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Abstract

We discuss the Knights and Liars problem, which is the problem of maximizing
the number of red vertices in a red-blue-coloring of the vertices on a square grid,
such that for each red vertex, exactly half of its neighbors are red, and for each blue
vertex, not exactly half of its neighbors are red. We discuss the generalization of the
problem to arbitrary graphs and discuss three integer programming formulations, by
which we give results for grid graphs, torus grid graphs, triangular grid graphs, and
graphs corresponding to the transitive closure of the boolean lattice. We give a full
combinatorial treatment for two-dimensional grid graphs whose shorter interval-size is
less than seven. We further prove that the decision version of the generalized problem
is NP-complete.

1 Introduction and definitions

The Knights and Liars problem was the topic of the mathematical competition Mathematical
Marathon 140, which Letsko [11] organized. Letsko [11] has compiled an interesting summary
of the results obtained by multiple contributors of the competition and added the correspond-
ing sequence A289362 to the On-Line Encyclopedia of Integer Sequences (OEIS) [12]. The
problem is a beautiful mathematical recreation and we find it fitting to introduce it in the
following, riddle-esque way, which has been adapted slightly from Letsko’s comment on his
OEIS entry.
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Consider a finite square grid, on each point of which there is either a knight
or a liar. A knight always speaks the truth, a liar always lies. All occupants of
the grid make the same statement: “Exactly half of my (horizontal and vertical)
neighbors are knights.” What is the maximum possible number of knights on the
grid?

We give a more general problem definition, generalizing the Knights and Liars problem
to arbitrary graphs.

Definition 1. For a (simple and undirected) graph G, call a vertex 2-coloring (we will call
the colors red and blue) red-balanced if for each red vertex v, exactly half of v’s neighbors are
red and if for each blue vertex w, not exactly half of w’s neighbors are red. We define the
Knights and Liars number kl(G) to be the maximum number of red vertices in a red-balanced
coloring of G.

The Knights and Liars number of a graph is well-defined, because every graph has at
least one red-balanced coloring, namely the coloring, where all isolated vertices are red and
all other vertices are blue.

The main focus of this paper is on grid graphs. In Definition 2, we define grid graphs
formally and introduce some notation.

Definition 2. For d ≥ 2, let k1, k2, . . . , kd ≥ 1 be integers. The grid graph (or just grid)
Gk1,...,kd is the graph whose vertex set is [k1] × [k2] × · · · × [kd] and in which two vertices
form an edge if they differ in exactly one coordinate and if the absolute difference in this
coordinate is one. We call d the dimension of the grid and call the integers ki the interval-
sizes of the grid. Sometimes it is convenient notation to identify the grid graph with its
vertex set and to write [k1]× · · · × [kd] instead of Gk1,...,kd . If all interval-sizes are equal, say
k1 = · · · = kd = n, we may write [n]d to denote the graph Gn,...,n.

If a vertex x = (x1, . . . , xd) has at least one coordinate j with xj ∈ {1, kj}, we say x
belongs to the outer shell of Gk1,...,kd . For d = 2, we call the outer shell the border of the
grid. A vertex that does not belong to the outer shell is called interior vertex.

By thinking of knights as red vertices and liars as blue vertices, the original problem
is equivalent to asking what the value of kl(Gn,n) is. Table 1 corresponds to the sequence
A289362 and lists all currently known Knights and Liars numbers kl(Gn,n). The bold entries
are our contribution. Figures 2 and 1 show red-balanced colorings of the grids Gn,n with
the maximum possible number of red vertices for 4 ≤ n ≤ 18. We computed these colorings
using the integer programming approach described in Section 4.1. For visibility reasons,
edges are not drawn and blue vertices are drawn at a smaller size.
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n kl(Gn,n) n kl(Gn,n) n kl(Gn,n)

1 1 7 10 13 58
2 0 8 16 14 68
3 0 9 28 15 88
4 4 10 32 16 98

5 8 11 40 17 110

6 10 12 46 18 126

Table 1: All known Knights and Liars numbers for two-dimensional square grid graphs.

kl(G4,4) = 4 kl(G5,5) = 8 kl(G6,6) = 10

kl(G7,7) = 10 kl(G8,8) = 16 kl(G9,9) = 28

kl(G10,10) = 32 kl(G11,11) = 40 kl(G12,12) = 46

kl(G13,13) = 58 kl(G14,14) = 68 kl(G15,15) = 88

Figure 1: Red-balanced colorings of Gn,n with the maximum possible number of red vertices
for n = 4, . . . , 15.
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kl(G16,16) = 98 kl(G17,17) = 110 kl(G18,18) = 126

Figure 2: Red-balanced colorings of Gn,n with the maximum possible number of red vertices
for n = 16, 17, and 18.

We will also be interested in torus grid graphs, which can be thought of as grid graphs
in which the neighborhood relation allows for wrap-around at the borders of the grid. We
define torus grid graphs formally in Definition 3.

Definition 3. For d ≥ 2, let k1, k2, . . . , kd ≥ 1 be integers. The torus grid graph Tork1,...,kd
is the graph whose vertex set is [k1]× [k2]×· · ·× [kd] and in which two vertices form an edge
if they differ in exactly one coordinate j and if the absolute difference in this coordinate is
either 1 or kj−1. We call d the dimension and the integers ki the interval-sizes of Tork1,...,kd .

Note that in contrast to grid graphs, d-dimensional torus grid graphs are 2d-regular.

1.1 Relation to the maximum density still life problem

The Knights and Liars problem on two-dimensional grid graphs is related to the maximum
density still life (MDSL) problem. In Definition 4, we define Conway’s [1] Game of Life and
still lifes. The wording is inspired by the definition given by Chu and Stuckey [4].

Definition 4 (Conway’s Game of Life and still lifes). Conway’s Game of Life is played on
an infinite grid over discrete time steps. At each time step, each cell (vertex) has exactly
one of the states alive or dead. The state of a cell c at time step t+ 1 is determined by the
number of live (orthogonal and diagonal) neighbors of c at time step t:

1. If c has exactly two live neighbors at time step t, then the state of c does not change
at time step t+ 1.

2. If c has exactly three live neighbors at time step t, then c is alive at time step t+ 1.

3. If c has at least four or at most one live neighbors at time step t, then c is dead at
time step t+ 1.
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If the above rules do not modify the state of any cell, the state of the grid is called a still
life.

Other life-variants, and their corresponding still lifes can be defined by varying the num-
ber of possible states, the definition of neighborhood, and the cell rules. The density problem
for Conway’s Game of Life on the infinite grid was solved by Elkies [7], who proved that the
largest possible density of a still life in Conway’s Game of Life is 1/2. The finite version of
this problem is defined in Definition 5.

Definition 5. The (n× n) maximum density still life (MDSL) problem asks for the largest
possible density (or maximum possible number) of live cells in an n× n sub-region of a still
life, such that all cells outside of the region are dead.

Formulating the Knights and Liars problem on two-dimensional grid graphs in terms
of still lifes leads to the following set of cell rules, where only orthogonal neighborhood is
considered:

1. If c has exactly two live neighbors at time step t, then c is alive at time step t+ 1.

2. If c does not have exactly two live neighbors at time step t, then c is dead at time step
t+ 1.

The problem of finding the value kl(Gn+2,n+2) is the same as the n × n MDSL problem for
the above cell rules, i.e., asking for the maximum number of live cells in an n×n sub-region
of a still life with respect to the above rules, such that all cells outside of the region are
dead. This holds, because in any red-balanced coloring of a finite grid (with side-lengths at
least 3), all vertices on the border of the grid are blue (this important fact is discussed in
more detail in Section 2). This means that the red-balanced colorings of finite grids (with
side-lengths at least 3) are exactly the red-blue-colorings such that

1. every red interior vertex has exactly two red neighbors,

2. every blue interior vertex does not have exactly two red neighbors, and

3. all vertices on the border are blue.

The first two requirements correspond to the still life conditions. The third requirement
corresponds to the requirement that all cells outside of the interior (non-border) region are
dead and can not become alive. To see this, note that cells outside of the interior region
have at most one orthogonal neighbor in the interior region.

Chu and Stuckey [4] solved the MDSL problem for Conway’s Game of Life for all values
of n. They used different approaches for various ranges of n. For n ≤ 50, they used a
constraint programming formulation in which they re-formulated the problem in terms of
wastage, by assigning a wastage-score to each possible 3 × 3 pattern within a still life and
proving that minimizing the total wastage is equivalent to maximizing the number of live
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cells. It remains open whether a similar re-formulation is possible for the Knights and Liars
Problem (see Section 6 for a list of open problems). Chu and Stuckey [4] further list some
previous computational techniques in the literature that have been used to attack the MDSL
problem. Among those, we mention Bosch [2], who computed values for the MDSL problem
for Conway’s Game of Life by using two integer programming formulations. Bosch [3] used
integer programming to find maximum density still lifes for two other life variants. In Section
4.1 we discuss three integer program formulations IP1, IP2 and IP3 for computing values
of the Knights and Liars problem. The formulation IP1 is a re-discovery of ideas used by
Bosch [2], and IP3 has been adapted from Bosch [2], after the authors learned about this
related work.

2 Upper bounds and trivially blue vertices

In the examples shown in Figures and 1 and 2, all vertices on the borders of the grids are
blue. This is not by chance: For m,n ≥ 3, the border vertices of the grid Gm,n are blue in any
red-balanced coloring. The degree-three vertices on the border each have three neighbors—
an odd number—and must therefore be blue. The corner vertices of the grid must also be
blue, because the majority of their neighbors (two out of two) have degree three and are blue
by the previous argument. In fact, the generalization of this property holds for all grids. We
prove this in Lemma 6.

Lemma 6. Let G = [k1] × · · · × [kd] be the grid graph of dimension d with interval-sizes
k1, . . . , kd ≥ 3. Then, in any red-balanced coloring of G, all vertices of the outer shell of G
are blue.

Proof. In this proof we say a vertex is blue to mean that it is blue in any red-balanced
coloring of G. For a vertex x = (x1, . . . , xd) of G, and for each 1 ≤ i ≤ d, we define

δ(xi) := min(xi − 1, ki − xi)

to be the distance of xi to the end-point of the interval [ki] that is closer to xi. We further
define dz(x) to be the number of indices i such that the distance δ(xi) is zero. Note that the
vertices x for which dz(x) > 0 are exactly the vertices of the outer shell of G, and that each
vertex x has exactly 2d− dz(x) neighbors in G. It follows that the vertices in the set

Sodd := {x ∈ V (G) | dz(x) is odd}

have an odd number of neighbors in G and are thus blue. For d = 1, the set Sodd is the outer
shell of G. For d ≥ 2, it remains to show that the vertices x for which dz(x) ≥ 2 is even are
blue. We prove this for the case where d ≥ 3 is odd (the argument for even d is similar). For
n ≥ 1, we define

Sn :=

{

x ∈ V (G) |
d
∑

i=1

δ(xi) = n and dz(x) ≥ 2 is even

}

.
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Let M be the largest integer such that SM is non-empty (M is the sum of the d− 2 largest
values ⌊ki/2⌋). We prove by induction that for every 1 ≤ n ≤ M , all vertices in Sn are blue.

Let x = (x1, . . . , xd) be a vertex in S1. We have dz(x) = d− 1 and δ(xj) = 1 for exactly
one index j. It follows that x has 2d− dz(x) = d+ 1 neighbors, out of which d are in Sodd.
The strict majority of neighbors of x is in Sodd, and it follows that x is blue.

Now let 2 ≤ n ≤ M . Assume that all vertices in Sn−1 are blue. If Sn is empty, the
assertion holds. Otherwise let x = (x1, . . . , xd) be a vertex in Sn. The vertex x has dz(x) ≥
2 neighbors in Sodd. For each index i with δ(xi) = ⌊ki/2⌋ (this is the maximum value
δ(xi) can take), the vertex x has two neighbors in Sn−1. For each index i with δ(xi) = 1,
the vertex x has one neighbor in Sodd, and one neighbor in Sn+1. For each index i with
2 ≤ δ(xi) ≤ ⌊ki/2⌋− 1, the vertex x has one neighbor in Sn−1 and one neighbor in Sn+1. We
showed that the strict majority of neighbors of x is in Sodd ∪ Sn−1, and it follows that x is
blue.

The proof for even d works by starting the induction from the set S0 instead of from
S1.

For two-dimensional square grid graphs, Letsko [11] gives the bound kl(Gn,n) <
2
3
n2. We

use Letsko’s argument for this bound to show a tight version of the bound for regular graphs.

Proposition 7. For a regular graph G, we have the upper bound

kl(G) ≤
2

3
|V (G)| .

Proof. Let k denote the degree of the vertices in G (i.e., G is k-regular). Consider a red-
balanced coloring of G in which exactly r vertices are red. For each vertex v of G, let
Nred(v) denote the number of red neighbors of v in this coloring. Since every vertex of G
has k neighbors, we have

kr =
∑

v∈V (G)

Nred(v).

Each red vertex has exactly k/2 red neighbors and each blue vertex has at most k red
neighbors, giving the bound

kr =
∑

v∈V (G)

Nred(v) ≤ r
k

2
+ (|V (G)| − r) k,

from which the proposition follows.

We give some examples of graphs for which Proposition 7 holds with equality. For two-
dimensional torus grid graphs whose interval-sizes m and n are both multiples of three, we
have kl(Torm,n) = 2

3
mn. A corresponding coloring can be constructed by tiling the 3 × 3

pattern whose main diagonal vertices are blue, and whose other vertices are red. Figure 3
shows a coloring of the torus grid graph Tor12,27 constructed this way.
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Figure 3: A red-balanced coloring of the torus grid graph Tor12,27 in which the ratio of red
vertices is 2/3.

Similarly, by tiling the same 3 × 3 pattern, the infinite two-dimensional grid graph can
also be colored such that the ratio of red vertices is 2/3. This pattern and its optimality was
also known to Elkies [7], who proved that if X is a subset of the infinite (4-neighborhood)
grid such that every x ∈ X has at most two neighbors in X, then X has density at most
2/3.

The Knights and Liars number of the complete tri-partite graph Kn,n,n on 3n vertices is
2n. In the corresponding coloring, all vertices of one of the partition sets of Kn,n,n are blue,
and the vertices of the other two partition sets are red.

As remarked by the anonymous referee, the bound in Proposition 7 is tight for the line
graph L(G) of every cubic graph G that admits a perfect matching. To obtain a red-balanced
coloring that colors two thirds of the vertices of L(G) red, take a perfect matching M of G,
and color all vertices of L(G) corresponding to M blue, and all other vertices red. Figure 4
shows such a coloring of the line graph of the Petersen graph.

Figure 4: A red-balanced coloring of the line graph of the Petersen graph, in which 10 out
of 15 vertices are red.

Because of Lemma 6, it is possible to generalize Letsko’s [11] argument for the bound
kl(Gn,n) <

2
3
n2 to arbitrary grid graphs, and by doing a slightly more involved calculation,

we obtain a bound that is an improvement for the special case of two-dimensional square
grid graphs.
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Proposition 8. Let G = [k1]×· · ·× [kd] be the grid graph of dimension d with interval-sizes
k1, . . . , kd ≥ 3. Then

kl(G) ≤
2

3

d
∏

i=1

(ki − 2) +
2

3d

d
∑

i=1

∏

j 6=i

(kj − 2).

Proof. Consider a red-balanced coloring of G in which exactly r vertices are red. For each
vertex v of G, let Nred(v) denote the number of red neighbors of v in this coloring. Since
every red vertex has 2d neighbors in G (this follows from Lemma 6), we have

2dr =
∑

v∈V (G)

Nred(v).

Every red vertex has exactly d red neighbors and every blue vertex in the interior of G has at
most 2d red neighbors. Since all red vertices are in the interior of the grid, the number of blue
vertices in the interior of the grid is

∏d

i=1 (ki − 2)− r. Every (blue) vertex x = (x1, . . . , xd)
of the outer shell for which xj ∈ {1, kd} for exactly one index j, can have at most one red

neighbor. There are
∑d

i=1 2
∏

j 6=i(kj − 2) such vertices in the outer shell of G. All other
vertices of the outer shell only have neighbors in the outer shell (which can not be red).
From these arguments we obtain the bound

2dr =
∑

v∈V (G)

Nred(v) ≤ dr + 2d

(

d
∏

i=1

(ki − 2)− r

)

+
d
∑

i=1

2
∏

j 6=i

(kj − 2), (1)

from which the proposition follows.

For the case of two-dimensional square grids, Proposition 8 is the bound

kl(Gn,n) ≤
2

3
n2 − 2n+

4

3
for n ≥ 3,

which is tight for n = 4 and n = 5. For large n, we can get close to a red-vertex ratio of 2/3,
in the following sense: Letsko [11] gives a construction by Sergei Polovinkin, showing that
for every 0 < α < 2/3, there exists a natural number nα such that kl(Gnα,nα

) ≥ αn2
α.

We proved in Lemma 6 that the vertices of the outer shell of a grid graph are blue in any
red-balanced coloring. The main argument we used in the proof was that if the majority
of neighbors of a vertex x is blue in any red-balanced coloring, the vertex x must also be
blue in any red-balanced coloring. This immediately leads to the following simple method
for finding vertices that are blue in any red-balanced coloring for arbitrary graphs G. First,
let B0 be the set of odd-degree vertices of G. Then, iteratively for i ≥ 1, define Bi as the
union of Bi−1 and the set of vertices of G whose strict majority of neighbors is in Bi−1. Stop
as soon as Bj = Bj−1 for some j ≥ 1 and call the resulting set the trivially blue vertices of
G. For two-dimensional grid graphs, B0 is the set of degree-three vertices of the border of
the grid and B1 is the set of all border vertices (including corner vertices).

Graphs consisting only of trivially blue vertices have Knights and Liars number zero.
Examples of such graphs are the following:
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• Graphs in which every vertex has an odd number of neighbors, such as the complete
graph on an even number of vertices and hypercubes of odd dimension.

• The star graph Sk for k ≥ 3.

• Grid graphs in which at least one interval-size is three.

• Rooted trees with the property that each vertex in the second-to-last level has at least
two leaves.

Trivially blue vertices can be thought of as vertices that must be colored blue “for simple
reasons”. In fact, there are graphs without trivially blue vertices whose Knights and Liars
number is zero. Figure 5 shows an example of a 4-regular graph on eight vertices for which
only the all-blue coloring is red-balanced.

Figure 5: A 4-regular graph G with kl(G) = 0.

3 Results for grids Gm,n with m ≤ 6

We discuss the Knights and Liars problem for the non-square grid graph Gm,n for m ≤ 6.
For m = 1, the grid is a path. In a path with a red-balanced coloring, red vertices can only
appear in pairs of consecutive positions. Two such pairs must be separated by exactly one
blue vertex. The end-points of the path have degree one and must be blue. It follows that
kl(P3k+1) = 2k for k ≥ 1, and kl(Pn) = 0 for all other n ≥ 2. Figure 6 shows a red-balanced
coloring of the path on 16 vertices.

Figure 6: A red-balanced coloring of the path P16 with ten red vertices.

For m = 2, only the four corner vertices of the grid have even degree. For n ≥ 3,
coloring the corner vertices of G2,n red leads to a red-balanced coloring, and it follows that
kl(G2,n) = 4 for all n ≥ 3. For m = 3, we have kl (G3,n) = 0 for all n, because G3,n consists
of trivially blue vertices only.

We show that for 4 ≤ m ≤ 6, finding a red-balanced coloring with the maximum number
of red vertices is equivalent to a packing problem. For m = 4 (and n ≥ 4), in a red-balanced
coloring of G4,n, the only possible connected subgraph formed by red vertices are 4-cycles of
interior vertices of the grid. The border vertices of the grid must be blue, and each pair of
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neighboring 4-cycles must be separated by at least two columns of blue vertices. This can
be viewed as each 4-cycle being enclosed by at least one of its own blue columns on both its
left and its right. Thus, for every four columns in the grid, we can color four vertices red
and it follows that for all n ≥ 4, we have

kl (G4,n) = 4
⌊n

4

⌋

.

Figure 7 shows a red-balanced coloring of the grid G4,15 with the maximum possible number
of red vertices.

Figure 7: A red-balanced coloring of the grid G4,15 with 12 red vertices.

For m = 5 (and n ≥ 5), we can argue similarly as in the case m = 4, but now three
different red-colored structures are possible. The possible sub-colorings are shown in Figure
8. Note that for m = 5, a cycle of red vertices enclosing more than two blue vertices can not
occur in a red-balanced coloring, because there is a blue vertex with two red and two blue
neighbors in this pattern.

Figure 8: The three possible patterns of red vertices (up to vertical symmetry of the first
pattern) in a red-balanced coloring the grid G5,n.

The three possible configurations contribute 4, 8, and 10 red vertices, respectively. The
problem can thus be solved by maximizing 4x+8y+10z such that x, y and z are nonnegative
integers with 4x+ 5y + 6z ≤ n.

For m = 6 (and n ≥ 6), the relevant configurations are shown in Figure 9.

Figure 9: The two relevant patterns (up to vertical shifts of the first pattern) of red vertices
in a red-balanced coloring the grid G6,n.

The remaining possible patterns—an 8-cycle of blue vertices enclosing a blue vertex and
a rotated version of the 10-cycle from the case m = 5—are strictly worse than the 10-cycle
pattern and can thus be ignored. Note that two vertically shifted 4-cycles of red vertices can
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now neighbor each other with just a single blue column separating them, but the resulting
pattern is strictly worse than the 10-cycle pattern and can thus be ignored as well. For
n ≥ 6, we have

kl(G6,n) =

{

10k + 4, if n = 5k + 4;

10k, if n = 5k + r, where r ≤ 3.

The problem is more difficult for m,n ≥ 7. Figures 10 and 11 show examples of red-
balanced colorings with the maximum number of red vertices for grids with m = 7 and
m = 8.

Figure 10: A coloring of G7,32 with the maximum possible number of red vertices.

Figure 11: A coloring of G8,32 with the maximum possible number of red vertices.

4 Exact values for the Knights and Liars problem

In this section, we discuss integer programming formulations for computing a red-balanced
coloring with the maximum possible number of red vertices for arbitrary graphs. We were
especially interested in computing Knights and Liars numbers for graph classes with highly
regular structures and consisting of few trivially blue vertices. In addition to the newly
obtained Knights and Liars numbers for square grids, we give results for non-square and
higher-dimensional grid graphs, torus grid graphs, triangular grid graphs, and graphs corre-
sponding to the transitive closure of the boolean lattice.

4.1 Integer programming formulations

Let G be a (simple and undirected) graph. For a vertex v of G, let N(v) denote the set of
neighbors of v in G and write deg(v) for the degree of v in G. Let Veven(G) and Vodd(G)
denote the set of vertices of even, and odd degree of G, respectively.
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For each vertex v of G, we define a binary variable xv encoding whether v is colored red.
Vertices of odd degree must be colored blue:

xv = 0 for each v ∈ Vodd(G) (2)

If a vertex of even degree is red, exactly half of its neighbors must be red:

xv = 1 implies
∑

w∈N(v)

xw =
deg(v)

2
for each v ∈ Veven(G) (3)

We say a vertex of even degree has high saturation if the strict majority of its neighbors is
red and that is has low saturation if the strict minority of its neighbors is red. If a vertex of
even degree is blue, it must have either high or low saturation:

xv = 0 implies





∑

w∈N(v)

xw ≥
deg(v)

2
+ 1 or

∑

w∈N(v)

xw ≤
deg(v)

2
− 1



 (4)

for each v ∈ Veven(G)

There are multiple ways to model (4) as a set of linear integer constraints. In the first
approach, we introduce binary variables Hv and Lv for every vertex v of even degree in G.
These variables are used to imply that a vertex has high or low saturation, respectively. The
implication (4) is equivalent to the conjunction of the implications (5)–(7).

xv = 0 implies Hv + Lv = 1 for each v ∈ Veven(G). (5)

Hv = 1 implies
∑

w∈N(v)

xw ≥
deg(v)

2
+ 1 for each v ∈ Veven(G). (6)

Lv = 1 implies
∑

w∈N(v)

xw ≤
deg(v)

2
− 1 for each v ∈ Veven(G). (7)

We model the implications (3) and (5)–(7) as linear inequalities, resulting in the integer
program IP1. It is easy to see that (3) is equivalent to the conjunction of (9) and (10), that
(5) is equivalent to the conjunction of (11) and (12), and that (6) and (7) are equivalent to
(13) and (14), respectively.

(IP1) max.
∑

v∈V (G)

xv

subject to xv = 0 for each v ∈ Vodd(G). (8)
∑

w∈N(v)

xw ≤ deg(v)−
deg(v)

2
xv for each v ∈ Veven(G). (9)
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∑

w∈N(v)

xw ≥
deg(v)

2
xv for each v ∈ Veven(G). (10)

Hv + Lv ≤ 1 + xv for each v ∈ Veven(G). (11)

Hv + Lv ≥ 1− xv for each v ∈ Veven(G). (12)
∑

w∈N(v)

xw ≥

(

deg(v)

2
+ 1

)

Hv for each v ∈ Veven(G). (13)

∑

w∈N(v)

xw ≤ deg(v)−

(

deg(v)

2
+ 1

)

Lv for each v ∈ Veven(G). (14)

Hv, Lv ∈ {0, 1} for each v ∈ Veven(G). (15)

xv ∈ {0, 1} for each v ∈ V (G).

Note that the constraint (11) can optionally be dropped, because (5) can be replaced by

xv = 0 implies Hv + Lv ≥ 1 for each v ∈ Veven(G).

Bosch [2] gives integer programming formulations for solving instances of the maximum
density still life problem for Conway’s Game of Life. The integer programming formulation
IP1 is a re-discovery of ideas used by Bosch. Bosch uses constraints similar to (9)–(10) and
(12)–(14) to model the cell rules in Conway’s Game of Life. Bosch does not use the optional
constraint. To obtain the Knights and Liars equivalent closest to Bosch’s formulation, all
occurrences of the auxiliary variables Hv and Lv in IP1 are replaced by their negations 1−Hv

and 1−Lv respectively. This can be viewed as xv = 0 forcing at least one of Lv or Hv to be
zero, Hv = 0 forcing

∑

w∈N(v) xw ≥ deg(v)
2

+ 1, and Lv = 0 forcing
∑

w∈N(v) xw ≤ deg(v)
2

− 1.
We give an alternative integer programming formulation IP2, which uses only a single

auxiliary variable for each vertex of even degree to model the or in (4).

(IP2) max.
∑

v∈V (G)

xv

subject to (8), (9), (10)
∑

w∈N(v)

xw ≤

(

deg(v)

2
− 1

)

+

(

deg(v)

2
+ 1

)

(Av + xv) for each v ∈ Veven(G).

(16)
∑

w∈N(v)

xw ≥

(

deg(v)

2
+ 1

)

(Av − xv) for each v ∈ Veven(G).

(17)

Av ∈ {0, 1} for each v ∈ Veven(G).

xv ∈ {0, 1} for each v ∈ V (G).
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The constraint (16) models

(xv = 0 and Av = 0) implies
∑

w∈N(v)

xw ≤

(

deg(v)

2
− 1

)

for each v ∈ Veven(G),

and the constraint (17) models

(xv = 0 and Av = 1) implies
∑

w∈N(v)

xw ≥

(

deg(v)

2
+ 1

)

for each v ∈ Veven(G).

Bosch [2] gives another a way to model (the Game of Life still life equivalent of) (4),
which uses no auxiliary variables, but has—depending on the degrees of the vertices of G—a
large number of constraints. We call the Knights and Liars equivalent of this idea IP3.

(IP3) max.
∑

v∈V (G)

xv

subject to (8), (9), (10)

− xv +
∑

w∈S

xw −
∑

w∈N(v)\S

xw ≤
deg(v)

2
− 1 for each v ∈ Veven(G)

and each S ⊂ N(v) with |S| =
deg(v)

2
. (18)

xv ∈ {0, 1} for each v ∈ V (G).

The constraint (18) models that for each subset S ⊂ N(v) with |S| = deg(v)/2, xv = 1
implies that S can not be exactly the set of all red neighbors of v.

Benchmarking the solving speed using the formulations IP1, IP2 and IP3 and the impact
of negating the auxiliary variables and/or using the optional constraint in IP1 is difficult,
because solvers are very sensitive to small structural changes, even such changes as adding
the constraints in different order. However, IP3 seems to be not well suited for graphs with
large degrees, for which IP1 and IP2 perform significantly better.

Python programs for generating and solving the above integer programming formulations
are available at the first author’s Github repository [13]. We give implementations using both
the official Python-API gurobipy of the commercial state-of-the art MIP solver Gurobi [9], as
well as COIN-OR’s [5] library python-mip, which allows to use the open source solver CBC,
which is also maintained by COIN-OR. The repository also contains integer programs that
use Gurobi’s ability to natively model implications as indicator constraints. The repository
is a living collection of formulations and approaches to the Knights and Liars problem and
will be continuously updated.

Optionally, the concept of trivially blue vertices discussed in Section 2 can be used to
adapt the above formulations. The set of constraints xv = 0 for each v ∈ Vodd(G) can
be replaced by the set of constraints xv = 0 for each trivially blue vertex v, and all other
constraints need only be specified for vertices that are not trivially blue.
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4.2 Results

As mentioned in Section 1, we managed to calculate the new Knights and Liars numbers
kl(G16,16) = 98, kl(G17,17) = 110 and kl(G18,18) = 126. These numbers were added to
A289362 by the first author. Using a desktop computer equipped with an AMD 3700X
processor and 32 gigabytes of memory, calculating kl(G17,17) using IP1 took approximately
six hours, and finding kl(G18,18) took approximately six days.

For 16 ≤ n ≤ 18, the Gurobi solver instance found red-balanced colorings with the max-
imum possible number of red vertices relatively quickly, and spent most of the computation
time proving optimality. For this reason, we believe that the colorings we found for n = 19
and n = 20 are best possible. The colorings—which are certificates for kl(G19,19) ≥ 144 and
kl(G20,20) ≥ 160—are shown in Figure 12.

kl(G19,19) ≥ 144 kl(G20,20) ≥ 160

Figure 12: Red-balanced colorings of G19,19 and G20,20. We conjecture that these colorings
have the maximum possible number of red vertices.

We calculated Knights and Liars numbers and lower bounds for the two-dimensional grid
graph Gm,n for 7 ≤ m ≤ n ≤ 20. Our results are listed in Table 2. The case min{m,n} ≤ 6
is discussed in Section 3.

We calculated Knights and Liars numbers for the grid graph [n]d for small values of n
and d. The corresponding Knights and Liars numbers and lower bounds are listed in Table
3. Note that the grid graphs [2]d are the d-dimensional hypercubes. The hypercubes of odd
dimension consist of vertices of odd degree only and thus their Knights and Liars number
is zero. For the 8-dimensional hypercube, we obtained the bound 72 ≤ kl([2]8) ≤ 165. A
red-balanced coloring of the 4-dimensional hypercube is shown in Figure 13.
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m/n 7 8 9 10 11 12 13 14 15 16 17 18 19 20

7 10 12 14 20 20 20 22 24 30 30 30 32 34 40
8 - 16 26 26 30 30 38 38 40 40 50 52 52 56
9 - - 28 30 32 34 40 40 44 52 54 56 60 64
10 - - - 32 36 42 44 46 50 52 58 62 64 70
11 - - - - 40 42 50 52 54 60 64 68 70 80
12 - - - - - 46 52 62 62 68 74 78 82 86
13 - - - - - - 58 64 68 76 80 86 92 98
14 - - - - - - - 68 74 80 88 92 96 ≥ 104
15 - - - - - - - - 88 90 96 104 108 ≥ 116
16 - - - - - - - - - 98 106 112 ≥ 120 ≥ 124
17 - - - - - - - - - - 110 120 ≥ 126 ≥ 132
18 - - - - - - - - - - - 126 ≥ 134 ≥ 140
19 - - - - - - - - - - - - ≥ 144 ≥ 150
20 - - - - - - - - - - - - - ≥ 160

Table 2: Knights and Liars numbers and lower bounds for Gm,n for 7 ≤ m ≤ n ≤ 20.

n 1 2 3 4 5 6 7 8 9 10

kl([n]3) 1 0 0 8 16 24 64 112 ≥ 160 ≥ 216
kl([n]4) 1 6 0 16 16 168 ≥ 256 ? ? ?
kl([n]5) 1 0 0 32 128 ≥ 256 ? ? ? ?
kl([n]6) 1 40 0 64 512 ? ? ? ? ?

Table 3: Knights and Liars numbers for higher-dimensional grids.

Figure 13: A red-balanced coloring of the 4-dimensional hypercube with six red vertices.

We give some Knights and Liars numbers for two-dimensional torus grid graphs in Table
4. As discussed in Section 1, two-dimensional torus grid graphs whose interval-sizes are both
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multiples of three admit a red-balanced coloring in which two thirds of all vertices are red.
The corresponding Knights and Liars numbers are marked in bold.

m/n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

1 1 0 2 0 0 4 0 0 6 0 0 8 0 0 10 0 0 12
2 - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 - - 6 4 5 12 7 14 18 18 20 24 24 26 30 30 32 36

4 - - - 6 6 12 10 20 12 18 16 24 18 32 22 40 24 38
5 - - - - 15 10 12 14 15 30 18 20 22 24 45 28 29 30
6 - - - - - 24 14 28 36 36 40 48 48 52 60 60 64 72

7 - - - - - - 22 20 29 29 32 32 36 63 46 46 50 58
8 - - - - - - - 40 42 36 46 60 48 64 70 80 74 84
9 - - - - - - - - 54 54 60 72 72 78 90 90 96 108

10 - - - - - - - - - 60 46 72 64 68 90 82 82 108
11 - - - - - - - - - - 77 80 70 86 100 92 106 120
12 - - - - - - - - - - - 96 96 104 120 120 128 144

13 - - - - - - - - - - - - 104 88 120 ≥ 102 ≥ 110 144
14 - - - - - - - - - - - - - 126 130 128 138 156
15 - - - - - - - - - - - - - - 150 150 160 180

16 - - - - - - - - - - - - - - - 160 ≥ 152 180
17 - - - - - - - - - - - - - - - - 187 192
18 - - - - - - - - - - - - - - - - - 216

Table 4: Knights and Liars numbers and lower bounds for Torm,n for 3 ≤ m ≤ n ≤ 18.

We also calculated Knights and Liars numbers and lower bounds for the three-dimensional
torus grid graphs Torn,n,n for 1 ≤ n ≤ 5. The numbers are listed in Table 5.

n kl(Torn,n,n)

1 0
2 0
3 18
4 40
5 ≥ 52

Table 5: Knights and Liars numbers for the three-dimensional torus grid graphs Torn,n,n for
n = 1, . . . , 5

For n ≥ 1, let Tn denote the triangular grid graph. The triangular grid graph Tn is the
graph whose vertices are the triples (i, j, k) with i, j, k ≥ 0 and i + j + k = n and whose
edges are the pairs of vertices whose sum of absolute differences of coordinates is two [14, Ex.
8.3.22, pp. 390–391]. We calculated the Knights and Liars numbers kl(Tn) for 1 ≤ n ≤ 100
and observed that kl(Tn) is equal to A007980(n) for these values of n. Table 6 lists the
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first 40 Knights and Liars numbers of the triangular grid graphs. The sequence A007980 is
defined as the expansion of

1 + x2

(1− x)2(1− x3)

and has a multitude of other interpretations. For all n ≥ 1, we have A007980(n) =
⌈

(n+1)(n+2)
3

⌉

, as given by Paul Boddington on the OEIS page of the sequence. For all n ≤ 100,

we found red-balanced colorings with the maximum possible number of red vertices, in which
every blue vertex has red neighbors only, leading to the aesthetically pleasing pattern shown
in the left coloring of Figure 14. For some n, we searched for—and found—alternative red-
balanced colorings with the maximum possible number of red vertices, for which there are
blue vertices with blue neighbors. The right coloring of Figure 14 is an example of such a
coloring.

Figure 14: Two different red-balanced colorings of the triangular grid graph T16 with the
maximum possible number of red vertices.

n kl(Tn) n kl(Tn) n kl(Tn) n kl(Tn) n kl(Tn)

1 2 9 37 17 114 25 234 33 397
2 4 10 44 18 127 26 252 34 420
3 7 11 52 19 140 27 271 35 444
4 10 12 61 20 154 28 290 36 469
5 14 13 70 21 169 29 310 37 494
6 19 14 80 22 184 30 331 38 520
7 24 15 91 23 200 31 352 39 547
8 30 16 102 24 217 32 374 40 574

Table 6: Knights and Liars numbers for triangular grid graphs Tn for 1 ≤ n ≤ 40.

For n ≥ 1, let Bn denote the undirected graph corresponding to the transitive closure
of the boolean lattice. The set of vertices of Bn is the powerset of {1, . . . , n} and two sets
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A 6= B form an edge if A ⊂ B or B ⊂ A. Table 7 lists the Knights and Liars numbers of
Bn for 1 ≤ n ≤ 6. Figure 15 shows the 34 red vertices in the red-balanced coloring of B6 we
found. We omit curly brackets and commas to make the representation more compact. We
were not able to find a red-balanced coloring of B7 with at least one red vertex. It remains
open whether kl(B7) > 0.

n kl(Bn)

1 0
2 0
3 6
4 0
5 18
6 34

Table 7: Knights and Liars numbers kl(Bn) for n = 1, . . . , 6

1 2 3 4 5
13 16 24 25 34 56

123 125 135 145 146 156 234 235 236 246 346 456
1236 1245 1246 1345 2356 3456
12346 12356 12456 13456 23456

Figure 15: The 34 red vertices in a best-possible red-balanced coloring of B6.

5 The Knights and Liars problem is NP-complete

Let KL be the decision problem of deciding whether a given graph has a red-balanced
coloring in which at least k vertices are red. In order to make this section self-contained,
we repeat the definition of red-balanced. A red-balanced coloring of a graph G is a mapping
f : V (G) → {red, blue}, such that for each red vertex, exactly half of its neighbors are red,
and for each blue vertex, not exactly half of its neighbors are red.

KL

Instance: A graph G and an integer k.
Question: Does a red-balanced coloring of G with at least k red vertices exist?

In Theorem 9, we prove that KL is NP-complete. To show NP-hardness we will give a
polynomial-time reduction from the exact cover by 3-sets (X3C) problem—which Karp [10]
proved to be NP-complete—to KL.
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X3C

Instance: A set U whose cardinality is a multiple of three, and a set F of 3-subsets of
U .

Question: Does a family S ⊆ F with ˙⋃
D∈SD = U exist?

Theorem 9. The decision problem KL is NP-complete.

Proof. Clearly, whether a given coloring is red-balanced can be verified in polynomial time,
and it follows that KL is in NP. To show that KL is NP-hard, we give a polynomial-time
reduction from X3C to KL.

Let (U,F) be a problem instance of X3C. We will define a problem instance (G, k) of
KL, such that X3C(U,F) has an affirmative answer if and only if KL(G, k) does.

Construction of the KL instance. We construct an instance (G, k) for KL, by starting
from the empty graph G. In this proof we will call vertices of degree one leaves and all
other vertices inner vertices. In figures sketching parts of the construction, we will depict
leaf vertices of G as blue, because they must be blue in any red-balanced coloring of G.

Let T be the graph consisting of a cycle of length three, in which each vertex is connected
to three leaf vertices. For every 3-set X ∈ F , we add a copy TX of T to G and identify each
element a ∈ X with a unique inner vertex of TX , by giving the name (a,X) to that vertex.
Figure 16 depicts this construction.

X = {a, b, c} ∈ F

Subgraph TX of G

(a,X)

(b,X)(c,X)

Figure 16: For each X ∈ F , we add a copy TX of the graph T to G.

LetM = max{|U |, |F|}. We define LC (short for “large cycle”) to be the graph consisting
of a cycle of M2+3M vertices, in which one of the vertices is connected to three leaf vertices,
and all other vertices are connected to two leaf vertices. For each u ∈ U , we add a copy LCu

of LC to G. Figure 17 depicts this construction.
For each u ∈ U , we add an auxiliary vertex Zu to G. This vertex acts as an intermediate

connection point between LCu and each of the subgraphs TX for which u ∈ X. We add an
edge between the three-leaf-vertex of LCu and Zu. We add edges between Zu and each of
the vertices (u,X(1)), . . . , (u,X(m)), where X(1), . . . , X(m) are the 3-sets containing u. Note
that Zu has exactly one neighbor in each of the subgraphs TX(1) , . . . , TX(m) . If 1 ≤ m ≤ 2,
we connect 3−m new leaf vertices to Zu. If m ≥ 3, we add m− 3 copies of the graph K2 to
G and add edges between Zu and one of the vertices of each copy of K2. Figure 18 sketches
this construction for the case m ≥ 3.
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u ∈ U

Subgraph LCu of G

Figure 17: For each u ∈ U , we add a copy LCu of the graph LC to G. The graph LC
consists of M2 + 3M inner vertices.

LCu

Zu

TX(1)

m− 3}

TX(m)

· · ·
(u,X(1)) (u,X(m))

...

Figure 18: Sketch showing how the subgraph LCu is connected to each of the subgraphs
TX(1) , . . . , TX(m) for the case m ≥ 3.

We count the number of inner vertices of G that are not part of a copy of LC and show
that this number is strictly bounded from above by M2 + 3M . For each X ∈ F , there are
three inner vertices in the subgraph TX . For each u ∈ U , the vertex Zu is an inner vertex,
and is connected to at most |F| − 3 copies of K2 (this upper bound is reached when u is
member of every set in F), each having an inner vertex in G. The number of inner vertices
not part of a copy of LC is thus bounded by

3|F|+ |U | · (|F| − 2) < M2 + 3M. (19)

We set k = |U | · (M2 + 3M). The motivation behind this choice of k is that a red-balanced
coloring of G can only have at least k red vertices if all inner vertices of all copies of LC in
G are colored red. This is explained in more detail in the second part of the proof.

Equivalence of the problem instances. We claim that G admits a red-balanced coloring
with at least k red vertices, if and only if (U,F) has an exact 3-cover.
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In any red-balanced coloring of G, the inner vertices of a copy of LC are monochromatic
(all blue or all red). To see this, note that if an inner vertex of a copy of LC is red, then both
its inner-vertex-neighbors must be red as well. By the same argument, the inner vertices of
a copy of T are monochromatic in any red-balanced coloring.

First, consider the case where an exact 3-cover S for the instance (U,F) exists. We
construct a red-balanced coloring of G with more than k red vertices. We color all leaves
blue. For every u ∈ U , we color Zu and all inner vertices of LCu red. For every set X ∈ S,
we color all inner vertices of TX red and for every set X ∈ F \S, we color all inner vertices of
TX blue. If u is member of at least three sets in F , the vertex Zu is connected to a number
of copies of K2. In each such copy of K2, we color the vertex connected to Zu red.

The number of red vertices in this coloring exceeds k, because there are k = |U | ·
(M2 + 3M) red vertices within the copies of LC alone. We show that this coloring is red-
balanced, by checking every inner vertex of G.

• For each u ∈ U , the two-leaf inner vertices of LCu are red and have two red neighbors
(adjacent inner vertices in LCu) and two blue neighbors (leaves). The three-leaf inner
vertex of LCu is red and has three red neighbors (the vertex Zu and two adjacent inner
vertices in LCu) and three blue neighbors (leaves).

• For each u ∈ U , let X(1), . . . X(m) be the 3-sets containing u. The vertex Zu is red. If
1 ≤ m ≤ 2, Zu has two red neighbors (the three-leaf-vertex of LCu and (u,X), where
X ∈ S is the unique set in S containing u) and two blue neighbors (3−m leaves and
the m − 1 vertices (u,X) for which X /∈ S). If m ≥ 3, Zu has m − 1 red neighbors
(m− 3 vertices in the copies of K2 connected to Zu, the three-leaf-vertex of LCu and
(u,X), where X ∈ S is the unique set in S containing u) and m − 1 blue neighbors
(the vertices (u,X) for which X /∈ S).

• Each inner vertex (u,X) for which u ∈ X ∈ S, is red and has three red neighbors (the
vertex Zu and two adjacent inner vertices in TX) and three blue neighbors (leaves).
Each inner vertex (u,X) for which u ∈ X /∈ S, is blue and has one red neighbor (the
vertex Zu) and five blue neighbors (three leaves and two adjacent inner vertices in TX).

Next, consider the case where G has a red-balanced coloring with at least k red vertices. We
show that the sets X ∈ F for which the inner vertices of the subgraph TX are (all) red in
this coloring form an exact 3-cover of F .

Because of the bound (19), and because each copy of LC is monochromatic, all inner
vertices of each copy of LC are red (if a copy of LC was blue, there would not be enough
inner vertices of G left to exceed k red vertices in G). It follows that, in particular, for each
u ∈ U , the three-leaf vertex of LCu is red. This further implies that Zu is red (because
the three-leaf vertex of LCu has an equal number of red and blue neighbors). Let again
X(1), . . . , X(m) denote the sets containing u. If m ≥ 3, the vertex Zu is connected to 3−m
copies of K2. The inner vertices of these copies are red, because they have one blue neighbor
(a leaf) and one red neighbor (the vertex Zu).
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We show that exactly one of the vertices (u,X(1)), . . . , (u,X(m)) is red. Since Zu is red,
Zu has an equal number of red and blue neighbors. We count the red and blue neighbors of
Zu, excluding the vertices (u,X(1)), . . . , (u,X(m)):

• If m = 1, the vertex Zu has two blue neighbors (two leaf vertices) and one red neighbor
(the three-leaf vertex in LCu).

• If m = 2, the vertex Zu has one blue neighbor (a leaf vertex) and one red neighbor
(the three-leaf vertex in LCu).

• If m ≥ 3, the vertex Zu has no blue neighbors and m− 2 red neighbors (the three-leaf
vertex in LCu and m− 3 in the the copies of K2 connected to Zu).

In all cases, for Zu to have an equal number of red and blue neighbors, exactly one of the
vertices (u,X(1)), . . . , (u,X(m)) must be red.

It follows from the fact that for each X ∈ F , the inner vertices of TX are monochromatic,
that exactly one of the subgraphs TX(1) , . . . , TX(m) has red inner vertices. This means that
for each u ∈ U , there exists exactly one set X ∈ F with u ∈ X, such that the inner vertices
of TX are red. It follows that the family of sets X for which the inner vertices of TX are red
form an exact 3-cover of (U,F).

Gonzales [8] showed that the exact cover by 3-sets problem remains NP-complete when
restricted such that each element from the ground set appears in exactly three 3-sets. It
follows from the construction in the proof of Theorem 9, that the decision problem KL

remains NP-complete when restricted to graphs with maximum degree six.
Dyer and Frieze [6] showed that Planar X3C (i.e., X3C restricted such that the bipartite

incidence graph between universe set U and set family F is planar) is NP-complete. It
follows that KL remains NP-complete when restricted to planar graphs. This observation is
due to Wulf [15].

6 Open problems and questions

We give a number of open problems and questions we encountered, which we hope will spark
interest for future research on this topic.

1. Chu [4] computed values of the maximum density still life problem for small n by
re-formulating the problem in terms of assigning wastage-scores to all possible 3 × 3
sub-patterns in a still life. Is a similar formulation possible for the Knights and Liars
problem on square grids?

2. The decision problem discussed in Section 5 remains NP-complete when restricted to
planar graphs and graphs with maximum degree six. Investigate for which other graph
classes the problem remains NP-complete. Is the case k = 1—i.e., the problem of
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deciding whether a graph has a red-balanced coloring with at least one red vertex—
NP-complete (suggested by the anonymous referee)? Is the problem restricted to sub-
graphs of (two-dimensional) grid graphs NP-complete (suggested by Stefan Lendl)? Is
the chromatic number or chromatic index related to the hardness of the problem?

3. In Section 4.2 we observed that the sequence of Knights and Liars numbers of the
triangular grid graphs equals the sequence A007980 for the initial 100 values. Find a
nice argument to show that this holds for all n ≥ 1.

4. Study the generalization of the Knights and Liars problem to directed graphs, in which
the directed Knights and Liars number is the maximum number of red vertices in a
red-blue coloring such that for each red vertex, exactly half of its out-neighbors are
red, and for each blue vertex, not exactly half of its out-neighbors are red. One can
also ask for an edge-orientation of an undirected graph, such that the directed Knights
and Liars number is maximized.

5. For the 8-dimensional hypercube Q8 = [2]8, we were not able to determine the value
of kl(Q8). It would be of interest to see whether combinatorial arguments can be
used to improve the bound 72 ≤ kl(Q8) ≤ 165, which we obtained using the integer
programming techniques described in Section 4.1.

6. We were not able to find a non-trivial red-balanced coloring (i.e., a coloring with at
least one red vertex) of the graph B7 (defined in Section 4.2). Does such a coloring
exist?

7. In Section 1 we gave an example of a 4-regular graph on eight vertices with Knights
and Liars number zero. Do arbitrarily large connected k-regular graphs with Knights
and Liars number zero exist for all k ≥ 2?
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