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Abstract

A numerical semigroup is a submonoid of Z≥0 whose complement in Z≥0 is finite.
The gap set G(S) of a numerical semigroup S is the finite set Z≥0 \ S. A positive
integer n is in the set FG(S) of fundamental gaps of S provided n /∈ S but kn ∈ S for
each k ∈ Z, k > 1. We explore the set FG(S) mostly when S is generated by two or
three integers, but also in some other special cases, including when S is generated by
arithmetic progressions.

1 Introduction

A numerical semigroup S is a submonoid of Z≥0 whose complement Z≥0 \S is finite. For the
complement to be finite, it is necessary and sufficient that gcd(S) = 1. For a given subset A
of positive integers, we write

〈A〉 =
{
a1x1 + · · ·+ akxk : ai ∈ A, xi ∈ Z≥0, k ∈ N

}
.

Note that 〈A〉 is a submonoid of Z≥0, and that S = 〈A〉 is a numerical semigroup if and only
if gcd(A) = 1.

1Corresponding author.
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We say that A is a set of generators of the semigroup S, or that the semigroup S is
generated by the set A, when S = 〈A〉. Further, A is a minimal set of generators for S if
A is a set of generators of S and no proper subset of A generates S. Every semigroup has
a unique minimal set of generators. The embedding dimension e(S) of S is the size of the
minimal set of generators.

A very useful tool in the study of numerical semigroups is the determination of an Apéry
set of the semigroup. Given a numerical semigroup S, and a ∈ S, the Apéry set of S
corresponding to a is given by

Ap(S, a) = {mx : x ∈ {0, 1, 2, . . . , a− 1}} ,

where mx denotes the least positive integer in S congruent to x modulo a.
The finite set Z≥0 \ S is called the gap set of S, and is denoted by G(S). If n ∈ G(S)

and d | n, d ∈ N, then d ∈ G(S). This naturally leads to the set FG(S) of fundamental gaps
of S, defined as

FG(S) = {n ∈ G(S) : kn ∈ S ∀ k > 1} ;

see Rosales et al. [9] for more details.
We describe the set FG(S) in terms of the elements in Ap(S, a), for any a ∈ S, in

Lemma 1.

Lemma 1. Let A be any set of positive integers with gcd(A) = 1, and let S = 〈A〉 be the
numerical semigroup generated by A. Let a ∈ A, and let mx denote the least positive integer
in S congruent to x modulo a. Then n ∈ FG(S) if and only if

n = mn − λa, 1 ≤ λ ≤ 1
a

min
{
mn − 1

2
m2n,mn − 1

3
m3n

}
.

Proof. Note that n ∈ FG(S) if and only if n < mn, 2n ≥ m2n, and 3n ≥ m3n. Thus,
n = mn−λa for some λ ≥ 1. Using this in the other two constraints gives the upper bounds
λ ≤ 1

a

(
mn − 1

2
m2n

)
and λ ≤ 1

a

(
mn − 1

3
m3n

)
.

We determine the set of fundamental gaps of some numerical semigroups in this article.
We consider numerical semigroups with embedding dimension 2 in Section 2. The Apéry set
in this case is well known, and we use this to determine the set of fundamental gaps, giving
a simpler proof of the same result by Rosales [7]. We consider numerical semigroups with
embedding dimension 3 in Section 3. The Apéry set in this case is in general difficult to
compute. We consider several special cases where the Apéry set has been determined, and
use that to determine the set of fundamental gaps in those cases. We consider numerical
semigroups generated by arithmetic progressions in Section 4. Apéry sets for such semigroups
have been determined, and we use these to determine the set of fundamental gaps.

2 The case of embedding dimension 2

Numerical semigroups with embedding dimension 2 are the simplest to study. The Apéry set
of these semigroups is easy to see and part of basic number theory. Rosales [7] determined
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the fundamental gap of numerical semigroups S = 〈a, b〉, gcd(a, b) = 1, by making use of the
well known fact that n /∈ S if and only if n = ab− ax− by with x, y ∈ N. We use the Apéry
set of S given in Lemma 2 to determine the set of fundamental gaps in S in Theorem 3.

Lemma 2. Let A = {a, b}, where gcd(a, b) = 1. Then the Apéry set for the semigroup
S = 〈a, b〉 is given by

Ap(S, a) =
{
bx : 0 ≤ x ≤ a− 1

}
.

Theorem 3. [7, Theorem 9] Let S = 〈a, b〉, where gcd(a, b) = 1. The set of fundamental
gaps is given by

FG(S) =
{
bs− ar : 1 ≤ r ≤ b

3
, a
2
≤ s < 2a

3

} ⋃ {
bs− ar : 1 ≤ r ≤ b

2
, 2a

3
≤ s ≤ a− 1

}
.

Proof. Recall that n = bs− ar /∈ 〈a, b〉 if and only if 1 ≤ s ≤ a− 1 and 1 ≤ r < bs
a

, and that
n is a fundamental gap if and only if n /∈ 〈a, b〉 and 2n, 3n ∈ 〈a, b〉.

Since 2n = 2bs− 2ar /∈ 〈a, b〉 if s < a
2
, we may henceforth assume s ≥ a

2
. If a is even and

s = a
2
, then 2n = a(b − 2r) ∈ 〈a, b〉 and 3n = b · a

2
+ a(b − 3r) ∈ 〈a, b〉 if and only if r ≤ b

3
.

Hence n = b · a
2
− ar is a fundamental gap if and only if 1 ≤ r ≤ b

3
.

For the rest of this proof, suppose s > a
2
. Now 2n = b(2s− a) + a(b− 2r) ∈ 〈a, b〉 if and

only if r ≤ b
2
, since 2s − a < a. To decide whether or not 3n ∈ 〈a, b〉, we consider the two

cases (i) s < 2a
3

, and (ii) 2a
3
≤ s ≤ a − 1. In case (i), 3n = b(3s − a) + a(b − 3r) ∈ 〈a, b〉 if

and only if r ≤ b
3
, since 0 < 3s − a < a. In case (ii), 3n = b(3s − 2a) + a(2b − 3r) ∈ 〈a, b〉

if and only if r ≤ 2b
3

, since 0 < 3s− 2a < a. Thus, in case (i), we have r ≤ min
{
b
2
, b
3

}
= b

3
,

while in case (ii), we have r ≤ min
{
b
2
, 2b

3

}
= b

2
.

3 The case of embedding dimension 3

Numerical semigroups with embedding dimension 3 have received a lot of attention, pri-
marily because these are the first class of numerical semigroups that pose a challenge. By
contrast to the case of numerical semigroups with embedding dimension 2, Apéry sets of
numerical semigroups with embedding dimension 3 are usually quite difficult to describe.
The Frobenius number F(S) = max(N \ S) of a numerical semigroup S is easily computed
from the Apéry set of S, since F(S) = max(Ap(S, a)) − a for each a ∈ S. Johnson [4] de-
scribed an algorithm to compute F(S) in terms of minimum multiples of generators that are
in the numerical semigroup generated by the other two elements, but without determining
the Apéry set. Rosales and Garćıa-Sánchez [8] and independently, Tripathi and Vijay [16],
were able to describe the Apéry set in terms of the constants first determined by Johnson
[4]; see Proposition 4. However, the constants determined by Johnson [4] do not lead to an
algebraic expression in terms of the generators of S and, in particular, to the determination
of the Apéry set of S in the desired manner.

In this section, we consider three cases of numerical semigroups with embedding dimen-
sion 3 in which the Apéry sets can be computed explicitly in terms of their generators.
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Figure 1: A geometric depiction of the set of fundamental gaps in numerical semigroups
with embedding dimension 3. Each lattice point (x, y) represents the integer n = a2x+ a3y.
The integers in the Apéry set A (respectively, in 2A and 3A) are those represented by
lattice points inside the region given by the union of two rectangles enclosed by red lines
(respectively, by blue lines and by green lines). The solid black line represents the equation
a2x+ a3y = n, whereas the dashed black line represents the equation a2x+ a3y = n− a1.

We then use this to determine the set of fundamental gaps in each case. We deal with
3-term compound sequences in Subsection 3.1. These are given by c0 = a1a2, c1 = b1a2,
c2 = b1b2, where a1, a2 and b1, b2 are pairs of positive integers such that ai < bi for each i
and gcd(ai, bj) = 1 for each pair i, j, i ≥ j. We consider numerical semigroups generated by
a, b, c, where a | (b + c), in Subsection 3.2. We consider numerical semigroups generated by
a, b, c, where a | lcm(b, c), in Subsection 3.3.
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Proposition 4. [4, 8, 16] Let A = {a1, a2, a3} be a set of positive integers, with gcd(a1, a2, a3) =
1. Define L1, L2, L3 by

L1 = min
{
k1 ∈ N : k1a1 = v12a2 + v13a3, v12 ≥ 0, v13 ≥ 0

}
,

L2 = min
{
k2 ∈ N : k2a2 = v21a1 + v23a3, v21 ≥ 0, v23 ≥ 0

}
,

L3 = min
{
k3 ∈ N : k3a3 = v31a1 + v32a2, v31 ≥ 0, v32 ≥ 0

}
.

Then there exist nonnegative integers x12, x13, x21, x23, x31, x32 such that

L1a1 = x12a2 + x13a3, L2a2 = x21a1 + x23a3, L3a3 = x31a1 + x32a2.

Moreover, if no element in A is dependent on the other two, then each xij ≥ 1 and each
Li = xji + xki. We have

Ap(S, a1) =
{
a2x+a3y : 0 ≤ x ≤ x12−1, 0 ≤ y ≤ L3−1 or 0 ≤ x ≤ L2−1, 0 ≤ y ≤ x13−1

}
.

3.1 The case of compound sequences

Let a1, . . . , ak and b1, . . . , bk be two sequences of positive integers such that ai < bi for each
i and gcd(ai, bj) = 1 for each pair i, j, i ≥ j. The compound sequence formed from these two
sequences is

c0 = a1a2a3 · · · ak, c1 = b1a2a3 · · · ak, c2 = b1b2a3 · · · ak, . . . , ck = b1b2b3 · · · bk.

Note that gcd(c0, c1, c2, . . . , ck) = 1. Two important special cases are

• The compound sequence for a1 = · · · = ak = a and b1 = · · · = bk = b, gcd(a, b) = 1 is
the geometric sequence

ak, ak−1b, ak−2b2, . . . , bk.

• For pairwise coprime positive integers a1, . . . , ak, the compound sequence for a2, a3, . . . , ak
and a1, a2, . . . , ak−1 is the supersymmetric sequence

P

a1
,
P

a2
, . . . ,

P

ak
,

where P = a1a2 · · · ak.

Numerical semigroups generated by compound sequences were studied by Kiers et al. [5].
In their study, Kiers et al. determined an Apéry set, the Frobenius number, Betti elements,
and catenary degree, and also computed bounds on the delta set. We use their result on
the Apéry set of numerical semigroups to determine the set of fundamental gaps of these
semigroups for the case where the embedding dimension equals 3.
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Lemma 5. [5, Theorem 15] Let a1, . . . , ak and b1, . . . , bk be two sequences of positive
integers such that ai < bi for each i and gcd(ai, bj) = 1 for each pair i, j, i ≥ j. Then an
Apéry set for the numerical semigroup S generated by the compound sequence c0, c1, . . . , ck
of these two sequences is given by

Ap(S, c0) =

{
k∑
i=1

cixi : 0 ≤ xi ≤ ai − 1, i = 1, . . . , k

}
.

The compound sequence of a1, a2 and b1, b2 is a 3-term sequence c0, c1, c2. We study the
set of fundamental gaps of numerical semigroups generated by c0, c1, c2.

Theorem 6. Let a1, a2 and b1, b2 be two sequences of positive integers such that ai < bi
for each i and gcd(ai, bj) = 1 for each pair i, j, i ≥ j. Let c0 = a1a2, c1 = b1a2, and

c2 = b1b2, and let S = 〈c0, c1, c2〉. Let b2 = qa1 + r, 0 ≤ r < a1, and δ =
⌊
2r
a1

⌋
. Let

n = c1x+ c2y − c0z ∈ G(S).

(I)

2n ∈ S ⇐⇒


a1
2
≤ x < a1, 0 ≤ y < a2

2
, 1 ≤ z ≤ b1

2
, or

0 ≤ x < a1−r
2
, a2

2
≤ y < a2, 1 ≤ z ≤ qb1

2
, or

a1−r
2
≤ x < 2a1−r

2
, a2

2
≤ y < a2, 1 ≤ z ≤ (q+1)b1

2
, or

2a1−r
2
≤ x < a1,

a2
2
≤ y < a2, 1 ≤ z ≤ (q+2)b1

2
.

(II)

3n ∈ S ⇐⇒



a1
3
≤ x < 2a1

3
, 0 ≤ y < a2

3
, 1 ≤ z ≤ b1

3
, or

2a1
3
≤ x < a1, 0 ≤ y < a2

3
, 1 ≤ z ≤ 2b1

3
, or

0 ≤ x < a1−r
3
, a2

3
≤ y < 2a2

3
, 1 ≤ z ≤ qb1

3
, or

a1−r
3
≤ x < 2a1−r

3
, a2

3
≤ y < 2a2

3
, 1 ≤ z ≤ (q+1)b1

3
, or

2a1−r
3
≤ x < 3a1−r

3
, a2

3
≤ y < 2a2

3
, 1 ≤ z ≤ (q+2)b1

3
, or

3a1−r
3
≤ x < a1,

a2
3
≤ y < 2a2

3
, 1 ≤ z ≤ (q+3)b1

3
, or

0 ≤ x < (1+δ)a1−2r
3

, 2a2
3
≤ y < a2, 1 ≤ z ≤ (2q+δ)b1

3
, or

(1+δ)a1−2r
3

≤ x < (2+δ)a1−2r
3

, 2a2
3
≤ y < a2, 1 ≤ z ≤ (2q+δ+1)b1

3
, or

(2+δ)a1−2r
3

≤ x < (3+δ)a1−2r
3

, 2a2
3
≤ y < a2, 1 ≤ z ≤ (2q+δ+2)b1

3
, or

(3+δ)a1−2r
3

≤ x < a1,
2a2
3
≤ y < a2, 1 ≤ z ≤ (2q+δ+3)b1

3
.

Proof. By Lemma 5, n ∈ G(S) if and only if n = c1x + c2y − c0z, where 0 ≤ x < a1,
0 ≤ y < a2, and z ∈ N.

(I) We derive conditions on n for which 2n ∈ S by considering five cases. The argument in
each case is similar, so we present the first two cases in detail and give only the result
in the remaining three cases.
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(i) For 0 ≤ x < a1
2

and 0 ≤ y < a2
2

, 2n = 2c1x+ 2c2y− 2c0z /∈ S, since 2c1x+ 2c2y ∈
Ap(S, c0).

(ii) For a1
2
≤ x < a1 and 0 ≤ y < a2

2
, 2n = c1(2x − a1) + 2c2y − c0(2z − b1) and

c1(2x− a1) + 2c2y ∈ Ap(S, c0). Therefore 2n ∈ S ⇔ z ≤ b1
2

.

(iii) For 0 ≤ x < a1−r
2

and a2
2
≤ y < a2, we have 2n ∈ S ⇔ z ≤ qb1

2
.

(iv) For a1−r
2
≤ x < 2a1−r

2
and a2

2
≤ y < a2, we have 2n ∈ S ⇔ z ≤ (q+1)b1

2
.

(v) For 2a1−r
2
≤ x < a1 and a2

2
≤ y < a2, we have 2n ∈ S ⇔ z ≤ (q+2)b1

2
.

(II) We derive conditions on n for which 3n ∈ S by considering eleven cases. Again, the
argument in each case is similar, so we present the first two cases in detail and give
only the result in the remaining nine cases.

(i) For 0 ≤ x < a1
3

and 0 ≤ y < a2
3

, 3n = 3xc1 + 3yc2 − 3zc0 /∈ S, because
3c1x+ 3c2y ∈ Ap(S, c0).

(ii) For a1
3
≤ x < 2a1

3
and 0 ≤ y < a2

3
, 3n = c1(3x − a1) + 3c2y − c0(3z − b1) and

c1(3x− a1) + 3c2y ∈ Ap(S, c0). Therefore 3n ∈ S ⇔ z ≤ b1
3

.

(iii) For 2a1
3
≤ x < a1 and 0 ≤ y < a2

3
, we have 3n ∈ S ⇔ z ≤ 2b1

3
.

(iv) For 0 ≤ x < a1−r
3

and a2
3
≤ y < 2a2

3
, we have 3n ∈ S ⇔ z ≤ qb1

3
.

(v) For a1−r
3
≤ x < 2a1−r

3
and a2

3
≤ y < 2a2

3
, we have 3n ∈ S ⇔ z ≤ (q+1)b1

3
.

(vi) For 2a1−r
3
≤ x < 3a1−r

3
and a2

3
≤ y < 2a2

3
, we have 3n ∈ S ⇔ z ≤ (q+2)b1

3
.

(vii) For 3a1−r
3
≤ x < a1 and a2

3
≤ y < 2a2

3
, we have 3n ∈ S ⇔ z ≤ (q+3)b1

3
.

(viii) For 0 ≤ x < (1+δ)a1−2r
3

and 2a2
3
≤ y < a2, we have 3n ∈ S ⇔ z ≤ (2q+δ)b1

3
.

(ix) For (1+δ)a1−2r
3

≤ x < (2+δ)a1−2r
3

and 2a2
3
≤ y < a2, we have 3n ∈ S ⇔ z ≤

(2q+δ+1)b1
3

.

(x) For (2+δ)a1−2r
3

≤ x < (3+δ)a1−2r
3

and 2a2
3
≤ y < a2, we have 3n ∈ S ⇔ z ≤

(2q+δ+2)b1
3

.

(xi) For (3+δ)a1−2r
3

≤ x < a1 and 2a2
3
≤ y < a2, we have 3n ∈ S ⇔ z ≤ (2q+δ+3)b1

3
.

3.2 The case A = {a, b, c}, where a | (b+ c)

Lemma 7. [14, Theorem 1] Let A = {a, b, c}, where gcd(a, b, c) = 1 and a | (b+ c). Then
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the Apéry set for the semigroup S = 〈a, b, c〉 is given by

Ap(S, a) =
{

min{bx, c(a− x)} : 0 ≤ x ≤ a− 1
}

=

{
bx, if 0 ≤ x ≤ ac

b+c
;

c(a− x), if ac
b+c

< x ≤ a− 1.

Theorem 8. Let S = 〈a, b, c〉, where gcd(a, b, c) = 1. If a | (b + c) and q =
⌊
ac
b+c

⌋
, then

n ∈ FG(S) if and only if

(I) q < 2a
3

and

n = bx− az, q
2
< x < a

3
, 1 ≤ z ≤ b+c

a
x− c

2
,

or n = bx− az, a
3
≤ x < a

2
, 1 ≤ z ≤ min

{
b+c
a
x− c

2
, b
3

}
,

or n = bx− az, a
2
≤ x < a+q

3
, 1 ≤ z ≤ b

3
,

or n = bx− az, a+q
3
≤ x ≤ q, 1 ≤ z ≤ min

{
b+c
a
x− 2c

3
, b
2

}
,

or n = c(a− x)− az, q < x < 2a
3
, 1 ≤ z ≤ min

{
b+2c
2
− b+c

a
x, c

3

}
,

or n = c(a− x)− az, 2a
3
≤ x ≤ a+q

2
, 1 ≤ z ≤ b+2c

2
− b+c

a
x.

(II) q ≥ 2a
3

and

n = bx− az, q
2
< x < a

2
, 1 ≤ z ≤ min

{
b+c
a
x− c

2
, b
3

}
,

or n = bx− az, a
2
≤ x < a+q

3
, 1 ≤ z ≤ b

3
,

or n = bx− az, a+q
3
< x < 2a

3
, 1 ≤ z ≤ min

{
b+c
a
x− 2c

3
, b
2

}
,

or n = bx− az, 2a
3
≤ x ≤ q, 1 ≤ z ≤ b

2
,

or n = c(a− x)− az, q < x ≤ a+q
2
, 1 ≤ z ≤ b+2c

2
− b+c

a
x.

Proof. We assume, without loss of generality, that b < c. Let q =
⌊
ac
b+c

⌋
. Since

⌊
ab
b+c

⌋
+⌊

ac
b+c

⌋
= a− 1 or a according as (b+ c) - ac or (b+ c) | ac, we have q ≥ a−1

2
if (b+ c) - ac and

q > a
2

if (b+ c) | ac. By Lemma 7, n /∈ S if and only if n = bx− az > 0, 1 ≤ x ≤ q, z ≥ 1 or
n = c(a− x)− az > 0, q + 1 ≤ x ≤ a− 1, z ≥ 1.

Case I.
(
q < 2a

3

)
(i) For 1 ≤ x ≤ q

2
, mbx = bx and m2bx = 2bx. Hence n = bx − az, so that 2n < m2bx.

Therefore n /∈ FG(S) in this case.

(ii) For q
2
< x < a

3
, mbx = bx, m2bx = c(a−2x), and m3bx = c(a−3x). Hence n = bx−az,

and 2n ≥m2bx and 3n ≥m3bx translate to z ≤ b+c
a
x− c

2
and z ≤ b+c

a
x− c

3
, respectively.

Thus, n ∈ FG(S)⇔ z ≤ b+c
a
x− c

2
.
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(iii) For a
3
≤ x < a

2
, mbx = bx, m2bx = c(a − 2x), and m3bx = b(3x − a). Thus, n ∈

FG(S)⇔ z ≤ min
{
b+c
a
x− c

2
, b
3

}
.

(iv) For a
2
≤ x < a+q

3
, mbx = bx, m2bx = b(2x − a), and m3bx = b(3x − a). Thus,

n ∈ FG(S)⇔ z ≤ b
3
.

(v) For a+q
3
≤ x ≤ q, mbx = bx, m2bx = b(2x − a), and m3bx = c

(
a − (3x − a)

)
. Thus,

n ∈ FG(S)⇔ z ≤ min
{
b+c
a
x− 2c

3
, b
2

}
.

(vi) For q < x < 2a
3

, mbx = c(a− x), m2bx = b(2x− a), and m3bx = c
(
a− (3x− a)

)
. Thus,

n ∈ FG(S)⇔ z ≤ min
{
b+2c
2
− b+c

a
x, c

3

}
.

(vii) For 2a
3
≤ x ≤ a+q

2
, mbx = c(a − x), m2bx = b(2x − a), and m3bx = b(3x − 2a). Thus,

n ∈ FG(S)⇔ z ≤ b+2c
2
− b+c

a
x.

(viii) For a+q
2
< x ≤ a−1, mbx = c(a−x) and m2bx = c

(
a−(2x−a)

)
. Hence n = c(a−x)−az,

so that 2n <m2bx. Therefore n /∈ FG(S) in this case.

Case II.
(
q ≥ 2a

3

)
There are seven subcases to consider, of which subcases (i), (iii), and

(vii) are the subcases (i), (iv), and (viii) from Case I. We only consider the four remaining
subcases, listed as (ii), (iv), (v), and (vi).

(ii) For q
2
< x < a

2
, mbx = bx, m2bx = c(a− 2x) (since q < 2x < a), and m3bx = b(3x− a)

(since a < 3x < a + q). Hence n = bx − az, and 2n ≥ m2bx and 3n ≥ m3bx translate
to z ≤ b+c

a
x− c

2
and z ≤ b

3
, respectively. Thus, n ∈ FG(S)⇔ z ≤ min

{
b+c
a
x− c

2
, b
3

}
.

(iv) For a+q
3
< x < 2a

3
, mbx = bx (since 2a

3
≤ q), m2bx = b(2x− a) (since a < 2x < a + q),

and m3bx = c
(
a − (3x − a)

)
(since a + q < 3x < 2a). Hence n = bx − az, and

2n ≥ m2bx and 3n ≥ m3bx translate to z ≤ b
2

and z ≤ b+c
a
x − 2c

3
, respectively. Thus,

n ∈ FG(S)⇔ z ≤ min
{
b+c
a
x− 2c

3
, b
2

}
.

(v) For 2a
3
≤ x ≤ q, mbx = bx, m2bx = b(2x − a), and m3bx = b(3x − 2a). Thus,

n ∈ FG(S)⇔ z ≤ b
2
.

(vi) For q < x ≤ a+q
2

, mbx = c(a − x), m2bx = b(2x − a), and m3bx = b(3x − 2a). Thus,
n ∈ FG(S)⇔ z ≤ b+2c

2
− b+c

a
x.

3.3 The case A = {a, b, c}, where a | lcm(b, c)

Lemma 9. [15, Theorem 8] Let A = {a, b, c}, where gcd(a, b, c) = 1 and a | lcm(b, c).
Then the Apéry set for the semigroup S = 〈a, b, c〉 is given by

Ap(S, a) =
{
bx+ cy : 0 ≤ x ≤ s− 1, 0 ≤ y ≤ r − 1

}
,

where r = gcd(a, b) and s = gcd(a, c).
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Theorem 10. Let S = 〈a, b, c〉, where gcd(a, b, c) = 1 and a | lcm(b, c). Let r = gcd(a, b)
and s = gcd(a, c). Then bx+ cy − az ∈ FG(S) if and only if z ≥ 1 and

0 ≤ x < s
3
, r

2
≤ y < 2r

3
, z ≤ c

3s
,

or s
3
≤ x < s

2
, r

2
≤ y < 2r

3
, z ≤ min{ c

2s
, b
3r

+ c
3s
},

or 0 ≤ x < s
2
, 2r

3
≤ y < r, z ≤ c

2s
,

or s
2
≤ x < 2s

3
, 0 ≤ y < r

3
, z ≤ b

3r
,

or s
2
≤ x < 2s

3
, r

3
≤ y < r

2
, z ≤ min{ b

2r
, b
3r

+ c
3s
}

or 2s
3
≤ x < s, 0 ≤ y < r

2
, z ≤ b

2r
,

or s
2
≤ x < 2s

3
, r

2
≤ y < 2r

3
, z ≤ b

3r
+ c

3s
,

or s
2
≤ x < 2s

3
, 2r

3
≤ y < r, z ≤ min{ b

2r
+ c

2s
, b
3r

+ 2c
3s
},

or 2s
3
≤ x < s, r

2
≤ y < 2r

3
, z ≤ min{ b

2r
+ c

2s
, 2b
3r

+ c
3s
},

or 2s
3
≤ x < s, 2r

3
≤ y < r, z ≤ b

2r
+ c

2s
.

Proof. We make repeated use of Lemma 9. Note that a = rs and that n /∈ S if and only if
n = bx+ cy − az > 0, where 0 ≤ x ≤ s− 1, 0 ≤ y ≤ r − 1 and z ≥ 1.

To determine conditions on x, y, z under which 2n ∈ S, we consider nine cases with
(x, y) ∈

[
λs
2
, (λ+1)s

2

)
×
[
µs
2
, (µ+1)s

2

)
, with λ, µ ∈ {0, 1}. Fix the ordered pair (λ, µ). Then

2n = b(2x− λs) + c(2y − µr) + a
(
λb
r

+ µc
s
− 2z

)
∈ S if and only if 2z ≤ λb

r
+ µc

s
. (1)

To determine conditions on x, y, z under which 3n ∈ S, we consider nine cases with
(x, y) ∈

[
λs
3
, (λ+1)s

3

)
×
[
µs
3
, (µ+1)s

3

)
, with λ, µ ∈ {0, 1, 2}. Fix the ordered pair (λ, µ). Then

3n = b(3x− λs) + c(3y − µr) + a
(
λb
r

+ µc
s
− 3z

)
∈ S if and only if 3z ≤ λb

r
+ µc

s
. (2)

We must consider only those pairs (λ, µ) ∈ {0, 1}×{0, 1} in eqn. (1) for which λb
r

+ µc
s
≥ 2

and simultaneously only those pairs (λ, µ) ∈ {0, 1, 2}×{0, 1, 2} in eqn. (2) for which λb
r

+ µc
s
≥

3. Therefore n = bx+ cy − az ∈ FG(S) according to Table 1 below.

2r
3
≤ y < r

min
{
c
2s
, 2c
3s

}
min

{
c
2s
, b
3r

+ 2c
3s

}
min

{
b
2r

+ c
2s
, b
3r

+ 2c
3s

} min
{
b
2r

+ c
2s
, 2b
3r

+ 2c
3s

}
= c

2s
= c

2s
= b

2r
+ c

2s

r
2
≤ y < 2r

3

min
{
c
2s
, c
3s

}
min

{
c
2s
, b
3r

+ c
3s

} min
{
b
2r

+ c
2s
, b
3r

+ c
3s

}
min

{
b
2r

+ c
2s
, 2b
3r

+ c
3s

}
= c

3s
= b

3r
+ c

3s

r
3
≤ y < r

2
X X min

{
b
2r
, b
3r

+ c
3s

} min
{
b
2r
, 2b
3r

+ c
3s

}
= b

2r

0 ≤ y < r
3

X X
min

{
b
2r
, b
3r

}
min

{
b
2r
, 2b
3r

}
= b

3r
= b

2r

0 ≤ x < s
3

s
3
≤ x < s

2
s
2
≤ x < 2s

3
2s
3
≤ x < s

Table 1: Upper bounds for z
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4 The case of arithmetic progressions

Numerical semigroups generated by arithmetic progressions have been extensively studied;
see [1, 3, 6, 10, 11, 12], for instance. By AP(a, d; k), we mean the k-term arithmetic pro-
gression {a, a + d, . . . , a + (k − 1)d}, with gcd(a, d) = 1 and k ≥ 2. The Apéry set for the
semigroup S = 〈AP(a, d; k)〉 is given as Lemma 11. We use this to determine the set of
fundamental gaps in S in Theorem 12.

Lemma 11. [11, Lemma 2] Let a, d, k be positive integers, with gcd(a, d) = 1. Let
AP(a, d; k) = {a+id : 0 ≤ i ≤ k−1}. Then the Apéry set for the semigroup S = 〈AP(a, d; k)〉
is given by

Ap(S, a) =
{
a
(
1 +

⌊
x−1
k−1

⌋)
+ dx : 0 ≤ x ≤ a− 1

}
.

Theorem 12. Let a, d, k be positive integers, with gcd(a, d) = 1. Let AP(a, d; k) = {a+ id :
0 ≤ i ≤ k − 1}. Then ax+ dy ∈ FG

(
AP(a, d; k)

)
if and only if

1
3

(⌊
3y−a
k−1

⌋
− (d− 1)

)
≤ x ≤

⌊
y−1
k−1

⌋
, a

2
≤ y < 2a

3
,

or 1
2

(⌊
2y−a
k−1

⌋
− (d− 1)

)
≤ x ≤

⌊
y−1
k−1

⌋
, 2a

3
≤ y ≤ a− 1.

Proof. Recall that n is a fundamental gap of the numerical semigroup S if and only if n /∈ S
and 2n, 3n ∈ S. Let S = 〈AP(a, d; k)〉. We make repeated use of Lemma 11.

Fix y ∈ {1, . . . , a−1}, and suppose n = ax+dy > 0. Then n /∈ S if and only if x ≤
⌊
y−1
k−1

⌋
.

To determine conditions on x under which 2n ∈ S, we consider two cases: (i) y ≤ a−1
2

,

and (ii) y > a−1
2

. In case (i), 2n = 2ax + 2dy ∈ S if and only if 2x ≥ 1 +
⌊
2y−1
k−1

⌋
.

Since 1 +
⌊
2y−1
k−1

⌋
> 2

⌊
y−1
k−1

⌋
, the necessary and sufficient condition requires x >

⌊
y−1
k−1

⌋
, in

contradiction to the requirement for n /∈ S. Hence there is no fundamental gap in case (i).
In case (ii), y ≥ a

2
, so 2n = a(2x+ d) + d(2y − a) ∈ S if and only if 2x+ d ≥ 1 +

⌊
2y−a
k−1

⌋
.

To determine conditions on x under which 3n ∈ S, we consider three cases: (i) y ≤ a−1
3

,
(ii) a−1

3
< y < 2a

3
, and (iii) 2a

3
≤ y ≤ a− 1. In order that n be a fundamental gap, we must

have y ≥ a
2
. Hence there is no fundamental gap in case (i). In case (ii), 3n = a(3x + d) +

d(3y−a) ∈ S if and only if 3x+d ≥ 1+b3y−a
k−1
c. In case (iii), 3n = a(3x+2d)+d(3y−2a) ∈ S

if and only if 3x+ 2d ≥ 1 +
⌊
3y−2a
k−1

⌋
.

Therefore n = ax + dy > 0 is a fundamental gap for the set S if and only if one of the
following holds:

• for a
2
≤ y < 2a

3
,

x ≥ max
{

1
2

(⌊
2y−a
k−1

⌋
− (d− 1)

)
, 1
3

(⌊
3y−a
k−1

⌋
− (d− 1)

)}
,

• for 2a
3
≤ y ≤ a− 1,

x ≥ max
{

1
2

(⌊
2y−a
k−1

⌋
− (d− 1)

)
, 1
3

(⌊
3y−2a
k−1

⌋
− (2d− 1)

)}
.
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In the first case, we have

2
(⌊

3y−a
k−1

⌋
− (d− 1)

)
− 3

(⌊
2y−a
k−1

⌋
− (d− 1)

)
= 2

⌊
3y−a
k−1

⌋
− 3

⌊
2y−a
k−1

⌋
+ (d− 1)

≥
(⌊

2(3y−a)
k−1

⌋
− 1
)
−
⌊
3(2y−a)
k−1

⌋
+ (d− 1)

≥
⌊

a
k−1

⌋
+ (d− 2) since bxc − byc ≥ bx− yc

≥ 0.

In the second case, we have

3
(⌊

2y−a
k−1

⌋
− (d− 1)

)
− 2

(⌊
3y−2a
k−1

⌋
− (2d− 1)

)
= 3

⌊
2y−a
k−1

⌋
− 2

⌊
3y−2a
k−1

⌋
+ (d+ 1)

≥
(⌊

3(2y−a)
k−1

⌋
− 2
)
−
⌊
2(3y−2a)
k−1

⌋
+ (d+ 1)

≥
⌊
3(2y−a)
k−1

⌋
−
⌊
2(3y−2a)
k−1

⌋
≥ 0.

Thus, n = ax+ dy > 0 is a fundamental gap if and only if

1
3

(⌊
3y−a
k−1

⌋
− (d− 1)

)
≤ x ≤

⌊
y−1
k−1

⌋
, a

2
≤ y < 2a

3
,

or 1
2

(⌊
2y−a
k−1

⌋
− (d− 1)

)
≤ x ≤

⌊
y−1
k−1

⌋
, 2a

3
≤ y ≤ a− 1.
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