
23 11

Article 21.6.1
Journal of Integer Sequences, Vol. 24 (2021),2

3

6

1

47

2-Adic Valuations of Quadratic Sequences

Will Boultinghouse
Kentucky Wesleyan College

Division of Natural Sciences and Mathematics
3000 Frederica Street
Owensboro, KY 42301

USA

Jane Long
Stephen F. Austin State University

Department of Mathematics and Statistics
Nacogdoches, TX 75962-3040

USA

Olena Kozhushkina
Ursinus College

Department of Mathematics and Computer Science
Collegeville, PA 19426

USA

Justin Trulen1

Kentucky Wesleyan College
Division of Natural Sciences and Mathematics

3000 Frederica Street
Owensboro, KY 42301

USA
jtrulen@kwc.edu

Abstract

We determine properties of the 2-adic valuation sequences for general quadratic
polynomials with integer coefficients directly from the coefficients. These properties in-
clude boundedness or unboundedness, periodicity, and valuations at terminating nodes.
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We completely describe the periodic sequences in the bounded case. Throughout, we
frame results in terms of trees and sequences.

1 Introduction

For p prime and n ∈ N = {0, 1, 2, 3, . . .}, the exponent of the highest power of p that divides
n is called the p-adic valuation of n, which we denote νp(n). The valuation of 0 is defined to
be +∞. Formally, the valuation of a positive integer n of the form n = pkd, where k ∈ N and
d is an integer not divisible by p, is νp(n) = k. We can find p-adic valuations of sequences by
finding the valuation of each successive term. The present work considers 2-adic valuations
of sequences generated from the natural numbers by evaluating quadratic functions of the
form f(n) = an2 + bn+ c where a, b, c ∈ Z and a 6= 0.

Information about sequences of valuations can be viewed in two different ways: in terms of
sequences and in terms of trees. We let (ν2(f(n)))n≥0 denote the sequence of 2-adic valuations
for the quadratic function f(n). Since every positive natural number n can be written in the
form n = 2kd, where d is not divisible by 2, in many cases, we can determine the valuations
of outputs of the quadratic function f(n) using characteristics of the coefficients a, b, and c.
The main results are given in Theorems 1 and 2; one would anticipate these results can be
extended to odd primes with some modifications, which will be addressed in future work.

Theorem 1. Let f(n) = an2 + bn + c where a, b, c ∈ Z with a 6= 0 and, without loss of
generality, a, b, c are not all even. Then

1. If a and b are even and c is odd, then ν2(f(n)) = 0 for all n ∈ N.

2. If a is even and b is odd, then (ν2(f(n)))n≥0 is an unbounded sequence.

3. If a is odd and b is even, then

(a) if b2 − 4ac = 0, then (ν2(f(n)))n≥0 is an unbounded sequence;

(b) if b2 − 4ac = 4ℓ∆ for ℓ ∈ Z+ as large as possible and ∆ ≡ 1 (mod 8), then
(ν2(f(n)))n≥0 is an unbounded sequence;

(c) if b2 − 4ac = 4ℓ∆ for ℓ ∈ Z+ as large as possible, ∆ ≡ m (mod 8), and m ∈
{2, 3, 5, 6, 7}, then the sequence (ν2(f(n)))n≥0 is bounded and its minimal period
length equals 2ℓ.

4. If a and b are odd and c is even, then (ν2(f(n)))n≥0 is an unbounded sequence.

5. If a, b, and c are odd, then ν2(f(n)) = 0 for all n ∈ N.

Theorem 1 is proved in Section 3. Henceforward, we will refer to the minimal period
length simply as the period. In Case 3, we use the discriminant to determine whether roots
to f(n) = 0 lie in the 2-adic numbers Q2 or the ring of 2-adic integers Z2. Corollary 10
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takes care of Case 3(a). Even though the statement of this theorem only classifies these
sequences as unbounded, the proofs of Cases 2 and 4 reveal more information about the 2-
adic valuations. Theorem 1 represents a complete answer to when ν2(f(n))n≥0 is bounded or
unbounded using only the coefficients of the quadratic polynomial. Furthermore, Theorem 1
gives an explicit period length for the bounded sequences which can be determined by the
coefficients of the quadratic polynomial. In the unbounded cases we are able to describe what
possible valuations will be for certain subsequences. Such statements are easier to frame in
the sense of trees, which are discussed in Section 2. Theorem 2, proved in Sections 4 and 5,
completely determines all valuations in the non-trivial bounded case (3(c) of Theorem 1).

Theorem 2. Let f(n) = an2+bn+c where a, b, c ∈ Z. If a is odd and b is even and b2−4ac =
4ℓ∆ for ℓ ∈ Z+ as large as possible with ℓ ≥ 2, ∆ ≡ m (mod 8), and m ∈ {2, 3, 5, 6, 7},
then the sequence (ν2(f(n)))n≥0 is bounded with period equal to 2ℓ. Furthermore, we have
the following 2-adic valuations:

ν2(f(n)) =



















































0, if n ≡ a−1
(

1− b
2

)

(mod 2);

2(i− 1), if n ≡ a−1
(

2i−1 − b
2

)

(mod 2i) with 2 ≤ i < ℓ;

2(ℓ− 1), if n ≡ a−1
(

2ℓ−1 − b
2

)

(mod 2ℓ) and m = 6, 2;

2ℓ− 1, if n ≡ a−1
(

2ℓ−1 − b
2

)

(mod 2ℓ) and m = 7, 3;

2ℓ, if n ≡ a−1
(

2ℓ−1 − b
2

)

(mod 2ℓ) and m = 5;

2ℓ− 1, if n ≡ a−1
(

2ℓ − b
2

)

(mod 2ℓ) and m = 6, 2;

2(ℓ− 1), if n ≡ a−1
(

2ℓ − b
2

)

(mod 2ℓ) and m = 7, 5, 3;

where a−1 is the inverse of a (mod 2ℓ).

The case ℓ = 1 is covered by Lemma 13. In this case, the sequence is periodic with period
equal to 2. Theorem 2 is proved in Proposition 12 and Corollary 24. Both of these results
are an extension of the work by Byrnes et al. [3], which only considered quadratics of the
form f(n) = an2 + c. The work of Medina et al. [6] details conditions under which these
sequences are bounded or unbounded for general primes but we extend these results for p = 2
by providing the exact conditions on the coefficients of quadratic equations. Furthermore,
we provide a closed form giving the exact valuation for the bounded sequences relying only
on the coefficients of the quadratic function. Boundedness of p-adic valuations of polynomial
sequences is also discussed in Bell’s work [2].

2 Parity and trees

Consider a quadratic function of the form f(n) = an2 + bn+ c, where a, b and c are integers
and a is nonzero. To prove the results stated in Theorems 1 and 2, we consider the eight
possible cases based on the parity of the coefficients a, b, and c. In the case where a, b, and
c are all even, there exists an i ∈ N such that 2i divides a, b, and c but 2i+1 does not. Then
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ν2(f(n))

ν2(f(2q + 1))

ν2(f(4q + 3))

ν2(f(4q + 1))
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ν2(f(4q + 2))

ν2(f(4q))
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4q + 1

4q + 2

4q

Figure 1: Levels 0, 1, and 2 of a tree.

f(n) = 2i(a0n
2+ b0n+ c0) and it follows that ν2(f(n)) = i+ ν2(a0n

2+ b0n+ c0). Hence, this
case can be reduced to one of the other seven cases. So we assume, unless stated otherwise,
that a, b, and c are not all even.

Two more cases of Theorem 1 are trivial (Case 1 where a, b are even, and Case 5, where
a, b, and c are odd), since ν2(f(n)) = 0 for all n ∈ N. For the remaining five cases, we classify
the behavior using trees. In the case that a is odd and b is even we show, with the help
of the discriminant, that f(n) = 0 has a root in Q2. We must take some care since some
quadratics may not have a zero in Q2.

As discussed in Section 1, we can present information about the sequence of valuations
using a tree. We begin the construction of the tree with the top node representing the
valuation of the quadratic f(n) evaluated at any natural number n. If the 2-adic valuation
is constant for every n in this node, then we stop the construction, as ν2(n) is completely
determined for the sequence. If ν2(n) is not constant, this node splits into two branches,
where one branch represents all numbers of the form n = 2q and the other branch represents
all numbers of the form n = 2q + 1, where in both cases q ∈ N. We then repeat this step as
necessary to create the tree. The nodes correspond to the sets {2iq + ri−1|q ∈ N} where

ri−1 =
i−1
∑

k=0

αk2
k, (1)

for fixed coefficients αk ∈ {0, 1}. This process does not always terminate. If it terminates, we
say that the tree is finite; otherwise, the tree is infinite. We say a node is non-terminating
if (ν2(f(n)))n≥0 is non-constant for every n in that equivalence class. We say a node is
terminating if (ν2(f(n)))n≥0 is constant for every n in that equivalence class. In practice, we
label the node with this constant valuation.
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For each of the remaining five nontrivial cases on the parity of the coefficients a, b and c,
either (ν2(f(n)))n≥0 produces a finite tree or an infinite tree. We say a finite tree has ℓ levels
if there exists ℓ ∈ Z+ such that for all rℓ−1 ∈ {0, 1, 2, . . . , 2ℓ−1} we have (ν2(f(2ℓq+rℓ−1)))q≥0

constant for all q ∈ N, and ℓ is the smallest possible value. Every node at level ℓ in a finite
tree has a constant valuation, which depends on rℓ−1.

Each node of a tree represents a subsequence of the sequence of 2-adic valuations. A
finite tree of ℓ levels represents a sequence with period equal to 2ℓ.

In the literature, these finite trees are also called finite automata. The sequences gen-
erated via the 2-adic valuation are called 2-automatic sequences and, in particular, the se-
quences f(2iq + r) are known as the 2-kernel sequences. See Allouche and Shallit’s book [1]
and Bell’s paper [2] for more details.

2.1 2-adic numbers and selected lemmas

First, we state several well-known lemmas. The first is a well-established fact about the
p-adic valuation, which can also be defined on the set Q and extends to Q2; see Lemma 3.3.2
in [5].

Lemma 3. Let x, y ∈ Q, then νp(xy) = νp(x) + νp(y).

An element n in Q2 can be represented in the form

n =
∞
∑

i=k

αi2
i (2)

where k = −ν2(n) and αi ∈ {0, 1} for all i; it is well-known that this representation is unique.
Lemma 3 and the construction of Q2 are well-known [5]. Medina et al. [6] provide a

useful characterization of the sequence of 2-adic valuations of a polynomial. Before we state
the result, we recall the following characterization of the ring of 2-adic integers

Z2 =

{

n ∈ Q2 : n =
∞
∑

i=0

αi2
i where αi ∈ {0, 1}

}

.

Lemma 4. ([6], Theorem 2.1) Let f(n) ∈ Z[n] be a polynomial that is irreducible over Z.
Then (ν2(f(n)))n≥0 is either periodic or unbounded. Moreover, (ν2(f(n)))n≥0 is periodic if
and only if f(n) has no zeros in Z2. In the periodic case, the minimal period length is a
power of 2.

We assume that the quadratic f(n) is irreducible because, if not, by Lemma 3,

νp(f(n)) = νp(g(n) · h(n)) = νp(g(n)) + νp(h(n)),

where g(n) and h(n) are irreducible.
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Therefore, to determine whether (ν2(f(n)))n≥0 is periodic or unbounded, it suffices to
determine if f(n) has zeros in Q2 and then determine whether the zeros are also in Z2. The
following lemmas will be used in Section 3 to identify when the square root of a number is
in Z2. The version of Hensel’s lemma stated below determines when a polynomial in Z2[x]
has zeros in Z2. Lemma 6, which follows from Lemma 5, specifically determines whether the
polynomial f(x) = x2 − a has zeros in Z2.

Lemma 5. (Hensel’s lemma, [7, Sec. 6.4]) Assume that P ∈ Z2[x] and x0 ∈ Z2 satisfies

P (x0) ≡ 0 (mod 2n)

If φ = ν2(P
′(x0)) < n/2, then there exists a unique zero ξ of P in Z2 such that

ξ ≡ x0 (mod pn−φ) and ν2(P
′(ξ)) = ν2(P

′(x0))

Lemma 6. ([7, Sec. 6.6]) The function f(x) = x2 − a has a zero in Z×
2 , the set of invertible

elements of Z2, if and only if a ≡ 1 (mod 8).

3 Proof of Theorem 1: unbounded cases and infinite

trees

We now prove Theorem 1. The main idea is to describe the roots to f(n) = 0 in Q2 simply
using the quadratic formula, the parity of the coefficients, and the lemmas presented in
Section 2.1. Moreover, according to Lemma 4, if a zero exists in Z2, it manifests as an
infinite branch in the tree. We begin with Cases 2 and 4.

To this end, note that in Case 2, we can write a = 2r and b = 2k + 1 for some r, k ∈ Z.
Then an2 + bn+ c = 0 has roots of the form

x =
−2k − 1±

√

1− 8(rc− β)

4r
, (3)

where β = (k2 + k)/2. Set j = rc− β.
Also, in Case 4, we can write a = 2r + 1, b = 2k + 1, and c = 2p. Then an2 + bn+ c = 0

has roots of the form

x =
−2k − 1±

√

1− 8((2r + 1)p− β)

2(2r + 1)
, (4)

where β = (k2 + k)/2. Set j = (2r + 1)p− β. Observe that in either case the roots contain√
1− 8j where j ∈ Z. Since

√
1− 8j is a zero of the function g(x) = x2 − (1 − 8j), by

Lemma 6 the zero is in Z2.
Notice that both roots (3) and (4) have an even denominator. We still need to check

if these roots are in Q2 or Z2. Therefore, in light of Lemma 4, Case 2 (Proposition 7) and
Case 4 (Proposition 8) are proved by an inductive argument on the behavior of the tree. It
turns out that, in Case 2, f(n) has exactly one zero in Z2 and in Case 4, f(n) has two zeros
in Z2. See Figure 3 in the Appendix for an example of a tree with one infinite branch and
Figure 4 for an example of a tree with two infinite branches.
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Proposition 7. If a is even and b is odd, then the 2-adic valuation tree of f(n) = an2+bn+c
has exactly one infinite branch. Furthermore, the valuation of the terminating node at the
ith level is i− 1.

Proof. Note that this Proposition corresponds to Case 2 of Theorem 1. Substituting a = 2r
and b = 2k + 1 for some r, k ∈ Z, we get an2 + bn+ c = 2(rn2 + kn) + n+ c. Now suppose
that c is even. If n is even, then 2(rn2 + kn) + n+ c is divisible by 2 and so ν2(f(2n)) ≥ 1.
If n is odd, then 2(rn2 + kn) + n + c is not divisible by 2 and so ν2(f(2n + 1)) = 0. An
analogous argument shows that, for c odd, ν2(f(2n)) = 0 and ν2(f(2n+ 1)) ≥ 1. Therefore,
the conclusion of the proposition is valid at the initial step.

Now, arguing inductively, suppose that n = 2iq + ri−1 is the non-terminating node, that
is ν2(f(n)) ≥ i. So f(n) ≡ 0 (mod 2i) or a(2iq+ ri−1)

2+ b(2iq+ ri−1)+ c = 2iβ where β ∈ Z.
Consider f(n) evaluated at the next level:

a(2i+1q + ri−1)
2 + b(2i+1q + ri−1) + c ≡ ar2i−1 + bri−1 + c ≡ 2iβ (mod 2i+1),

and

a(2i+1q + 2i + ri−1)
2 + b(2i+1q + 2i + ri−1) + c ≡ ar2i−1 + 2ib+ bri−1 + c

≡ 2iβ + 2ib ≡ 2i(β + b) (mod 2i+1).

Since b is odd it follows that the valuation of one node is i and the other is greater than
i depending on if β is odd or even. Therefore one node terminates and the other is non-
terminating.

Proposition 8. If a and b are odd, and c is even, then the 2-adic valuation tree of f(n) =
an2 + bn + c has two infinite branches. Furthermore, the valuation of the terminating node
at the ith level is i.

Proof. This proposition addresses Case 4 of Theorem 1. Write a = 2r + 1, b = 2k + 1,
and c = 2p for some integers r, k, and p. First note that both a(2q)2 + b(2q) + c and
a(2q + 1)2 + b(2q + 1) + c are congruent to 0 (mod 2). We now verify that the proposition
holds at the initial step.

In the 2q case, we check 4q and 4q + 2. Note that

a(4q)2 + b(4q) + c ≡ c (mod 4)

and
a(4q + 2)2 + b(4q + 2) + c ≡ 2b+ c (mod 4).

If c ≡ 0 (mod 4), then 2b + c 6≡ 0 (mod 4). If c 6≡ 0 (mod 4) then c = 2p with p odd and
2b+ c = 2(b+ p) ≡ 0 (mod 4). That is, either

ν2(f(4q)) ≥ 2 and ν2(f(4q + 2)) = 1, or
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ν2(f(4q)) = 1 and ν2(f(4q + 2)) ≥ 2.

For the 2q + 1 case, we check 4q + 1 and 4q + 3. Note that

a(4q + 1)2 + b(4q + 1) + c ≡ a+ b+ c (mod 4)

and
a(4q + 3)2 + b(4q + 3) + c ≡ a+ 3b+ c (mod 4).

By hypothesis, a + b + c = 2(r + k + p) and a + 3b + c = 2(r + 3k + p + 2). But note that
r+ 3k + p+ 2 = (r+ k + p+ 1) + (2k + 1). Now it is clear that r+ 3k + p+ 2 is even (odd)
if and only if r + k + p+ 1 is odd (even). Again, either

ν2(f(4q + 1)) ≥ 2 and ν2(f(4q + 3)) = 1, or

ν2(f(4q + 1)) = 1 and ν2(f(4q + 3)) ≥ 2.

For the inductive step, now suppose that n = 2iq + ri−1 and n = 2iq + r∗i−1 are the non-

terminating nodes where ri−1 =
∑i−1

k=1 αk2
k + 1 (the odd side branch) and r∗i−1 =

∑i−1
k=1 αk2

k

(the even side branch) where αk ∈ {0, 1}. The fact that these branches are non-terminating
follows from the same argument as in the proof of Proposition 7.

We now consider Case 3(b) of Theorem 1.

Proposition 9. Let a be odd, b be even and b2 − 4ac = 4ℓ∆ for some ℓ ∈ Z+ as large as
possible and ∆ ≡ 1 (mod 8), then the 2-adic valuation tree of f(n) = an2 + bn + c has two
infinite branches.

Proof. Let a be odd and b = 2k for some k ∈ Z. Fix ℓ ∈ Z+. Then an2 + bn + c = 0 has
roots of the form x = −k±

√
k2−ac
a

. By the hypothesis 4k2 − ac = 22ℓ∆ where ∆ ≡ 1 (mod 8).
If ∆ < 0 then we can naturally write ∆ = 1− 8j where j ∈ {1, 2, 3, . . .}.
If ∆ > 0, then we can write ∆ = 1 + 8j = 1− 8(−j) where j ∈ N.
Thus in either case ∆ = 1−8j where j ∈ Z. Then it follows that

√
4k2 − 4ac = 2ℓ

√
1− 8j.

By Lemma 6,
√
1− 8j is in Z2. Furthermore, since the denominator of x is odd this also

guarantees that x ∈ Z2. Therefore, there are two infinite branches, one corresponding to
each root.

Corollary 10. Under the conditions of Proposition 9, if b2 − 4ac = 0, the tree has one
infinite branch.

Proof. In this case (3(a) of Theorem 1) roots take the form x = − b
2a
. Since b = 2k, then

x = −k
a
which has 2-adic form x =

∑∞
i=0 αi2

i where αi is either 0 or 1. This guarantees that
the one branch is infinite.
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Remark 11. Note the connection between subsequences of (ν2(f(n)))n≥0 and the infinite
branches of a tree. Proposition 7 asserts that for all i ∈ Z+ there exists exactly one subse-
quence of the form n = 2iq+ ri−1 such that ν2(f(n)) ≥ i and exactly one subsequence of the
form n = 2iq+ r∗i−1 with ν2(f(n)) = i−1. Similarly, Proposition 8 asserts that for all i ∈ Z+

there are exactly two subsequences corresponding to n = 2iq+ri−1 such that ν2(f(n)) ≥ i+1
and exactly two subsequences of the form n = 2iq + r∗i−1 with ν2(f(n)) = i. For ri−1 and
r∗i−1, the representations presented in equation (1) of Section 2 equate the coefficients αk and
α∗
k for all 0 ≤ k ≤ i− 2, and meanwhile α∗

i−1 ≡ αi−1 + 1 (mod 2).
As for the cases of Proposition 9 and Corollary 10, we can apply Lemma 4 to conclude

that these sequences are unbounded. Much like Propositions 7 and 8, we can say that the
results of Proposition 9 yield that for all i ∈ N there are exactly two subsequences of the
form n = 2iq + ri−1, where (ν2(f(n)))n≥0 is not constant, while Corollary 10 asserts there is
exactly one such subsequence.

4 Bounded cases and finite trees

In this section, we prove Case 3(c) of Theorem 1 and the first part of Theorem 2. The
coefficients of these quadratics satisfy the following: a is odd and b is even, and b2−4ac = 4ℓ∆,
where ℓ ∈ Z+ is as large as possible, ∆ ≡ m (mod 8), and m ∈ {2, 3, 5, 6, 7}. Their trees are
finite with ℓ levels. We can again apply the reasoning of the proof of Proposition 9.

If ∆ < 0 we can naturally write ∆ = m − 8j where j ∈ N and if ∆ > 0 then we write
∆ = m + 8j = m − 8(−j) where j ∈ N or j = 0. Henceforth, we will write ∆ = m − 8j
where j ∈ Z. Again, by Lemma 6 functions of the form g(x) = x2 − (m − 8j) do not have
a zero in Z2. By Lemma 4, the corresponding valuation sequences are periodic. Figures 5
and 6 in the Appendix illustrate examples of finite trees arising from functions f3(n) =
15n2 + 1142n+ 25559 and f4(n) = 5n2 + 106n+ 1125.

We should take a moment to note why we only need to consider these five values of m.
First note that in Cases 3(b) and 3(c) of Theorem 1, where a is odd and b is even, we have
the condition that ℓ is as large as possible. This corresponds to factoring out as many powers
of 4 as possible, ruling out the possibilities m ∈ {0, 4}. Now if m = 1 (Case 3(b), covered in
Section 3), an infinite tree is created. This leaves the cases m ∈ {2, 3, 5, 6, 7}. As discussed
above, the zeros of these quadratic functions are not elements of Q2; therefore, their trees
must be finite. The proofs of the next two propositions follow the proofs of Propositions 7
and 8.

Proposition 12. If a is odd and b is even, and b2 − 4ac = 4ℓ∆ where ℓ ∈ Z+ is as large as
possible, ∆ ≡ m (mod 8), and m ∈ {2, 3, 5, 6, 7}, then the 2-adic valuation tree of f(n) is
finite with ℓ levels.

The proof of this proposition is broken down into Lemmas 13, 14, and 16. Unless stated
otherwise, let b = 2k for some k ∈ Z. Lemma 13 covers the case ℓ = 1, in which the
2-adic valuation tree has exactly one level. Lemmas 14 and 16 describe valuations for finite

9



trees with more than one level; Lemma 16 describes the valuation at the final level and
Lemma 14 describes the other levels. Under the assumptions of Proposition 12, with a odd
and b even, we complete the square and use properties of the p-adic valuation to obtain
ν2(an

2 + bn+ c) = ν2((an+ k)2 − k2 + ac).

Lemma 13. Let ℓ = 1, i.e., b2 − 4ac = 4∆, ∆ ≡ m (mod 8), and m ∈ {2, 3, 5, 6, 7}. If
m ∈ {2, 7} and b ≡ 0 (mod 4) or if m ∈ {3, 6} and b ≡ 2 (mod 4), then

ν2(an
2 + bn+ c) =

{

0, if n even;

1, if n odd.

If m ∈ {3, 6} and b ≡ 0 (mod 4) or if m ∈ {2, 7} and b ≡ 2 (mod 4), then

ν2(an
2 + bn+ c) =

{

1, if n even;

0, if n odd.

If m = 5 and b ≡ 0 (mod 4), then

ν2(an
2 + bn+ c) =

{

0, if n even;

2, if n odd.

If m = 5 and b ≡ 2 (mod 4), then

ν2(an
2 + bn+ c) =

{

2, if n even;

0, if n odd.

Proof. Using the convention that ∆ = m − 8j where j ∈ Z and m ∈ {2, 3, 5, 6, 7}, consider
the case where m = 7 and b ≡ 2 (mod 4). Then, since b = 2k, we have k odd. If n is even,
then (an+ k)2 ≡ k2 (mod 2) and so it follows that

((an+ k)2 − k2 + ac) ≡ k2 − 7 ≡ −6 ≡ 0 (mod 2),

but
((an+ k)2 − k2 + ac) ≡ k2 − 7 ≡ −6 ≡ 2 (mod 4).

Therefore ν2(an
2 + bn + c) = 1 when n is even. Similarly, when m = 7 and b ≡ 2 (mod 4)

if n is odd, then (an+ k)2 is even. Therefore, (an+ k)2 − k2 + ac ≡ −7 ≡ 1 (mod 2). Thus
ν2(an

2 + bn+ c) = 0 when n is odd.
Now consider the case where m = 7 and b ≡ 0 (mod 4). We have b = 2k with k even.

Thus, if n is odd we have

(an+ k)2 − k2 + ac ≡ −6 ≡ 0 (mod 2)

and
(an+ k)2 − k2 + ac ≡ k2 − 7 ≡ −6 ≡ 2 (mod 4).
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Thus ν2(an
2 + bn + c) = 1 when n is odd. When n is even we have (an + k)2 − k2 + ac ≡

−7 ≡ 1 (mod 2). Thus ν2(an
2 + bn+ c) = 0 when n is even.

The cases of m ∈ {2, 3, 6} when b ≡ 0 (mod 4) or b ≡ 2 (mod 4) can be handled in the
same fashion. For m = 5, the valuations are slightly different.

Consider the case where m = 5. Recall that b = 2k for some k ∈ Z. Note that

b2 − 4ac = 4(5− 8j),

and hence k2 − ac = 5− 8j. Thus,

(an+ k)2 − k2 + ac = (an+ k)2 − 5 + 8j.

If (an+ k) is even, which is the case when both n and k are even or both n and k are odd,
then (an+ k)2 − 5 + 8j is odd. Thus, ν2(an

2 + bn+ c) = 0.
Now suppose that (an+k) is odd, which is true when n and k have different parity. Then

(an+ k)2 ≡ 1 (mod 4), and this implies

(an+ k)2 − 5 + 8j ≡ 1− 5 + 8j ≡ −4 + 8j ≡ 0 (mod 4).

Thus, ν2(an
2 + bn+ c) ≥ 2.

Since (an+ k) is odd, let an+ k = 2d+ 1, for some d ∈ Z. Then,

(an+ k)2 − 5 + 8j = (2d+ 1)2 − 5 + 8j

≡ 4(d2 + d− 1) (mod 8).

Observe that d2+d−1 is odd, regardless of whether d is even or odd. Thus, ν2(an
2+bn+c) <

3. Therefore, ν2(an
2 + bn+ c) = 2.

Lemma 14. Under the assumptions of Proposition 12 (Case 3(c) of Theorem 1) let ℓ ≥
2 and suppose 0 < i < ℓ. At the ith level there is one terminal and one non-terminal
node. Furthermore, the terminal node has valuation 2(i− 1) and the non-terminal node has
valuation at least 2i.

First we need:

Claim 15. Let a, k ∈ Z with a odd. Let g(n) = an + k, then (ν2(g(n)))n≥0 creates an
unbounded sequence.

Proof. First note that the root of ax+k = 0 is x = −k
a
. Also note that ν2(x) = ν2(−k)−ν2(a).

Since a is odd, ν2(a) = 0. Therefore ν2(x) = ν2(−k) ≥ 0. By equation (2), x ∈ Z2, so
Lemma 4 implies that (ν2(g(n)))n≥0 is an unbounded sequence.

Proof. To prove Lemma 14, we proceed by an inductive argument on i. Again, using the
convention that ∆ = m−8j where j ∈ Z, for the base case i = 1, note that b2−4ac ≡ 4ℓ(m−
8j) ≡ 0 (mod 4). Recall that b = 2k. First, assume that k is even. If n is even, then an+k is
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even and so (an+k)2−k2+ac ≡ 0 (mod 4). Thus ν2(an
2+bn+c) = ν2((an+k)2−k2+ac) ≥ 2

by Claim 15. If n is odd, then (an+k)2−k2+ac ≡ 1 (mod 2), and again using the technique
of completing the square, ν2(an

2 + bn + c) = 0. If k is odd, a similar argument shows that
ν2(an

2 + bn + c) ≥ 2 when n is odd. Observe also that Claim 15 can be used to show that
(ν2((an+k)2))n≥0 forms an unbounded sequence therefore ν2((an+k)2−k2+ac) ≥ 2. Thus,
the claim is true for i = 1.

For the inductive step, notice that since i < ℓ, it follows that

b2 − 4ac ≡ 4ℓ(m− 8j) ≡ 0 (mod 22i).

Suppose there exists an i− 1 ≥ 0 such that n = 2i−1q+ ri−2 splits into two nodes: one node
terminating with valuation 2(i−1) and the other node having valuation of at least 2i. We let
n = 2iq + ri−1 denote the non-terminating node, where ri−1 =

∑i−1
h=0 αh2

h with αh ∈ {0, 1},
for all 0 ≤ h ≤ i− 2, and q ∈ Z. Then we have

(an+ k)2 − k2 + ac ≡ (a(2iq + ri−1) + k)2 ≡ 0 (mod 22i),

so ν2(an
2 + bn + c) ≥ 2i. This also implies that a(2iq + ri−1) + k ≡ 0 (mod 2i). Thus

ari−1 + k = 2iβ where β ∈ Z. Now suppose that k is even. (The proof for k odd can be
handled in the same fashion, and thus is omitted.) Since k is even, then ri−1 must be even.

Consider the (i+ 1)st level where i+ 1 < ℓ. Here again we have

b2 − 4ac = 4ℓ(m− 8j) (mod 22(i+1)) ≡ 0.

Moving to the next level, in the case n = 2i+1q + ri−1 we have

ν2((an+ k)2 − 4ℓ−1(m− 8j)) = ν2((a(2
i+1q + ri−1) + k)2 − 4ℓ−1(m− 8j))

= ν2((2
i+1aq + ari−1 + k)2 − 4ℓ−1(m− 8j))

= ν2((2
i+1aq + 2iβ)2 − 4ℓ−1(m− 8j))

= ν2(2
2i(2aq + β)2 − 22(ℓ−1)(m− 8j)),

and in the case n = 2i+1q + 2i + ri−1 we have

ν2((an+ k)2 − 4ℓ−1(m− 8j))

= ν2((a(2
i+1q + 2i + ri−1) + k)2 − 4ℓ−1(m− 8j))

= ν2((2
i+1aq + 2ia+ ari−1 + k)2 − 4ℓ−1(m− 8j))

= ν2((2
i+1aq + 2ia+ 2iβ)2 − 4ℓ−1(m− 8j))

= ν2(2
2i(2aq + a+ β)2 − 22(ℓ−1)(m− 8j)).

Since β ∈ Z either 2aq+β or 2aq+a+β is odd and the other is even. As long as i+1 < ℓ then
in the odd case the valuation is 2i and in the even case the valuation is at least 2(i+1).
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Lemma 16. If a is odd and b is even with b = 2k for k ∈ Z, and b2 − 4ac = 4ℓ∆ where
ℓ ∈ Z+ is as large as possible, ∆ ≡ m (mod 8), and m ∈ {2, 3, 5, 6, 7}, then at the ℓth level
the nodes of the 2-adic valuation tree terminate with valuations of 2(ℓ− 1), 2ℓ− 1 or 2ℓ.

Suppose that n = 2ℓq + rℓ−2. If an+ k ≡ 0 (mod 2ℓ), then

ν2(f(n)) =

{

2(ℓ− 1), if m = 7, 5, 3;

2ℓ− 1, if m = 6, 2;

and if an+ k 6≡ 0 (mod 2ℓ), then

ν2(f(n)) =











2(ℓ− 1), if m = 6, 2;

2ℓ− 1, if m = 7, 3;

2ℓ, if m = 5.

Suppose that n = 2ℓq + 2ℓ−1 + rℓ−2. If an+ k ≡ 0 (mod 2ℓ), then

ν2(f(n)) =











2(ℓ− 1), if m = 6, 2;

2ℓ− 1, if m = 7, 3;

2ℓ, if m = 5;

and if an+ k 6≡ 0 (mod 2ℓ), then

ν2(f(n)) =

{

2(ℓ− 1), if m = 7, 5, 3;

2ℓ− 1, if m = 6, 2.

Proof. By Lemma 14 there exists a non-terminating node n = 2ℓ−1q + rℓ−2 with q ∈ Z and

ν2((an+ k)2 − k2 + ac) ≥ 2(ℓ− 1).

Consider n = 2ℓq + rℓ−2 with q ∈ Z. By the same argument as in Lemma 14 and using the
convention that ∆ = m− 8j where j ∈ Z, we have

(an+ k)2 − k2 + ac = (2ℓaq + 2ℓ−1β)2 − 22(ℓ−1)(m− 8j) = 22(ℓ−1)((2aq + β)2 + 8j −m),

where β ∈ Z. Recall that a is odd. Then depending on whether β is even or odd, simple
calculations show the first two results.

In the case when n = 2ℓq + 2ℓ−1 + rℓ−2 with q ∈ Z we have

(an+ k)2 − k2 + ac = 22(ℓ−1)((2aq + a+ β)2 + 8j −m),

where β ∈ Z. Then again depending on whether β is odd or even, it is straightforward to
show the last two results.
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5 Structure of finite trees

The section describes the overall structure of finite trees, continuing the discussion of Case
3(c) of Theorem 1, in which a is odd, b is even, b2 − 4ac = 4ℓ∆ where ∆ ≡ m (mod 8), and
m ∈ {2, 3, 5, 6, 7}. Throughout this section, we make use of several operators. The operators
allow us to track changes from very easily described trees, which we call type (ℓ, 1), to more
complicated trees.

Definition 17 (Translation operator, [4]). For quadratics of the form f(n) = an2 + bn + c
we define τ s(f)(n) = f(n − s) for s ∈ R, namely τ s(f)(n) = a(n − s)2 + b(n − s) + c =
an2 + (b− 2as)n+ (c+ as2 − bs).

Proposition 18. Let the assumptions of Proposition 12 hold for the function f(n) = an2 +
bn+ c and suppose s ∈ Z. Then we have the following relationship

ν2(f(2
iq + ri−1)) = ν2(τ

sf(2iq + (ri−1 + s) mod 2i)).

That is the valuations ν2(f(n)) at the node of the form n = 2iq+ ri−1 are moved to the node
of the form n = 2iq + (ri−1 + s) (mod 2i) under the operation τ s.

Proof. Note that finite trees with ℓ levels correspond to periodic sequences with a period
equal to 2ℓ. Since τ s is a translation operator, every element in the sequence (ν2(f(n)))n≥0

is moved over s spaces.

Definition 19 (S-operator). Let a be a positive, odd integer. For quadratics of the form
f(n) = n2 + bn+ ac we define Sa(f)(n) = an2 + bn+ c. Likewise, for quadratics of the form
f(n) = an2 + bn+ c define Sa−1

(f)(n) = n2 + bn+ ac.

In general, the S-operator need not output a quadratic function with an integer constant
term. However, the present work only applies Sa to functions whose output has integer
coefficients.

Definition 20 (Dilation operator, [4]). For quadratics of the form f(n) = an2 + bn + c we
define δs(f)(n) = f(sn) for s ∈ R, namely δs(f)(n) = a(sn)2 + b(sn) + c.

Lemma 21. Under the assumptions of Proposition 12 the trees created by f(n) = n2+bn+ac
and Sa(f)(n) where a ∈ Z have the same number of levels. Similarly, the trees created by
g(n) = an2 + bn+ c and τ s(g)(n) where s ∈ Z have the same number of levels.

Proof. The assumptions of Proposition 12 represent Cases 3(b) and 3(c) of Theorem 1.
Simple calculations show that the discriminants of f(n) and Sa(f)(n) are the same, and
that the discriminants of g(n) and τ s(g)(n) are the same. The conclusions then follow
directly from Proposition 12.
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Proposition 22. Let the assumptions of Proposition 12 hold and suppose f(n) = n2+bn+ac.
Then we have the following relationship

ν2(f(2
iq + ri−1)) = ν2(S

a(f(2iq + a−1 · ri−1))).

That is the valuation ν2(f(n)) at the node the form n = 2iq + ri−1 is moved to the node of
the form of n = 2iq+(a−1 · ri−1) (mod 2i) under the operation Sa. In this context a−1 is the
inverse of a (mod 2i).

Proof. Since a is odd, note that

ν2(S
a(f)(n)) = ν2((an

2 + bn+ c)) = ν2((an)
2 + b(an) + ac) = ν2(δ

a(f)(n)),

where δa(f)(n) = f(an) is the dilation operator. Thus, the valuation of f(n) for n = 2iq+ri−1

is the same as the valuation of n′ = 2i(a−1q)+ a−1 · ri−1 after the S
a-operator is applied.

Suppose that f(n) = an2 + bn + c creates a finite tree. We say that this tree is type
(ℓ, 1), for ℓ ≥ 2, if at every level the non-terminating node is of the form n = 2q or n =
2iq + 2i−2 + · · · + 21 + 20 for i < ℓ and the tree has ℓ levels. We also say that a quadratic
function is type (ℓ, 1) if it creates an (ℓ, 1) tree. That is, f(n) creates a finite tree of the
following form:

Figure 2: The form of trees of type (ℓ, 1).

Here, we suppose that ℓ ≥ 2 because ℓ = 1 creates a tree with one level, see Lemma 13,
and the directional behavior we seek to classify is not defined. The conditions 4a2−4ac = 4ℓ∆
for ℓ ∈ Z+ as large as possible, ∆ ≡ m (mod 8), and m ∈ {2, 3, 5, 6, 7} imply c must be odd.
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Proposition 23. Under the assumptions of Proposition 12, if c is odd and ℓ ≥ 2 is an
integer, then a quadratic of the form f(n) = an2+2an+ c creates a tree that is of type (ℓ, 1).
Furthermore, we have

ν2(f(n)) =



















































0, if n ≡ 0 (mod 2);

2(i− 1), if n ≡ ∑i−2
k=0 2

k (mod 2i) with 2 ≤ i < ℓ;

2(ℓ− 1), if n ≡ ∑ℓ−2
k=0 2

k (mod 2ℓ) and m = 6, 2;

2ℓ− 1, if n ≡ ∑ℓ−2
k=0 2

k (mod 2ℓ) and m = 7, 3;

2ℓ, if n ≡ ∑ℓ−2
k=0 2

k (mod 2ℓ) and m = 5;

2ℓ− 1, if n ≡ ∑ℓ−1
k=0 2

k (mod 2ℓ) and m = 6, 2;

2(ℓ− 1), if n ≡ ∑ℓ−1
k=0 2

k (mod 2ℓ) and m = 7, 5, 3.

Proof. In light of Lemma 14, we know that if a node is non-terminating, then it produces
two nodes that either both terminate (i.e., these nodes are at the ℓth level) or one node is
non-terminating and the other is terminating. So in order to show that the tree is of type
(ℓ, 1), we only need to confirm that nodes corresponding to n = 2iq + 2i−1 + · · · + 21 + 20,
where 1 ≤ i ≤ ℓ, are always non-terminating. Since a is odd, completing the square and
using the convention that 4a2 − 4ac = 4ℓ∆ where ∆ = m− 8j where j ∈ Z gives

ν2(f(n)) = ν2(an
2 + 2an+ c) = ν2(a(n+ 1)2 − a+ c)

= ν2(a
2(n+ 1)2 − a2 + ac) = ν2(a

2(n+ 1)2 − 4ℓ−1(m− 8j))

= ν2(a
2(2iq + 2i−1 + 2i−2 + · · ·+ 2 + 1 + 1)2 − 4ℓ−1(m− 8j))

= ν2(a
2(2iq + 2i)2 − 4ℓ−1(m− 8j))

= ν2(a
24i(q + 1)2 − 4ℓ−1(m− 8j)).

If q is odd, then n = 2iq+2i−1+ · · ·+21+20 is the non-terminating node, provided i < ℓ, and
produces two nodes one of which does not terminate. If i = ℓ, then both nodes terminate
by Proposition 12.

The nodes that terminate are of the form n = 2iq + 2i−2 + · · ·+ 21 + 20 when 1 ≤ i < ℓ.
The case when n = 2q is handled by the proof of Lemma 21. For the case 1 < i < ℓ, by the
same calculation as above we have

ν2(f(n)) = ν2(a
222(i−1)(2q + 1)2 − 4ℓ−1(m− 8j))

Since 2q + 1 is odd and i < ℓ the valuation must be 2(i− 1).
In the case when n = 2ℓq + 2ℓ−2 + · · ·+ 21 + 20 we have

ν2(f(n)) = ν2(a
222(ℓ−1)(2q + 1)2 − 4ℓ−1(m− 8j))

Thus the valuation must be 2(ℓ− 1) if m = 6, 2, or 2ℓ− 1 if m = 7, 3 or 2ℓ if m = 5.
Finally if n = 2ℓq+2ℓ−2+ · · ·+21+20 we have ν2(f(n)) = ν2(a

222ℓ(q+1)2−4ℓ−1(m−8j)).
Thus the valuation must be 2(ℓ− 1) if m = 7, 5, 3 or 2ℓ− 1 if m = 6, 2.
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If the function f(n) = an2 + bn+ c meets the assumptions of Proposition 12 (Case 3(c)

of Theorem 1) note if we define the function g(n) = n2 + 2n −
(

1− b
2

)2
+ 2

(

1− b
2

)

+ ac,

then it follows that Sa(τ 1−
b

2 (g))(n) = f(n). Therefore, by Propositions 18, 22, and 23 we
immediately have the following corollary.

Corollary 24. If f(n) = an2 + bn+ c meets the assumptions of Proposition 12 (Case 3(c))
with ℓ ≥ 2, then

ν2(f(n)) =



















































0, if n ≡ a−1
(

1− b
2

)

(mod 2);

2(i− 1), if n ≡ a−1
(

2i−1 − b
2

)

(mod 2i) with 2 ≤ i < ℓ;

2(ℓ− 1), if n ≡ a−1
(

2ℓ−1 − b
2

)

(mod 2ℓ)and m = 6, 2;

2ℓ− 1, if n ≡ a−1
(

2ℓ−1 − b
2

)

(mod 2ℓ) and m = 7, 3;

2ℓ, if n ≡ a−1
(

2ℓ−1 − b
2

)

(mod 2ℓ) and m = 5;

2ℓ− 1, if n ≡ a−1
(

2ℓ − b
2

)

(mod 2ℓ) and m = 6, 2;

2(ℓ− 1), if n ≡ a−1
(

2ℓ − b
2

)

(mod 2ℓ) and m = 7, 5, 3;

where a−1 is the inverse of a (mod 2ℓ).

Proof. Simply note that g is type (ℓ, 1) and recall the ways in which the operators affect
the function g. Each terminating node, under the operators, moves from n = 2iq + ri−2 to
n = 2iq + a−1

(

ri−2 + 1− b
2

)

(mod 2i). In the case of type (ℓ, 1) we have ri−2 =
∑i−2

k=0 2
k.

Thus ri−2 + 1 = 2i−1 in each case.
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Appendix: figures illustrating trees and tables of values

for 2-adic valuation sequences of some quadratic func-

tions

In the following tree representations, a closed circle indicates a terminating node and an
open circle indicates a non-terminating node.
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n 0 1 2 3 4 5 6 7 8 9 10 11

f1(n) −25 −8 17 50 91 140 197 262 335 416 505 602
ν2(f12(n)) 0 3 0 1 0 2 0 1 0 5 0 1

n 12 13 14 15 16 17 18 19 20 21

f1(n) 707 820 941 1070 1207 1352 1505 1666 1835 2012
ν2(f1(n)) 0 2 0 1 0 3 0 1 0 2

Figure 3: The 2-adic valuation tree for f1(n) = 4n2 + 13n − 25. Theorem 1 predicts that
(ν2(f1(n)))n≥0 is an unbounded sequence, as it satisfies Case 2.
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n 0 1 2 3 4 5 6 7 8 9 10

f2(n) −28 −3 48 125 228 357 512 693 900 1133 1392
ν2(f2(n)) 2 0 4 0 2 0 9 0 2 0 4

n 11 12 13 14 15 16 17 18 19

f2(n) 1677 1988 2325 2688 3077 3492 3933 4400 4893
ν2(f2(n)) 0 2 0 7 0 2 0 4 0

Figure 4: The 2-adic valuation tree and data for f2(n) = 13n2 + 12n − 28. Notice that
Theorem 1 predicts that (ν2(f2(n)))n≥0 is an unbounded sequence, as it satisfies Case 3(a)
since 122 − 4 · 13(−28) = 43(1− 8(−3)).
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n 0 1 2 3 4 5 6 7

f3(n) 25559 26716 27903 29120 30367 31644 32951 34288
ν2(f3(n)) 0 2 0 6 0 2 0 4

n 8 9 10 11 12 13 14 15

f3(n) 35655 37052 38479 39936 41423 42940 44487 46064
ν2(f3(n)) 0 2 0 10 0 2 0 4

Figure 5: The 2-adic valuation tree and data for f3(n) = 15n2 +1142n+25559. Notice that
Theorem 1 predicts that (ν2(f3(n))n≥0 is a bounded sequence, as it satisfies Case 3(c) since
11422 − 4 · 15 · 25559 = 47(2− 8 · 2).
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n 0 1 2 3 4 5 6 7 8 9

f4(n) 1125 1236 1357 1488 1629 1780 1941 2112 2293 2484
ν2(f4(n)) 0 2 0 4 0 2 0 6 0 2

n 10 11 12 13 14 15 16 17 18 19

f4(n) 2685 2896 3117 3348 3589 3840 4101 4372 4653 4944
ν2(f4(n)) 0 4 0 2 0 8 0 2 0 4

Figure 6: The 2-adic valuation tree and data for f4(n) = 5n2 + 106n + 1125. Notice that
Theorem 1 predicts that (ν2(f4(n))n≥0 is a bounded sequence, as it satisfies Case 3(c) since
1062 − 4 · 5 · 1125 = 45(5− 8 · 2).
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