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Abstract

We construct a set of Pascal-like infinite matrices that contains the generalized

Delannoy arrays associated with weighted lattice paths. From each of our Delannoy

matrices we obtain several Schröder arrays. We construct the matrices combining two

Pascal translation matrices and a diagonal matrix, and we find explicit formulas for

the entries of the matrices, and recurrence relations and generating functions for the

central generalized Delannoy and Schröder numbers. We also express the entries of all

the generalized Delannoy matrices in terms of Jacobi polynomials.

1 Introduction

The Pascal triangle is the oldest and most studied two-dimensional array of integers. Its
origin is in elementary algebra, but it has numerous properties of interest in combinatorics
and number theory. The representation of the Pascal triangle as an infinite lower triangular
matrix makes it a linear transformation on the vector space of formal power series. During
the last 40 years numerous generalizations of Pascal matrices have been studied from diverse
points of view. One of the connections of Pascal matrices with combinatorics comes from
the problems of counting diverse types of paths on lattices. From some of these problems
come some interesting arrays of integers, for example the Delannoy and the Schröder arrays,
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that have been extensively studied by numerous authors. The entries for the Delannoy
array A008288 and the Schröder array A033877 in Sloane’s On-line Encyclopedia of Integer
Sequences [10] contain hundreds of references and useful links.

Several authors have used Riordan matrices to construct matrices that are useful to study
diverse aspects of the Delannoy and Schröder arrays and their generalizations. Among them
we can mention Barry [3], Cheon, Kim, and Shapiro [5], Ramı́rez and Sirvent [8], Schröder
[9], L. Yang et al. [13], and S.-L. Yang et al. [14]. Other relevant references about Delannoy
numbers are the papers by Banderier and Schwer [1] and Sulanke [11]. Dziemiańczuk [6]
studied weighted lattice paths with weight functions that depend on the position on the
lattice.

In the present paper, we construct Pascal-like matrices by generalizing the Pascal triangle
represented as a symmetric infinite matrix T = [tn,k] with tn,k =

(

n+k

k

)

for n ≥ 0 and
k ≥ 0. Let P be the lower triangular matrix with entries pn,k =

(

n

k

)

. Then it is easy to
see that PPT = T . This is the construction of the symmetric matrix representation of the
Pascal triangle that we generalize as follows. We extend first the lower triangular P to
P (z) = [

(

n

k

)

zn−k], where z is a complex number. The matrix P (z) represents a translation
operator. Then we take an infinite diagonal matrix E, with nonzero entries in the diagonal,
and construct a matrix A = P (z)EPT(x), where z and x are complex numbers. The matrix
A is a generalization of T and depends on the parameters z and x and also on the entries of
E. Choosing suitable diagonal matrices E we obtain matrices with interesting combinatorial
identities. When the entries of E are the terms of a geometric sequence 1, u, u2, u3, . . ., the
corresponding matrix A is a generalized Delannoy matrix, associated with weighted lattice
paths with weights z, x and u− zx.

Using shift matrices we combine a generalized Delannoy matrix D with a scalar multiple
of a shifted D and obtain a generalized Schröder matrix G. We also show that G can be
obtained as P (z)MPT(x), where M is a simple Riordan matrix, and also as DU , where U
is an upper triangular invertible Toeplitz matrix associated with a rational function.

In our matrices the central generalized Delannoy or Schröder numbers appear in the main
diagonal, in the same way as the central binomial coefficients appear in the symmetric Pascal
matrix T . Something similar can be observed in the approach of Woan [12], who uses Hankel
matrices.

Our approach seems to be an alternative to the Riordan matrix approach to the construc-
tion of generalized Pascal-like matrices. Replacing the Pascal matrices P (z) with Stirling
matrices or q-Pascal matrices we can develop theories analogous to the one presented here.

2 Pascal-like infinite matrices

In this section we use Pascal and diagonal matrices to construct a set of Pascal-like infinite
matrices whose elements satisfy certain simple two dimensional recurrence relations, and
that contains the generalized Delannoy matrices.

We consider infinite matrices A = [an,k] with complex entries and non-negative indices
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n and k. If A and B are infinite matrices the usual matrix multiplication AB is not well
defined whenever

∑∞

j=0 an,jbj,k is divergent for some pair (n, k). If A is a lower triangular or
a lower m-Hessenberg matrix, then AB is well defined for every infinite matrix B. Similarly,
if A is an upper triangular or an upper m-Hessenberg matrix, then BA is well defined for
every infinite matrix B.

For z in the complex numbers we define the Pascal matrix P (z) as the lower triangular
infinite matrix whose (n, k) entry is

(

n

k

)

zn−k, for n ≥ k ≥ 0, and it is zero if k > n. That is,

P (z) =



















1 0 0 0 0 . . .
z 1 0 0 0 . . .
z2 2z 1 0 0 . . .
z3 3z2 3z 1 0 . . .
z4 4z3 6z2 4z 1 . . .
...

...
...

...
...

. . .



















.

It is well-known that the set {P (z) : z ∈ C} is a group under matrix multiplication which is
isomorphic to the additive group of complex numbers, and is also isomorphic to the group
of translation operators on the vector space of polynomials in one complex variable.

Define the matrix A = [an,k] by

A = P (z)PT(x) =



















1 x x2 x3 x4 . . .
z 2zx 3zx2 4zx3 5zx4 . . .
z2 3z2x 6z2x2 10z2x3 15z2x4 . . .
z3 4z3x 10z3x2 20z3x3 35z3x4 . . .
z4 5z4x 15z4x2 35z4x3 70z4x4 . . .
...

...
...

...
...

. . .



















.

Then we have an,k =
(

n+k

k

)

znxk, which can be interpreted as the sum of all the products of
the form b1b2b3 · · · bn+k, where n of the bi are equal to z and the rest are equal to x. Notice
that the recurrence relation an,k = xan,k−1 + zan−1,k holds for all n ≥ 1 and k ≥ 1. For
m ≥ 0 the entries an,k with indices that satisfy n+ k = m are the coefficients of (z + x)m.

The product PT(x)P (z) is not defined for all pairs (x, z). The convergence of the series
involved in the multiplication requires some conditions on x and z.

If we take z = x = 1 then A becomes the classical Pascal triangle written as a symmetric
matrix whose entries in the main diagonal are the central binomial coefficients. Notice that
P (1) is the Pascal triangle written as a lower triangular matrix.

We describe next a simple way to generalize the matrix A introducing a diagonal matrix as
a factor. Let c0, c1, c2, . . . be a sequence of complex numbers and let E = Diag(c0, c1, c2, . . .),
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that is,

E =



















c0 0 0 0 0 . . .
0 c1 0 0 0 . . .
0 0 c2 0 0 . . .
0 0 0 c3 0 . . .
0 0 0 0 c4 . . .
...

...
...

...
...

. . .



















.

Let B = P (z)EPT(x). Then we have

B =















c0 c0x c0x
2 c0x

3 . . .
c0z c0zx+ c1 c0zx

2 + 2c1x c0zx
3 + 3c1x

2 . . .
c0z

2 c0z
2x+ 2c1z c0z

2x2 + 4c1zx+ c2 c0z
2x3 + 6c1zx

2 + 3c2 . . .
c0z

3 c0z
3x+ 3c1z

2 c0z
3x2 + 6c1z

2x+ 3c2z c0z
3x3 + 9c1z

2x2 + 9c2zx+ c3 . . .
...

...
...

...
. . .















.

The definition of B gives us

bn,k =

min(n,k)
∑

j=0

(

n

j

)(

k

j

)

cjz
n−jxk−j. (1)

Let us note that bn,n = cn plus a function that depends only on c0, c1, . . . , cn−1, z, x. This
fact clearly implies that for any pair (z, x) and any given sequence r0, r1, r2, . . . we can find
a unique sequence c0, c1, c2, . . . such that bn,n = rn for n ≥ 0.

LetDz andDx denote the operators of differentiation with respect to z and x, respectively.
Then equation (1) can be written as

bn,k =
∑

j≥0

cj
Dj

z

j!

Dj
x

j!
zn xk.

Using the Leibniz rule we obtain the equations

Dj−1
z

(j − 1)!
zn−1 =

Dj
z

j!
zn − z

Dj
z

j!
zn−1,

Dj−1
x

(j − 1)!
xk−1 =

Dj
x

j!
xk − x

Dj
x

j!
xk−1.

Multiplying these equations we obtain

Dj−1
z Dj−1

x

((j − 1)!)2
zn−1xk−1 =

Dj
z

j!

Dj
x

j!
znxk + zx

Dj
z

j!

Dj
x

j!
zn−1xk−1 − z

Dj
z

j!

Dj
x

j!
zn−1xk − x

Dj
z

j!

Dj
x

j!
znxk−1.

This equation gives us the recurrence relation

bn,k = b̂n−1,k−1 + zbn−1,k + xbn,k−1 − zxbn−1,k−1, n ≥ 1, k ≥ 1, (2)
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where

b̂n,k =
∑

j≥0

cj+1

(

n

j

)(

k

j

)

zn−jxk−j.

Compare this equation with (1) and note the shift in the indices of the ci. This means that
the numbers b̂n,k are the entries of B̂ = P (z)Diag(c1, c2, c3, . . .)P

T(x).
The definition of B also gives us P−1(z)B = EPT(x) and B(PT(x))−1 = P (x)E. Notice

that all the matrix products in both equations are well defined. Since P−1(z) = P (−z), the
first equation yields

n
∑

j=0

(

n

j

)

(−z)n−jbj,k = cn

(

k

n

)

xk−n.

In particular, if k = n we get the relation

bn,n = cn −
n−1
∑

j=0

(

n

j

)

(−z)n−jbj,n, (3)

which expresses bn,n in terms of the preceding entries in the n-th column of B. From the
equation B(PT(x))−1 = P (x)E we obtain an analogous result.

For m ≥ 1 let Bm denote the initial m × m section of B, that is, Bm = [bn,k], where
0 ≤ n ≤ m− 1 and 0 ≤ k ≤ m− 1. Since Bm is the product of the initial m×m sections of
P (z), E, and PT(x), it is clear that det(Bm) = det(Em) = c0c1 · · · cm−1. Note that det(Bm)
is independent of z and x.

For certain sequences c0, c1, c2, . . . and pairs (z, x) the corresponding matrices B have
interesting combinatorial properties. For example, if z = x = 1 and ck = k! then the matrix
B is

B =























1 1 1 1 1 1 . . .
1 2 3 4 5 6 . . .
1 3 7 13 21 31 . . .
1 4 13 34 73 136 . . .
1 5 21 73 209 501 . . .
1 6 31 136 501 1546 . . .
...

...
...

...
...

...
. . .























.

The sequences on the diagonals of B, starting with the main diagonal, correspond to the
sequences A002720, A000262, A052852, A062147, and A062266 of Sloane’s On-line Encyclo-
pedia of Integer Sequences [10]. The recurrence relation (2) yields connections among those
sequences.
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If we take z = x = 1 and ck = k + 1 for k ≥ 0 the matrix B is


















1 1 1 1 1 . . .
1 3 5 7 9 . . .
1 5 12 22 35 . . .
1 7 22 50 95 . . .
1 9 35 95 210 . . .
...

...
...

...
...

. . .



















The sequence (b2,k) is A000326, called pentagonal numbers. The sequence (b3,k) is A002412,
called hexagonal pyramidal numbers. The sequence (b4,k) is A002418, called 4dim figurate
numbers, and the sequence (b5,k) is A051843.

We obtain another interesting example when we take z = x = 1 and ck equal to the k-th
Fibonacci number. In Section 3, we take ck = uk for k ≥ 0, where u is a nonzero complex
number, and we obtain the generalized Delannoy arrays.

3 Generalized Delannoy matrices

In this section we study the family of generalized Delannoy matrices that we obtain using the
construction presented in Section 2. The generalized Delannoy matrices have been studied by
several authors using the Riordan matrix approach, or considering combinatorial problems
related with weighted lattice paths.

We consider now sequences (ck)k≥0 that are geometric progressions of the form ck = uk,
for k ≥ 0, where u is a nonzero number. For u 6= 0 let E(u) = Diag(1, u, u2, u3, . . .). Then
uE(u) = Diag(u, u2, u3, . . .).

Let us define the matrix

D(z, u, x) = P (z)E(u)PT(x), z, x, u ∈ C, u 6= 0.

The matrix D(z, u, x) is called generalized Delannoy matrix. It is a particular case of the
matrices studied in Section 2. Note that D(z, u, x) = DT(x, u, z) and also that D(1, 1, 0) is
the classic Pascal lower triangular matrix, D(z, 1, 0) = P (z), and D(1, 1, 1) is the symmetric
Pascal matrix.

The three factors P (z), E(u), and PT(x) are invertible infinite matrices, but in general,
D(z, u, x) is not invertible, because the product PT(−x)E(1/u)P (−z) may not be defined.
However, if we compute the product PT(−x)(E(1/u)(P (−z)D(z, u, x))), in the order indi-
cated by the parenthesis, then we obtain the infinite identity matrix.

In order to simplify the notation we will denote the entries of D(z, u, x) just by dn,k. The

matrix D̂(z, u, x) that corresponds to the shifted sequence u, u2, u3, . . . is equal to uD(z, u, x),
and therefore the recurrence relation (2) becomes in this case

dn,k = zdn−1,k + xdn,k−1 + (u− zx)dn−1,k−1, n, k ≥ 1. (4)
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This is the recurrence satisfied by the weighted Delannoy paths from (0, 0) to (n, k) on the
lattice N× N, that are constructed using the steps (1, 0), with weight z, (0, 1), with weight
x, and (1, 1), with weight u − xz. Several authors have studied such weighted paths. See,
for example, the papers by Cheon, Kim, and Shapiro [5], and Ramı́rez and Sirvent [8].

The explicit formula (1) becomes

dn,k =
k
∑

j=0

(

n

j

)(

k

j

)

ujzn−jxk−j. (5)

Compare this formula with the formula for the entries of the lower triangular Pascal-like
matrices constructed by Barry [3, Sec. 2] using Riordan matrices with one parameter.

Using (3) and (5) we obtain

dn,n = un −
n−1
∑

j=0

(

n

j

)

(−z)n−jdj,n =
n
∑

j=0

(

n

j

)2

uj(zx)n−j, n ≥ 1.

The first sum gives the n-th central generalized Delannoy number in terms of the preceding
terms in the n-th column. The second sum is an explicit formula for dn,n in terms of the
parameters z, u, x.

It is easy to verify that, if y 6= 0, then the main diagonals of the matrices D(z, u, x),
D(y, zx, u/y), and D(y, u, zx/y) coincide.

The classical Delannoy matrix A008288 is

D(1, 2, 1) =



















1 1 1 1 1 . . .
1 3 5 7 9 . . .
1 5 13 25 41 . . .
1 7 25 63 129 . . .
1 9 41 129 321 . . .
...

...
...

...
...

. . .



















. (6)

For any nonzero y the matrices D(y, 1, 2/y) and D(y, 2, 1/y) have the same main diagonal
as D(1, 2, 1).

It is well-known that the entries in the main diagonal of D(1, 2, 1), usually called central
Delannoy numbers, are values of the Legendre polynomials at 3. Hetyei [7] found expressions
in terms of Jacobi polynomials for the entries of a matrix that he calls asymmetric Delannoy
matrix. Such matrix is just D(1, 1, 2), has the same central entries as D(1, 2, 1), and is
essentially the same as the array A049600. We show next that the entries of all the generalized
Delannoy matrices D(z, u, x) can be expressed in terms of Jacobi polynomials.

The Jacobi polynomials with parameters α and β have the explicit formula

p(α,β)n (t) =
n
∑

j=0

(

n+ α + β + j

j

)(

n+ α

n− j

)(

t− 1

2

)j

, n ≥ 0. (7)
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Theorem 1. If u− zx is not zero let a = (u+ zx)/(u− zx). Then

dn,k = zn−k(u− zx)kp
(n−k,0)
k (a), n ≥ k ≥ 0. (8)

If u = zx let r(n, k) be the leading coefficient of p
(n−k,0)
k (t). Then

dn,k = zn(2x)kr(n, k), n ≥ k ≥ 0. (9)

Proof. From (7) we obtain

p
(n−k,0)
k (a) =

k
∑

j=0

(

k

j

)(

n+ j

k

)(

zx

u− zx

)j

,

and therefore

zn−k(u− zx)kp
(n−k,0)
k (a) = znxk

k
∑

j=0

(

k

j

)(

n+ j

k

)

( u

zx
− 1
)k−j

. (10)

On the other hand

dn,k = znxk

k
∑

j=0

(

k

j

)(

n

j

)

( u

zx

)j

. (11)

Let v = u
zx

− 1. Then
( u

zx

)j

= (v + 1)j =

j
∑

i=0

(

j

i

)

vi.

Substitution of this expression in (11) gives

dn,k = znxk

k
∑

j=0

j
∑

i=0

(

k

j

)(

n

j

)(

j

i

)

vi. (12)

Changing the summation order and using the identity
(

k

j

)(

j

i

)

=

(

k

i

)(

k − i

k − j

)

,

we obtain from (12)

dn,k = znxk

k
∑

i=0

(

k

i

)

(

k
∑

j=i

(

n

j

)(

k − i

k − j

)

)

vi.

By the Vandermonde identity the second sum is equal to
(

n+k−i

k

)

. Therefore dn,k is equal to
the expression in the right-hand side of (10), with j replaced by k − i. This completes the
proof of (8).
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In order to prove (9) we write (8) in the form

dn,k = zn−k(u+ zx)ka−kp
(n−k,0)
k (a) = zn−k(u+ zx)kp̂

(n−k,0)
k (1/a),

where p̂
(n−k,0)
k is the reversed polynomial of p

(n−k,0)
k . If u goes to zx then a goes to infinity

and 1/a goes to zero. The constant term of p̂
(n−k,0)
k is equal to the leading coefficient of

p
(n−k,0)
k .

Let dn,k denote the entries of D(z, u, x), and let a = (u + zx)/(u − zx). We define the
series

g(t) =
∞
∑

n=0

dn,nt
n =

∞
∑

n=0

(u− zx)np(0,0)n (a)tn.

The polynomials p
(0,0)
n are the Legendre polynomials and have the generating function

1√
1− 2wv + v2

=
∞
∑

n=0

p(0,0)n (w)vn.

Taking v = (u− zx)t and w = a we obtain

g(t) =
1

√

1− 2(u+ zx)t+ (u− zx)2t2
,

which is the generating function of the central generalized Delannoy numbers dn,n with
parameters z, u, x.

The sums of the entries on the anti-diagonals of D(z, u, x) are

sn =
n
∑

k=0

dn−k,k, n ≥ 0.

Let h(t) be the generating function of the sequence (sn)n≥0, that is,

h(t) =
∞
∑

n=0

snt
n.

Using the explicit formula for the entries dn−k,k it is easy to see that

h(t)(1− (z + x)t+ (zx− u)t2) = 1,

and therefore h(t) is

h(t) =
1

1− (z + x)t+ (zx− u)t2
=

∞
∑

n=0

snt
n.
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Notice that h(t) is a rational function of t with quadratic denominator and coefficients that
depend on the parameters z, u, x. There are many sequences of numbers and polynomials
that have generating functions that are rational functions with quadratic denominator, for
example, the Chebyshev polynomials. Therefore, replacing the parameters z, u, x by suitable
polynomials we can construct matrices D(z, u, x) whose sums sn are some known polyno-
mial sequences. Cheon, Kim, and Shapiro [5] present several examples of such polynomial
sequences.

4 Generalized Schröder matrices

Define the shift matrix S by

S =



















0 0 0 0 0 . . .
1 0 0 0 0 . . .
0 1 0 0 0 . . .
0 0 1 0 0 . . .
0 0 0 1 0 . . .
...

...
...

...
...

. . .



















,

and let R = ST. Note that RS = I, the infinite identity matrix, but SR is not the identity
since its (0, 0) entry is zero. All the other entries on the main diagonal of SR are equal to
1. If A is an infinite matrix then multiplication of A by S or R, either on the left or on the
right, produces a shift of A of one step in one of the four directions. That is, SA is A moved
one step downwards and with the 0-th row equal to zero; AS moves A one step to the left
and the 0-th column disappears; RA moves A one step upwards and the 0-th row disappears;
and AR is A moved one step to the right and with the 0-th column equal to zero.

The matrices D(z, u, x) satisfy the recurrence relation (4). Using the shift matrices S
and R we can write the recurrence relation (4) as the matrix equation

RD(z, u, x)S = xRD(z, u, x) + zD(z, u, x)S + (u− xz)D(z, u, x).

The generalized Delannoy matrix D(z, u, x) satisfies the recurrence relation (4) and the
entries of D(z, u, x) in the 0-th row and the 0-th column are the boundary values. It is clear
that any matrix obtained by applying some of the shifts described above to D(z, u, x) must
also satisfy the recurrence relation (4), and so does any linear combination of such shifted
matrices. Let us consider next a simple example.

For z 6= 0 we define G(z, u, x) = D(z, u, x) − (x/z)RD(z, u, x)R. Let gn,k denote the
entries of G(z, u, x). Then we have gn,k = dn,k − (x/z)dn+1,k−1 and

G(z, u, x) =















1 0 −ux/z −2ux2/z . . .
z u 0 −xu(zxu)/z . . .
z2 2uz u(zx+ u) 0 . . .
z3 3uz2 zu(2xz + 3u) u(x2z2 + 3uxz + u2) . . .
...

...
...

...
. . .















.
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The lower triangular part of G(z, u, x) satisfies (4) with boundary values equal to zero on
the diagonal entries with indices (n, n+ 1), for n ≥ 0, and the values 1, z, z2, . . . in the 0-th
column. The upper triangular part also satisfies (4) with boundary values equal to zero in
the positions (n, n+ 1) and the values −ux/z,−2ux2/z, . . . in the 0-th row.

The particular case

G(1, 2, 1) =



















1 0 −2 −4 −6 . . .
1 2 0 −6 −16 . . .
1 4 6 0 −22 . . .
1 6 16 22 0 . . .
1 8 30 68 90 . . .
...

...
...

...
...

. . .



















, (13)

obtained from the classical Delannoy matrix D(1, 2, 1), displayed in (6), has the classical
Schröder matrix A033877 as its lower triangular part. Because of the symmetry of the
Delannoy matrix D(1, 2, 1) the upper triangular part of G(1, 2, 1) is the negative of the
transpose of G(1, 2, 1), shifted one step upwards.

The matrices G(z, u, x) satisfy the recurrence (4) and include the classical Schröder ma-
trix. We call the matrices G(z, u, x) generalized Schröder matrices.

Let us consider another example.

G(2, 3, 1/2) =



















1 0 −3/4 −3/4 −9/16 . . .
2 3 0 −3 −33/8 . . .
4 12 12 0 −57/4 . . .
8 36 66 57 0 . . .
16 96 252 372 300 . . .
...

...
...

...
...

. . .



















.

The sequence in the main diagonal of G(2, 3, 1/2) is A047891. Note that all the entries in
the lower triangular part are integers.

Two different generalized Schröder matrices can coincide in the main diagonal. For
example, G(1, 2, 2) and G(2, 2, 1) have the sequence A151374 as the main diagonal, and
G(1, 3, 2) and G(2, 3, 1) have A103210 as the main diagonal.

We can see from the definition of G(z, u, x) that its entries can be expressed in terms of
Jacobi polynomials.

We will use next certain commutation properties of the Pascal matrices P (z) to obtain
other matrix expressions for the generalized Schröder matrices.

The Pascal matrices satisfy

RP (z) = P (z)(zI +R)

and
PT(x)R = R(I + xR)−1PT(x).
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Therefore
x

z
RD(z, u, x)R =

x

z
P (z)(zI +R)E(u)R(I + xR)−1PT(x),

and after some simplifications we obtain

G(z, u, x) = P (z)E(u)
(

I − ux

z
R2
)

(I + xR)−1PT(x). (14)

The matrix (I − ux
z
R2)(I + xR)−1 is an upper triangular invertible Toeplitz matrix and rep-

resents a multiplication operator on the space of formal power series. The matrix E(u) =
Diag(1, u, u2, . . .) corresponds to the substitution operator t → ut. Therefore the product
E(u)(I − ux

z
R2)(I + xR)−1 is a Riordan matrix and (14) describes its connection with the

generalized Schröder matrix G(z, u, x). The construction of G(z, u, x) in (14) can be gener-
alized as follows. Let M(f, g) be a Riordan matrix and let z and x be complex numbers.
Then P (z)M(f, g)PT(x) can be considered as a more general Schröder matrix. We do not
study such generalization in the present paper.

Using commutation properties of the Pascal matrices with functions of R we obtain
another construction for G(z, u, x) as follows. Let

U(z, u, x) = I − xR− ux

z
R2(I − xR)−1. (15)

U(z, u, x) is an upper triangular invertible Toeplitz matrix and satisfies

(

I − ux

z
R2
)

(I + xR)−1PT(x) = PT(x)U(z, u, x).

Therefore, from (14) and the definition of D(z, u, x) we get

G(z, u, x) = D(z, u, x)U(z, u, x). (16)

We can also determine U(z, u, x) by computing PT(−x)(E(1/u)(P (−z)G(z, u, x))) in the
order determined by the parenthesis. This is equivalent to the multiplication of G(z, u, x)
on the left by the “inverse” of D(z, u, x).

If u 6= 0 then every finite initial section of D(z, u, x) is invertible and thus so is every
finite initial section of G(z, u, x). Since the determinants of all the finite sections of U(z, u, x)
are equal to 1, it is clear that the determinants of corresponding initial sections of D(z, u, x)
and G(z, u, x) are equal.

We present next some simple examples. From (15) we obtain

U(1, 2, 1) =



















1 −1 −2 −2 −2 . . .
0 1 −1 −2 −2 . . .
0 0 1 −1 −2 . . .
0 0 0 1 −1 . . .
0 0 0 0 1 . . .
...

...
...

...
...

. . .



















,
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and multiplying the classical Delannoy matrix D(1, 2, 1) of (6) on the right by U(1, 2, 1) we
obtain the Schröder matrix G(1, 2, 1) that appears in (13).

Another simple example of a generalized Schröder matrix is

D(1, 1, 1)U(1, 1, 1) =















1 0 −1 −2 −3 . . .
1 1 0 −2 −5 . . .
1 2 2 0 −5 . . .
1 3 5 5 0 . . .
...

...
...

...
...

. . .















.

The lower triangular part of this matrix is the classical Catalan triangle A009766. The
Delannoy matrix D(1, 1, 1) is the symmetric classical Pascal triangle and

U(1, 1, 1) =















1 −1 −1 −1 . . .
0 1 −1 −1 . . .
0 0 1 −1 . . .
0 0 0 1 . . .
...

...
...

...
. . .















.

Using the explicit formula (5) for the entries of D(z, u, x) and the definition of G(z, u, x),
or alternatively, using (16) and the easily obtained explicit expression for the entries of
U(z, u, x), we obtain the explicit formula for the entries gn,k of G(z, u, x). It is

gn,k =
n− k + 1

n+ 1

k−1
∑

j=1

(

n+ 1

j

)(

k − 1

j − 1

)

zn−jxk−juj +

(

n

k

)

zn−kuk. (17)

We can see from (17) that the central generalized Schröder numbers are given by

gn,n =
1

n

n
∑

j=1

(

n

j

)(

n

j − 1

)

zn−jxn−juj.

It is easy to verify that gn,n is equal to the coefficient of tn−1 in the expression as a linear
combination of powers of t of the polynomial

1

nzx
(t+ u)n(t+ zx)n.

Using the well-known expression for the central Catalan numbers Cn we see that, if u = zx
and u 6= 0 then gn,n = Cnu

n. The generating function of the central Catalan numbers is

hc(t) =
∞
∑

n=0

Cnt
n =

1−
√
1− 4t

2t
,
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and satisfies
1

hc(t)
+ t hc(t) = 1. (18)

Let h(t) be the generating function of the central generalized Schröder numbers, that is,

h(t) =
∞
∑

n=0

gn,nt
n.

We will show that h(t) satisfies an equation analogous to (18). Let ĥ(t) =
∑∞

n=0 ent
n be the

reciprocal of h(t). Then, since g0,0 = 1, we have e0 = 1, and

n
∑

k=0

gk,k en−k = 0, n ≥ 1,

and thus

en = −
n
∑

k=1

gk,k en−k, n ≥ 1.

This recurrence relation gives

e1 = −g1,1, e2 = −zxg1,1, e3 = −zxg2,2, . . . , en = −zxgn−1,n−1, . . .

and therefore
zxt h(t) + ĥ(t) = 1− (u− zx)t.

Multiplying by h(t) both sides of this equation we obtain

zxt h2(t)− (1− (u− zx)t)h(t) + 1 = 0. (19)

Solving this quadratic equation we obtain the generating function of the central generalized
Schröder numbers

h(t) =
1− (u− zx)t−

√

1− 2(u+ zx)t+ (u− zx)2t2

2zxt
. (20)

The minus sign just before the square root in (20) is the correct choice to obtain h(t).
If we take u = zx in the previous equation then h(t) becomes

h(t) =
1−

√
1− 4zxt

2zxt
,

which is the generating function of the central generalized Catalan numbers Cnz
nxn.

Since the right-hand side of (19) is zero, the coefficient of tn+1 in the left-hand side of
(19) is zero for n ≥ 0. Therefore

zx
n
∑

k=0

gk,kgn−k,n−k − gn+1,n+1 + (u− zx)gn,n = 0,

14



and this equation gives us the recurrence relation

gn+1,n+1 = (u− zx)gn,n + zx
n
∑

k=0

gk,kgn−k,n−k.

This formula gives every central generalized Schröder number in terms of the preceding
ones. It is an extension of a result obtained by Brualdi and Kirkland [4, Lemma 4.2] using
combinatorial methods.

If z is not zero then G2 = D(z, u, x)− (x/z)2R2D(z, u, x)R2 is well defined and satisfies
the recurrence relation (4). Furthermore, the entries of G2 in the diagonal with indices
(n, n+2), for n ≥ 0, are all equal to zero. If D(z, u, x) is the classical Delannoy matrix then

G2 =



















1 1 0 −4 −12 . . .
1 3 4 0 −16 . . .
1 5 12 16 0 . . .
1 7 24 52 68 . . .
1 9 40 116 236 . . .
...

...
...

...
...

. . .



















.

The part of this matrix to the left of the diagonal of zeros is a Hessenberg matrix. The
sequence 1, 4, 16, 68, . . . in the diagonal to the right of the main diagonal is the sequence
A006319, called royal paths in a lattice. The sequence in the main diagonal is A268208, and
the sequence in the diagonal below the main one is A110190.

The construction of G2 is generalized as follows. For k ≥ 1 let

Gk = D(z, u, x)− (x/z)kRkD(z, u, x)Rk.

The matrix Gk satisfies the recurrence (4) and all its entries in the diagonal with indices
(n, n + k), for n ≥ 0, are equal to zero. Such matrices can be seen as the solutions of the
recurrence relation (4) with boundary values equal to zero on some diagonal to the right of
the main diagonal. The rest of the boundary is the union of the 0-th column and the first
k − 1 positions of the 0-th row.

There are other ways to construct matrices with interesting properties using the gen-
eralized Delannoy matrices and the Toeplitz matrices U(x, u, z). For example, forming
products of the form D(z, u, x)U(t, v, w), with (z, u, x) 6= (t, v, w), or differences such as
D(z, u, x)−D(t, v, w), or G(z, u, x)−G(t, v, w).

5 Conclusions

We studied some Pascal-like infinite matrices that contain all the generalized Delannoy and
Schröder matrices. We described the structure of the matrices and how we obtain Schröder
matrices from Delannoy matrices. We also obtained expressions for the entries of the Delan-
noy matrices in terms of Jacobi polynomials, and explicit formulas and generating functions

15

https://oeis.org/A006319
https://oeis.org/A268208
https://oeis.org/A110190


for the central generalized Delannoy and Schröder numbers. We described a connection of
our construction with certain simple Riordan matrices and a possible way to construct more
general matrices using other Riordan matrices. Transforming our matrices to the lower tri-
angular form we obtain a set of matrices that contains the Pascal-like matrices introduced
recently by Barry [3].
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[6] M. Dziemiańczuk, Generalizing Delannoy numbers via counting weighted lattice paths,
Integers 13 (2013), Article A54.

[7] G. Hetyei, Central Delannoy numbers and balanced Cohen-Macauley complexes, Ann.
Combin. 10 (2006), 443–462.

[8] J. L. Ramı́rez and V. F. Sirvent, Generalized Schröder matrix and its combinatorial
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