν < |x|−δ
. (4)

By the subspace theorem, all solutions to (4) lie in finitely many subspaces of K3. Since
by assumption there are infinitely many solutions, there exists one subspace T ⊆ K3 which
contains infinitely many solutions. Let T be defined by t1x1 + t2x2 + t3x3 = 0, with fixed
algebraic integers t1, t2, t3 ∈ aK . Then there must be infinitely many integers n such that
t1p

n + t2q
n + t3a = 0, which is in contradiction to (2) and the assumption that p > q > 1.

Thus we can conclude that α cannot be rational, unless q = 1 so that α is an integer.

Now the proof of Theorem 1 is straightforward.

Proof of Theorem 1. As derived in Section 2, if an integer sequence satisfies a recursion of
the form xn+1 = P (xn) for some polynomial P of degree d > 1 with rational coefficients, and
xn → ∞ as n → ∞, then an asymptotic formula of the form

xn = Aαdn + B +O(α−dn)

holds. If α is rational, but not an integer, then we have an immediate contradiction to
Theorem 2.

4 Further generalizations

Let us remark that Theorem 2 can be extended to number fields:

Theorem 4. Let L be a number field, and let aL be its maximal order. Assume that the

sequence (Gn)n≥0 attains values in OL infinitely often, and that it satisfies an asymptotic

formula of the form

Gn = Aαn + B +O(|α|−ǫn),

where |α| > 1, A and B are algebraic numbers with A 6= 0, ǫ > 0, and the constant implied

by the O-term does not depend on n. Then the number α is either an algebraic integer in

aL, or α 6∈ L.
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The proof of this theorem is similar to the proof of Theorem 2. In particular, let K be
the normal closure of L(A,B), and assume that α = p/q with p ∈ aL and q ∈ Z with q > 1.
Then we consider the prime ideal factorizations

(p) = p
n1

1 · · · pnk

k and (q) = q
m1

1 · · · qmℓ

ℓ

in K. We can construct the same linear forms as in the proof of Theorem 2 and use the
subspace theorem to get a contradiction.

It is also possible to consider a higher-dimensional variant of Theorem 1. Let f1, . . . , fN ∈
Z[X1, . . . , XN ] be polynomials of degree d > 1. Then we can consider a sequence (xn)n≥0

with xn =
(

x
(1)
n , . . . , x

(N)
n

)

∈ ZN for all n ≥ 0 satisfying the polynomial recursion

xn+1 = f(xn) = (f1(xn), . . . , fN(xn)).

With this notation at hand we pose the following problem:

Problem 5. Assume that max
{

x
(1)
n , . . . , x

(N)
n

}

→ ∞ as n → ∞, and let

α = lim
n→∞

(

max
{

x(1)
n , . . . , x(N)

n

} )d−n

.

Is α necessarily irrational or an integer?
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