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Abstract

In 2015, Nowicki posed the following question: let d = q or d = 2q, where q is a

product of prime numbers of the form 4k + 1. Is it true that d is a special number?

We answer this open question.

1 Introduction

A positive integer d is called a special number if for every integer m there exist nonzero
integers a, b, c such that m = a2+ b2− dc2. Nowicki [1] proved that there are infinitely many
special numbers and every special number is of the form q or 2q, where either q = 1 or q is
a product of prime numbers of the form 4k+1. Then he posed the following open question:
let d = q or d = 2q, where q is a product of prime numbers of the form 4k + 1. Is it true
that d is a special number? In this article, we confirm that the answer is yes.

Theorem 1. Let d = q or d = 2q, where q is a product of prime numbers of the form 4k+1.
Then d is a special number.
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2 Proof of the main result

First, we recall some lemmas that we need to prove our results.

Lemma 2. [3, p. 378] If an odd prime p divides the sum of the squares of two relatively
prime positive integers, then it must be of the form 4k + 1.

Lemma 3. [3, p. 227] If p is a prime of the form 4k+1 then for s = 1, 2, . . ., the number ps

admits precisely one representation as the sum of the squares of two relatively prime natural
numbers.

Lemma 4. [3, p. 228] If m,n are two odd numbers that are relatively prime, and such
that each of them is representable as the sum of the squares of two relatively prime positive
integers, then the product mn admits at least two representations as the sum of the squares
of two relatively prime positive integers that differ not only in the order of the summand.

Using the lemmas above, we can obtain the following theorem.

Theorem 5. A positive integer d > 2 can be written in form of a2 + b2, where a, b are two
relatively prime positive integers if and only if d = q or d = 2q, where q is a product of prime
numbers of the form 4k + 1.

Proof. Assume that d = a2 + b2, where a, b are two relatively prime positive integers. Let p
be an odd prime factor of d, we have p|a2 + b2. By Lemma 2, we see that p is a prime of the
form 4k + 1.

If d is divisible by 4 then 4|a2+ b2. This only happens when both a and b are even, which
contradicts the fact that a, b are relatively prime. Therefore, 4 ∤ d. So d = q or d = 2q,
where q is a positive integer that all of whose prime factors are of the form 4k + 1.

If d = q or d = 2q, where q is a product of prime numbers of the form 4k + 1. We have
two cases:

(i) d = q: We write d = qα1

1 qα2

2 · · · qαt

t , where q1, q2, . . . , qt are distinct primes of form 4k+1
and αj are positive integers for all j = 1, 2, . . . , t. By Lemma 3, q

αj

j can be written as
the sum of the squares of two relatively prime positive integers for all j = 1, 2, . . . , t.
By Lemma 4 we have d = qα1

1 qα2

2 · · · qαt

t can be written as the sum of the squares of
two relatively prime positive integers for all j = 1, 2, . . . , t.

(ii) d = 2q. By (i), we have q = A2+B2, where A,B are positive integers and gcd(A,B) =
1. So

d = 2q = 2(A2 + B2) = (A+ B)2 + (A−B)2.

Since q is odd, we see that A+B and A−B are also odd. Combined with gcd(A,B) = 1,
we deduce that gcd(A+ B,A−B) = 1.
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Now we answer the open question that we mentioned in introduction.

Proof of Theorem 1. We consider two cases:

(i) d = q, where q is a product of prime numbers of the form 4k + 1.

By Theorem 5, we have d = A2+B2, where A,B are positive integers and gcd(A,B) =
1. Since d is odd, we deduce that A + B is odd. Without loss of generality, we can
consider that A is even and B is odd.

Because gcd(A,B) = 1, there exist integers e, f such that Ae + Bf = 1. Then for all
integers k we have

A(e+Bk) +B(f − Ak) = 1. (1)

Now let n be an arbitrary integer. We consider two cases:

(a) n is even.

Because B is odd, we can choose k0 ∈ Z such that e + Bk0 is odd. Therefore
e+ B(k0 + 2t) is odd for all t ∈ Z. Now we can easily see that

lim
t→+∞

∣

∣n− (e+B(k0 + 2t))2 − (f − A(k0 + 2t))2
∣

∣ = +∞;

lim
t→+∞

∣

∣

∣

∣

A ·
n− (e+ B(k0 + 2t))2 − (f − A(k0 + 2t))2

2
+ e+B(k0 + 2t)

∣

∣

∣

∣

= +∞;

lim
t→+∞

∣

∣

∣

∣

B ·
n− (e+ B(k0 + 2t))2 − (f − A(k0 + 2t))2

2
+ f − A(k0 + 2t)

∣

∣

∣

∣

= +∞.

So we can choose a large enough positive integer t0 such that

n− (e+ B(k0 + 2t0))
2 − (f − A(k0 + 2t0))

2 6= 0;

A ·
n− (e+ B(k0 + 2t0))

2 − (f − A(k0 + 2t0))
2

2
+ e+ B(k0 + 2t0) 6= 0;

B ·
n− (e+ B(k0 + 2t0))

2 − (f − A(k0 + 2t0))
2

2
+ f − A(k0 + 2t0) 6= 0.

Set e1 = e+ B(k0 + 2t0), f1 = f − A(k0 + 2t0) and l =
n− e21 − f 2

1

2
; then

l 6= 0, Al + e1 6= 0, Bl + f1 6= 0

and e1 is odd. Combined with (1), we get Ae1 + Bf1 = 1. Because A is even,
Ae1 is even and so that, Bf1 is odd. Hence, f1 is odd. Since e1 and f1 are odd,
it follows that e21 + f 2

1 is even. This deduces that

l =
n− e21 − f 2

1

2
∈ Z.
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Set
a = Al + e1, b = Bl + f1, c = l;

then we have
a2 + b2 − dc2 = (Al + e1)

2 + (Bl + f1)
2 − dl2

= 2(Ae1 + Bf1)l + e21 + f 2

1

= 2l + e21 + f 2

1 = n,

where a = Al + e1 6= 0, b = Bl + f1 6= 0, l 6= 0.

(b) n is odd.

Because B is odd, we can choose k1 ∈ Z such that e + Bk1 is even. Then
e+ B(k1 + 2t) is even for all t ∈ Z. Now we see that

lim
t→+∞

∣

∣n− (e+B(k1 + 2t))2 − (f − A(k1 + 2t))2
∣

∣ = +∞;

lim
t→+∞

∣

∣

∣

∣

A ·
n− (e+ B(k1 + 2t))2 − (f − A(k1 + 2t))2

2
+ e+B(k1 + 2t)

∣

∣

∣

∣

= +∞;

lim
t→+∞

∣

∣

∣

∣

B ·
n− (e+ B(k1 + 2t))2 − (f − A(k1 + 2t))2

2
+ f − A(k1 + 2t)

∣

∣

∣

∣

= +∞.

Therefore, we can choose a large enough positive integer t1 such that

n− (e+ B(k1 + 2t1))
2 − (f − A(k1 + 2t1))

2 6= 0;

A ·
n− (e+ B(k1 + 2t1))

2 − (f − A(k1 + 2t1))
2

2
+ e+ B(k1 + 2t1) 6= 0;

B.
n− (e+ B(k1 + 2t1))

2 − (f − A(k1 + 2t1))
2

2
+ f − A(k1 + 2t1) 6= 0.

Set

e2 = e+B(k1 + 2t1), f2 = f − A(k1 + 2t1) and l1 =
n− e22 − f 2

2

2
;

then
l1 6= 0, Al1 + e2 6= 0, Bl1 + f2 6= 0

and e2 is even. Combined with (1), we obtain Ae2 +Bf2 = 1. Because A is even,
Ae2 is even and Bf2 is odd. Therefore, f2 is odd. This implies that e22 + f 2

2 is
odd. So

l1 =
n− e22 − f 2

2

2
∈ Z.

Set
a = Al1 + e2, b = Bl1 + f2, c = l1;
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then we obtain

a2 + b2 − dc2 = (Al1 + e2)
2 + (Bl1 + f2)

2 − dl21

= 2(Ae2 + Bf2)l1 + e22 + f 2

2

= 2l1 + e22 + f 2

2 = n,

where a = Al1 + e2 6= 0, b = Bl1 + f2 6= 0, l1 6= 0.

(ii) d = 2q, where q a product of prime numbers of the form 4k + 1.

By Theorem 5 we have d = C2 +D2, where C,D are odd and relatively prime. Now
let n be an arbitrary integer. Then we consider two cases:

(c) n is odd.

Because gcd(C,D) = 1, there exist integers g, h such that

Cg +Dh = 1.

Then for every integer k we have

C(g +Dk) +D(h− Ck) = 1 (2)

Because both C,D are odd, we have (g +Dk) + (h− Ck) is odd.

Hence, (g +Dk)2 + (h− Ck)2 is odd. We see that

lim
k→+∞

∣

∣n− (g +Dk)2 − (h− Ck)2
∣

∣ = +∞;

lim
k→+∞

∣

∣

∣

∣

C ·
n− (g +Dk)2 − (h− Ck)2

2
+ (g +Dk)

∣

∣

∣

∣

= +∞;

lim
k→+∞

∣

∣

∣

∣

D ·
n− (g +Dk)2 − (h− Ck)2

2
+ (h− Ck)

∣

∣

∣

∣

= +∞.

Therefore, we can choose a large enough positive integer k2 such that

n− (g +Dk2)
2 − (h− Ck2)

2 6= 0;

C ·
n− (g +Dk2)

2 − (h− Ck2)
2

2
+ (g +Dk2) 6= 0;

D ·
n− (g +Dk2)

2 − (h− Ck2)
2

2
+ (h− Ck2) 6= 0.

Set

g1 = g +Dk2, h1 = h− Ck2 and j =
n− g21 − h2

1

2
;
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then j 6= 0, Cj + g1 6= 0, Dj + h1 6= 0 and g21 + h2
1 is odd. Because n and g21 + h2

1

are odd, it follows that j =
n− g21 − h2

1

2
is an integer. Set c = j, a = Cj + g1, b =

Dj + h1; then

a2 + b2 − dc2 = (Cj + g1)
2 + (Dj + h1)

2 − dj2

= 2(Cg1 +Dh1)j + g21 + h2

1 = n.

Notice that a = Cj + g1 6= 0, b = Dj + h1 6= 0, c = j 6= 0.

(d) n is even.

Because gcd(C,D) = 1, there exist integers g′, h′ such that

Cg′ +Dh′ = 2.

Then for every integer k we have

C(g′ +Dk) +D(h′ − Ck) = 2 (3)

Now we consider two small cases of n:

First case: n ≡ 2 (mod 4).
Because C,D are odd, we can choose k4 ∈ Z such that g′ +Dk4 is odd.
From (3), we have

C(g′ +Dk4) +D(h′ − Ck4) = 2.

Therefore, h′ − Ck4 is also odd. Now we see that

lim
t→+∞

∣

∣n− (g′ +D(k4 + 2t))2 − (h′ − C(k4 + 2t))2
∣

∣ = +∞;

lim
t→+∞

∣

∣

∣

∣

C ·
n− (g′ +D(k4 + 2t))2 − (h′ − C(k4 + 2t))2

2
+ (g′ +D(k4 + 2t))

∣

∣

∣

∣

= +∞;

lim
t→+∞

∣

∣

∣

∣

D ·
n− (g′ +D(k4 + 2t))2 − (h′ − C(k4 + 2t))2

2
+ (h′ − C(k4 + 2t))

∣

∣

∣

∣

= +∞.

Therefore, we can choose a large enough positive integer t4 such that

n− (g′ +D(k4 + 2t4))
2 − (h′ − C(k4 + 2t4))

2 6= 0;

C ·
n− (g′ +D(k4 + 2t4))

2 − (h′ − C(k4 + 2t4))
2

2
+ (g′ +D(k4 + 2t4)) 6= 0;

D ·
n− (g′ +D(k4 + 2t4))

2 − (h′ − C(k4 + 2t4))
2

2
+ (h′ − C(k4 + 2t4)) 6= 0.
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Set g2 = g′ +D(k4 + 2t4), h2 = h′ − C(k4 + 2t4), y =
n− g22 − h2

2

4
; then

y 6= 0, Cy + g2 6= 0, Dy + h2 6= 0

and g2, h2 are odd. Because g2, h2 are odd, we have g
2
2 +h2

2 ≡ n (mod 4) and

so that y =
n− g22 − h2

2

4
is an integer.

From (3), we have Cg2 +Dh2 = 2. Set a = Cy+ g2, b = Dy+ h2, c = y; then
we have

a2 + b2 − dc2 = (Cy + g2)
2 + (Dy + h2)

2 − dy2

= 2(Cg2 +Dh2)y + g22 + h2

2 = n,

where a = Cy + g2 6= 0, b = Dy + h2 6= 0, c = y 6= 0.

Second case: n ≡ 0 (mod 4).
Since D,C are odd, we can choose k′ ∈ Z such that g′ +Dk′ is even.
From (3), we have

C(g′ +Dk′) +D(h′ − Ck′) = 2.

Because g′ +Dk′ is even, h′ − Ck′ is even.
We see that

lim
t→+∞

∣

∣n− (g′ +D(k′ + 2t))2 − (h′ − C(k′ + 2t))2
∣

∣ = +∞;

lim
t→+∞

∣

∣

∣

∣

C ·
n− (g′ +D(k′ + 2t))2 − (h′ − C(k′ + 2t))2

2
+ (g′ +D(k′ + 2t))

∣

∣

∣

∣

= +∞;

lim
t→+∞

∣

∣

∣

∣

D ·
n− (g′ +D(k′ + 2t))2 − (h′ − C(k′ + 2t))2

2
+ (h′ − C(k′ + 2t))

∣

∣

∣

∣

= +∞.

So we can choose a large enough positive integer t′ such that

n− (g′ +D(k′ + 2t′))2 − (h′ − C(k′ + 2t′))2 6= 0;

C ·
n− (g′ +D(k′ + 2t′))2 − (h′ − C(k′ + 2t′))2

2
+ (g′ +D(k′ + 2t′)) 6= 0;

D ·
n− (g′ +D(k′ + 2t′))2 − (h′ − C(k′ + 2t′))2

2
+ (h′ − C(k′ + 2t′)) 6= 0.

Set g3 = g′ + D(k′ + 2t′), h3 = h′ − C(k′ + 2t′), y1 =
n− g23 − h2

3

4
. Then

y1 6= 0, Cy1 + g3 6= 0, Dy1 + h3 6= 0 and both g3, h3 are even. Because g3, h3

are even, we have g23 + h2
3 ≡ n (mod 4) and so that y1 =

n− g23 − h2
3

4
is an

integer.
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From (3) we have Cg3 +Dh3 = 2. Set

a = Cy1 + g3, b = Dy1 + h3, c = y1;

then we have

a2 + b2 − dc2 = (Cy1 + g3)
2 + (Dy1 + h3)

2 − dy21

= 2(Cg3 +Dh3)y1 + g23 + h2

3 = n,

where a = Cy1 + g3 6= 0, b = Dy1 + h3 6= 0, c = y1 6= 0.

Combining (i) and (ii), we have the desired proof.
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