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Abstract

In this paper, we consider various combinatorial aspects of a family of polynomi-

als, denoted by L
(α,β)
n (x), whose coefficients Sα,β(n, k) correspond to a special case of

the partial r-Bell polynomials. Among the particular cases of L
(α,β)
n (x) are the gener-

alized Laguerre polynomials, associated Lah polynomials, and polynomials arising in
the study of hyperbolic partial differential equations. Here we provide a combinatorial

treatment of L
(α,β)
n (x) and its coefficients, which were studied previously strictly from

an algebraic standpoint. In addition to providing combinatorial proofs of some prior
identities, we derive several new relations using the combinatorial interpretations for

L
(α,β)
n (x) and Sα,β(n, k). Our proofs make frequent use of sign-changing involutions

on various weighted structures. Finally, we introduce a bivariate polynomial general-
ization arising as a distribution for a pair of statistics and establish some of its basic
properties.

1 Introduction

The generalized sequence of polynomials L
(α,β)
n (x) are defined by Mihoubi and Sahari [17] as

coefficients in the exponential generating function formula

∑

n≥0

L(α,β)
n (x)

tn

n!
= (1− t)α exp

(
x
(
(1− t)β − 1

))
, (1)
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where α and β are real numbers with β 6= 0. The special cases of L
(α,β)
n (x) when (α, β) =

(−1
2
,−1

2
) or (−3

2
,−1

2
) arise in the theory of hyperbolic partial differential equations, see,

[6, pp. 391–398] and [10]. Other important special cases include the generalized Laguerre
polynomials (α = −λ − 1, β = −1) and the associated Lah polynomials (α = 0, β = −m),

see, e.g., [7] and [1], respectively. It is seen from (1) that L
(α,β)
n (x) may be expressed as

L(α,β)
n (x) =

n∑

k=0

Sα,β(n, k)x
k,

where

Sα,β(n, k) =
1

k!

k∑

j=0

(−1)k−j

(
k

j

)
(−α− βj)n, n, k ≥ 0, (2)

and xn = x(x + 1) · · · (x + n − 1) if n ≥ 1, with x0 = 1, denotes the rising factorial. Note

that (2) implies Sα,β(n, k) = 0 for k > n ≥ 0, whence the L
(α,β)
n (x) are indeed polynomials.

Recall that the partial r-Bell polynomials [16] are defined by

∑

n≥k

B
(r)
n+r,k+r(aℓ; bℓ)

tn

n!
=

1

k!

(
∑

j≥1

aj
tj

j!

)k(∑

j≥0

bj+1
tj

j!

)r

,

the r = 0 case of which corresponds to the classical partial Bell polynomials (see, e.g., [2]).
It was shown [17] that

Srα,β(n, k) = B
(r)
n+r,k+r

(
(−β)j, (−α)j−1

)
, (3)

where r is a non-negative integer. Note that upon taking α = β = −1 in (3) and replacing r
with 2r, one obtains the r-Lah numbers as a special case of Sα,β(n, k), which we denote by⌊
n

k

⌋
r
in accordance with [18]. The r = 0 case of

⌊
n

k

⌋
r
, which is written without a subscript,

corresponds to the classical Lah numbers; see, e.g., [11] and A008297 in [23]. We remark
that other polynomial generalizations of the Lah numbers related to Sα,β(n, k) have been
considered previously [14, 21].

Here, we provide a unified combinatorial treatment of several of the previous algebraic
results involving L

(α,β)
n (x) and Sα,β(n, k). To do so, we consider a slight variant, denoted

by Lr(n, k) = L
(α,β)
r (n, k), of Sα,β(n, k) defined as Lr(n, k) = S−rα,−β(n, k). We then let

Ln,r(x) = L
(α,β)
n,r (x) be given by

Ln,r(x) =
n∑

k=0

Lr(n, k)x
k, n ≥ 0. (4)

We find these forms of Sα,β(n, k) and L
(α,β)
n (x) to be more convenient to deal with com-

binatorially. The extra parameter r is introduced here since in several of the subsequent
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identities, we consider integral increments of the parameter α. Also, in the final section, the
non-negative integer r is replaced by its polynomial analogue pr−1

p−1
, where p is an indetermi-

nate.
The organization of this paper is as follows. In the next section, we find a combinatorial

interpretation for Lr(n, k) and Ln,r(x) in terms of a pair of statistics on a structure closely
related to the r-Lah distributions. We make use of this interpretation in the third section
in finding some new relations involving Lr(n, k) and Ln,r(x). In the fourth section, we

provide combinatorial proofs of some prior formulas for Sα,β(n, k) and L
(α,β)
n (x), rewritten

in terms of Lr(n, k) and Ln,r(x), which were found previously by algebraic methods. Our
proofs entail use of weight-preserving, sign-reversing involutions defined on certain weighted
configurations involving various kinds of finite partitions whose blocks are contents-ordered.
In the final section, we consider a (p, q)-generalization of Lr(n, k) (and hence also of Ln,r(x))
by considering two further statistics (marked by p and q) on the underlying structure that
is enumerated by Lr(n, k) when α = β = 1. Some identities are found of the (p, q)-analogue,
which extend earlier ones and the log-concavity is established for a range of p and q values.

2 Combinatorial definition and generating function

In this section, we provide a combinatorial interpretation for the sequences Lr(n, k) and
Ln,r(x) and show how their (exponential) generating function formulas can be obtained
using this definition. To do so, we first write a two-term recurrence for Lr(n, k). Such a
recurrence for Lr(n, k) where n, k ≥ 1 (along with initial conditions) may be derived from
(2) using Lr(n, k) = S−rα,−β(n, k) as follows:

βLr(n− 1, k − 1) + (αr + βk + n− 1)Lr(n− 1, k)

=
β

(k − 1)!

k−1∑

j=0

(−1)k−1−j

(
k − 1

j

)
(αr + βj)n−1

+
αr + βk + n− 1

k!

k∑

j=0

(−1)k−j

(
k

j

)
(αr + βj)n−1

=
β

k!

k−1∑

j=0

(−1)k−1−j(k − j)

(
k

j

)
(αr + βj)n−1 +

(αr + βk)n

k!

+
αr + βk + n− 1

k!

k−1∑

j=0

(−1)k−j

(
k

j

)
(αr + βj)n−1

=
1

k!

k−1∑

j=0

(−1)k−j

(
k

j

)
(αr + βj)n−1 (β(j − k) + αr + βk + n− 1) +

(αr + βk)n

k!
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=
1

k!

k∑

j=0

(−1)k−j

(
k

j

)
(αr + βj)n = Lr(n, k).

Thus, we have the recurrence

Lr(n, k) = βLr(n− 1, k − 1) + (αr + βk + n− 1)Lr(n− 1, k), n, k ≥ 1, (5)

with initial conditions Lr(n, 0) = (αr)n and Lr(0, k) = δk,0 for all n, k ≥ 0. Note that
when α = β = 1 and r is replaced by 2r, it is apparent from (5) that Lr(n, k) reduces to
the r-Lah number. For a different generalization of the r-Lah numbers, see [4], where the
r-Whitney-Lah numbers are introduced, and [9, 20], where they are studied further.

We now find a combinatorial interpretation for Lr(n, k) in terms of a bivariate distribu-

tion. Given n, k, r ≥ 0, let Pn,k = P
(r)
n,k denote the set of partitions of [n + r] into k + r

contents-ordered blocks such that the elements of [r] belong to distinct blocks, with these
elements first in their respective blocks. Within λ ∈ Pn,k, we refer to blocks containing
the elements of [r] as special, with all other blocks being non-special, and at times refer to
the elements of [r] themselves as special. Note that by virtue of their association with a
distinguished element, special blocks are labeled and in effect allowed to be empty, whereas
non-special blocks are unlabeled and always non-empty.

We define a pair of statistics on Pn,k as follows. By a left-right minimum (lr min) within
a non-special block B = {b1b2 · · · bℓ} of λ, we mean an element bi ∈ B such that bi < bj for
all j < i. The same definition applies to a left-right minimum in a special block of λ except
that one considers only the sequence (possibly empty) of elements obtained by excluding
the initial (special) element. Note that the first element of any non-special and the second
element of any special block is vacuously an lr min. Let ν1(λ) denote the total number of lr
min in all of the special blocks of λ per the definition above and ν2(λ) the number of lr min
in its non-special blocks.

Define Tr(n, k) = T
(α,β)
r (n, k) to be the joint distribution on P

(r)
n,k given by

Tr(n, k) =
∑

λ∈P
(r)
n,k

αν1(λ)βν2(λ), 0 ≤ k ≤ n. (6)

Note that Tr(n, 0) = (αr)n, upon considering the placement of the elements of I = [r+1, r+n]
within the special blocks, starting with r + 1, and furthermore that Tr(n, n) = βn, as each
member of I in this case occupies its own (non-special) block and hence is an lr min. We
take Tr(n, k) to be zero if k > n or k < 0.

We have the following combinatorial interpretation for Lr(n, k).

Theorem 1. For all n, k, r ≥ 0, Lr(n, k) = Tr(n, k); i.e., Lr(n, k) is the joint distribution

for the statistics ν1 and ν2 on P
(r)
n,k.

Proof. The initial conditions of Tr(n, k) when n = 0 or k = 0 are seen to agree with those
of Lr(n, k), so assume n, k ≥ 1. Note that the weight of the members of Pn,k in which the
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element n+r comprises its own block is given by βTr(n−1, k−1). On the other hand, if n+r
is placed just after a member of [r] within one of the special blocks or at the beginning of a
non-special block, then there are αrTr(n−1, k) and βkTr(n−1, k) possibilities, respectively.
Finally, members of Pn,k in which n + r directly follows some element of [r + 1, r + n − 1]
contribute (n − 1)Tr(n − 1, k) towards the weight. Combining the previous cases implies
Tr(n, k) satisfies recurrence (5), and hence Tr(n, k) = Lr(n, k) for all n, k and r.

Let Pn = P
(r)
n be given by Pn = ∪n

k=0Pn,k for n ≥ 0. Given λ ∈ Pn, let µ(λ) denote
the number of non-special blocks of λ. Then, from (4), it is seen that Ln,r(x) gives the joint
distribution of the ν1, ν2 and µ statistics on Pn, where the µ statistic is marked by the x
variable. Note that Ln,r(x) reduces when x = α = β = 1 to the n-th row sum of r-Lah
numbers, which coincides with A000262 when r = 0.

The L
(α,β)
n (x), equivalently the Ln,r(x), were defined in [17] as coefficients of a certain

exponential generating function (egf), from which various algebraic properties are derived.
Alternatively, starting with the combinatorial definition above for Ln,r(x), it is possible to
derive the corresponding egf formula.

Theorem 2. We have

∑

n≥0

Ln,r(x)
tn

n!
= (1− t)−αr exp

(
x
(
(1− t)−β − 1

))
(7)

and ∑

n≥k

Lr(n, k)
tn

n!
=

(1− t)−αr

k!

(
(1− t)−β − 1

)k
. (8)

Proof. Since (8) follows from (7) and (4), we need only establish (7). To do so, first observe
the identity

Ln+1,r(x) = (n+ αr + βx)Ln,r(x) + βx
∂

∂x
Ln,r(x), n ≥ 0. (9)

An equivalent form of (9) was shown in [17] algebraically. Using the interpretation given
above for Ln,r(x), one can give a quick combinatorial proof of (9) as follows. Note that the
first term on the right side of (9) counts all ρ ∈ Pn+1 where the element n + r + 1 either
directly follows a member of I, follows a special element or occurs as a singleton block. The
second term is seen to count those ρ in which n + r + 1 starts a non-singleton non-special
block (and hence itself is an lr min). Observe that since no new block is created in this last
case, no factor of x is introduced, which is witnessed with the multiplication of the x-partial
derivative by x.

Let f(t, x) =
∑

n≥0 Ln,r(x)
tn

n!
. Multiplying both sides of (9) by tn

n!
, and summing over

n ≥ 0, gives

(1− t)
∂

∂t
f(t, x)− βx

∂

∂x
f(t, x) = (αr + βx)f(t, x), (10)
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with initial condition f(0, x) = 1. Solving explicitly the first-order linear partial differential
equation (10) then yields

f(t, x) = (1− t)−αr exp
(
x
(
(1− t)−β − 1

))
,

as desired.

Remark 3. Note that recurrence (5) also follows from equating like powers of x on both sides
of (9).

3 New identities for Lr(n, k) and Ln,r(x)

In this section, we derive some new identities involving Lr(n, k) and Ln,r(x). Applying
recurrence (5) repeatedly yields the following formula for n ≥ k ≥ 1:

Lr(n, k) = (αr)n−kβk +
k−1∑

j=0

(αr + β(k − j) + n− j − 1)βjLr(n− j − 1, k − j), (11)

which may also be shown by considering the largest element n− j + r that either goes in a
special block or in a non-singleton non-special block. Multiplying both sides of (11) by xk,
and summing over 1 ≤ k ≤ n, gives after simplification the following recurrence:

Ln,r(x) = (βx)n +
n−1∑

j=0

(βx)n−j−1

(
(αr + j)Lj,r(x) + βx

∂

∂x
Lj,r(x)

)
, n ≥ 1. (12)

From (2), Lr(n, k) is given explicitly by

Lr(n, k) =
1

k!

k∑

j=0

(−1)k−j

(
k

j

)
(αr + βj)n, n, k ≥ 0. (13)

Let xn = x(x − 1) · · · (x − n + 1) for n ≥ 1, with x0 = 1, denote the falling factorial. We
have the following further recurrences for Lr(n, k) that can be obtained from (13).

Theorem 4. If n, k ≥ 0 and 0 ≤ s ≤ r, then

L(α,β)
r (n, k) =

n∑

j=k

(
n

j

)
(α(r − s))n−jL(α,β)

s (j, k) (14)

and

L(α,α)
r (n, k) =

n∑

j=k

(
j

k

)
(r − s)j−kL(α,α)

s (n, j). (15)
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Proof. By (13), we have

n∑

j=k

(
n

j

)
(α(r − s))n−jL(α,β)

s (j, k)

=
n∑

j=0

(
n

j

)
(α(r − s))n−j ·

1

k!

k∑

ℓ=0

(−1)k−ℓ

(
k

ℓ

)
(αs+ βℓ)j

=
1

k!

k∑

ℓ=0

(−1)k−ℓ

(
k

ℓ

) n∑

j=0

(
n

j

)
(α(r − s))n−j(αs+ βℓ)j

=
1

k!

k∑

ℓ=0

(−1)k−ℓ

(
k

ℓ

)
(αr + βℓ)n = L(α,β)

r (n, k),

where we have used the fact (x + y)n =
∑n

j=0

(
n

j

)
xjyn−j in the penultimate equality. For

(15), first observe that for a fixed n, k and s where n ≥ k, both sides of (15) may be viewed
as polynomials in r of degree n− k. Thus, it suffices to show (15) for all r ≥ n− k + s. Let
m = k + r − s. By (13), we then have

n∑

j=k

(
j

k

)
(r − s)j−kL(α,α)

s (n, j) =
m∑

j=k

(
j

k

)
(r − s)j−k ·

1

j!

j∑

ℓ=0

(−1)j−ℓ

(
j

ℓ

)
(α(s+ ℓ))n

=
m∑

ℓ=0

(α(s+ ℓ))n
m∑

j=k

(−1)j−ℓ

j!

(
j

k

)(
j

ℓ

)
(r − s)j−k

=
1

k!

m∑

ℓ=0

(α(s+ ℓ))n
m∑

j=k

(−1)j−ℓ

(
r − s

j − k

)(
j

ℓ

)

=
1

k!

m∑

ℓ=0

(α(s+ ℓ))n · (−1)r−s+k−ℓ

(
k

ℓ− r + s

)

=
1

k!

k∑

ℓ=0

(−1)k−ℓ

(
k

ℓ

)
(α(r + ℓ))n = L(α,α)

r (n, k),

where we have used [8, Formula 5.24] in the antepenultimate equality

Remark 5. Identities (14) and (15), in the case when α = β = 1 and r and s are even, were
shown in [18] by a different method. Furthermore, identity (14) may be given a combinatorial
proof by considering the number n− j of elements of I in the final r−s special blocks within
a member of P

(r)
n . Identity (15) may also be obtained combinatorially by first arranging the

elements of [n + s] according to a member of P
(s)
n,j where j ≥ k and then selecting j − k of

the non-special blocks whose contents to be transferred to r − s additional special blocks.
We leave the details of this argument to the interested reader.
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The combinatorial interpretation for Lr(n, k) given in Theorem 1 above yields further
recurrence formulas for Lr(n, k) as follows.

Theorem 6. If n,m, k ≥ 0 and 0 ≤ s ≤ r, then

Lr(n+m, k) =
n∑

i=0

m∑

j=0

(
n

i

)(
m

j

)
(α(r − s))i+jLs(n+m− i− j, k) (16)

and

Lr(n+m+ 1, k) =
n∑

i=0

m∑

j=0

(
n

i

)(
m

j

)(
rαi+j+1Lr−1(n+m− i− j, k)

+ βi+j+1Lr(n+m− i− j, k − 1)
)
. (17)

Proof. To show (16), consider the number i of elements of I and the number j of elements
of [r+ n+ 1, r+ n+m] that go in the final r− s special blocks within a member of Pn+m,k.

There are
(
n

i

)(
m

j

)
(α(r− s))i+j ways in which to choose and arrange these elements and then

Ls(n+m− i− j, k) ways to arrange the remaining members of [r + 1, r + n+m], together
with the first s special elements. Summing over all possible i and j gives (16).

For (17), we consider the number i of elements of [r + 2, r + n+ 1] and the number j of
elements of [r+ n+ 2, r+ n+m+ 1] that go in the same block as r+ 1 within a member of
Pn+m+1,k. If r+1 is to go in one of the r special blocks, then there are αi+j+1 ways in which
to order the elements in this block and Lr−1(n+m− i− j, k) ways in which to arrange the
remaining members of [r + n +m + 1]. If r + 1 goes in a non-special block, then there are
βi+j+1 ways to arrange the elements in this block and Lr(n+m− i− j, k− 1) ways in which
to arrange the remaining elements. Combining the two previous cases gives the generic term
in the sum on the right side of (17), which implies the result.

A similar argument to that given for (16) above implies

Ln+m,r(x) =
n∑

i=0

m∑

j=0

(
n

i

)(
m

j

)
(α(r − s))i+jLn+m−i−j,s(x), 0 ≤ s ≤ r,

which may also be obtained by multiplying both sides of (16) by xk and summing over all
k. A formula comparable to (17) may be given for Ln+m+1,r(x) as well. The m = r = 0 case
of (17) may be written equivalently as

L0(n+ 1, k) =
n∑

i=0

(
n

i

)
βi+1L0(n− i, k − 1), n, k ≥ 0,

which can also be obtained by considering the number of additional elements in the block
containing 1. When β = 1, note that this is a standard recurrence for

⌊
n

k

⌋
.
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Theorem 7. If n,m, j ≥ 0 and 0 ≤ s ≤ r, then

Lr(n+ 1,m+ j + 1) = β

n−m−j∑

i=0

n−i∑

k=m

n−i−k∑

ℓ=j

(
n+ 1

i

)(
n− i− k

ℓ

)
(αs+ β(m+ 1) + k + 1)n−i−k−ℓ

(18)

× (α(r − s))iLs(k,m)L0(ℓ, j).

Proof. We enumerate the members of Pn+1,m+j+1 according to i, k and ℓ defined as follows.
Given λ ∈ Pn+1,m+j+1, let i denote the number of elements of [r + 1, r + n + 1] going in
the final r − s special blocks of λ, and let R denote the subset of elements so selected. Let
T = [r+1, r+n+1]−R be given by T = {t1, . . . , tn−i+1} where t1 < · · · < tn−i+1, with k such
that tk+1 is the smallest element of the (m+ 1)-st non-special block of λ (where non-special
blocks are arranged from left to right in increasing order of smallest elements). Finally, let
ℓ denote the number of elements of K = {tk+2, tk+3, . . . , tn−i+1} that belong to the final j
non-special blocks of λ and denote by L the corresponding subset of K. Note that by the
definitions, m ≤ k ≤ n− i and j ≤ ℓ ≤ n− i− k, and hence 0 ≤ i ≤ n−m− j, in order for
such λ to exist.

To enumerate λ, first note that there are
(
n+1
i

)
(α(r − s))i ways in which to choose and

position the elements of R. Once this has been done, there are Ls(k,m) ways in which to
arrange the elements of {t1, . . . , tk} ∪ [s] such that there are exactly m non-special blocks.
We then put tk+1 into an additional non-special block by itself (which accounts for the extra
factor of β) and insert the n − i − k − ℓ elements of K − L into the first s special and

first m + 1 non-special blocks. Note that there are
(
n−i−k

ℓ

)
(αs + β(m + 1) + k + 1)n−i−k−ℓ

possibilities concerning the selection and placement of the elements of K − L, as there are
already k+1 non-special elements altogether within these blocks. Finally, there are L0(ℓ, j)
ways in which to arrange the members of L since none of these elements go in special blocks.
Thus, the generic summand on the right side of (18) enumerates all λ ∈ Pn+1,m+j+1 meeting
the restrictions described in the first paragraph. Considering all possible i, k and ℓ then
gives (18).

Remark 8. Taking s = r in (18) yields

Lr(n+1,m+ j+1) = β
n∑

k=m

n−k∑

ℓ=j

(
n− k

ℓ

)
(αr+β(m+1)+k+1)n−k−ℓLr(k,m)L0(ℓ, j). (19)

Note that when α = β = 1 in (19), one obtains an r-Lah number analogue of formula (7)
from [5].

We have the further recurrence relation for Ln,r(x) which follows from its combinatorial
interpretation.

Theorem 9. If m,n ≥ 0 and 0 ≤ s ≤ r, then

Lm+n,r(x) =
m∑

i=0

n∑

j=0

(
n

j

)
xi(αs+ βi+m)n−jLr(m, i)Lj,r−s(x). (20)
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Proof. Given λ ∈ Pm+n, suppose that there are exactly i non-special blocks of λ containing
at least one member of R = [r + 1, r +m] where 0 ≤ i ≤ m. Suppose further that within λ
there are exactly n− j members of T = [r +m+ 1, r +m+ n] where 0 ≤ j ≤ n that either
(i) occur as an lr min in one of the first s special blocks, (ii) occur as an lr min in one of the
non-special blocks containing a member of R, or (iii) directly follow a member of R or some
other member of T either within any of the non-special blocks mentioned in (ii) or within
any of the special blocks. Note that (i) and (iii) preclude the possibility of an element of T
enumerated by n− j from directly following the special element in any one of the final r− s
special blocks.

We now enumerate all λ ∈ Pm+n subject to the parameters i and j and show that it
is given by the generic summand in (20). To do so, first observe that there are xiLr(m, i)
ways in which to arrange the elements of [r + m] in their blocks. Let X = {x1, . . . , xn−j}
denote the subset of T whose elements (written in increasing order) each satisfy one of the
conditions (i)–(iii) above. Then there are

(
n

j

)
ways in which to select the elements of X and,

once this selection has been made, we consider adding x1, x2, . . . , sequentially, to the blocks
already containing the elements of [r+m]. Note that there are αs+ βi+m possibilities for
the placement of x1, upon considering separately (i)–(iii). In general, for i > 1, it is seen that
there are αs+ βi+m+ i− 1 ways in which to insert xi, since in addition to the possibilities
mentioned for x1, the element xi may be placed directly after any member of x1, . . . , xi−1.

Thus, there are (αs + βi + m)n−j ways in which to insert the elements of X into the
previous blocks. Further, a member of T −X can go either in a non-special block containing
no members of R or in any one of the final r − s special blocks such that no element of
R occurs between it and the special element in that block. There are then Lj,r−s(x) ways
in which to arrange the elements of T − X in their blocks as there is no restriction on the
number of additional non-special blocks that are to be occupied. Note that members of T
belonging to one of the final r − s special blocks and occurring to the right of the leftmost
member of R in the block (if it exists) all belong to X, while those occurring to the left
belong to T − X (with all members belonging to T − X if it is the case that the block
contains no member of R). Therefore, given λ ∈ Pm+n, the elements of T − X, and hence
of X, may be retrieved by considering the contents of the final r− s special blocks together
with any non-special blocks that fail to contain an element of R. Considering all possible
values of i and j thus implies the result.

Remark 10. The case of (20) where α = β = 1 and r, s are both even corresponds to
[19, Theorem 3.3], which was shown algebraically by finding two different expansions of
(x+ 2r)m+n and equating like coefficients of xk.

Proceeding as in the proof of [22, Theorem 3.1] yields the following further formula, where
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n, k, r ≥ 0 and xi and yi for i ≥ 0 denote arbitrary sequences:

n+k∑

j=0

(
n+ k

j

)
xjyn+k−jLj,r(x) =

k∑

p=0

k∑

ℓ=0

n∑

j=0

j∑

i=0

(
n

j

)(
k

ℓ

)(
j

i

)
xn+ℓ+i−jyk+j−ℓ−i

× xp(αr + βp+ ℓ)n−jLr(ℓ, p)Li,0(x). (21)

We note an important special case of (21). Let Un,r(x) =
∑n

m=0

⌊
n

m

⌋
r
xm be the r-Lah

polynomial of order n, the r = 0 case of which being denoted simply by Un(x). Taking
xi = 1 and yi = δi,0 for all i ≥ 0 in (21), with α = β = 1, gives the formula

Un+k,r(x) =
k∑

p=0

n∑

j=0

(
n

j

)
xp(k + p+ 2r)n−j

⌊
k

p

⌋

r

Uj(x), (22)

which is an r-Lah polynomial version of Spivey’s formula [24] for the classical Bell numbers
A000110.

4 Combinatorial proofs of prior identities

In this section, we provide combinatorial proofs of some prior formulas involving Lr(n, k)
and Ln,r(x) that were shown previously by various algebraic methods.

We first prove a couple of relations involving Ln,r(x) and the two kinds of Stirling numbers
that occur in a slightly different form as [17, Proposition 5]. Let

[
n

k

]
denote the (signless)

Stirling number of the first kind A008275 and
{
n

k

}
the Stirling number of the second kind

A008277. Let Bn(x) =
∑n

k=0

{
n

k

}
xk be the n-th Bell polynomial (see, e.g., [13] or [15]).

Theorem 11. If n, r ≥ 0, then

Ln,r(x) =
n∑

k=0

k∑

j=0

[
n

k

](
k

j

)
(αr)k−jβjBj(x) (23)

and
n∑

k=0

(−1)n−k

{
n

k

}
Lk,r(x) =

n∑

k=0

(
n

k

)
(αr)n−kβkBk(x). (24)

Proof. To show (23), we form members λ ∈ Pn as follows. First arrange the elements of
I according to a permutation of [n] having exactly k cycles expressed in standard cycle
form (i.e., smallest element first within each cycle, with cycles arranged from left to right
in increasing order of first elements). Let C1, C2, . . . , Ck denote the cycles so obtained. We
then select k − j of the Ci, and for each chosen Ci, we write the elements contained therein
in the same order within one of the special blocks (after the special element). If two or more
Ci are selected for the same special block, say Ci1 , Ci2 , . . . , where i1 > i2 > · · · , then we
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write all of the element contained in Ci1 first, followed by those in Ci2 and so on. Then there
are

(
k

j

)
(αr)k−j ways in which to select the k − j cycles and arrange the elements contained

therein. Note that the first element of each of the chosen Ci corresponds to a special block lr
min and hence contributes a factor of α towards the weight. The remaining j cycles are then
arranged according to an arbitrary partition of [j] such that the contents of cycles going in
the same block are written in descending order of their indices. Thus each cycle starter in
this case corresponds to a non-special block lr min, which accounts for the factor of βj. This
aside, there are then Bj(x) possibilities concerning the relative positions of the cycles within
the various (non-special) blocks. Considering all k and j then yields uniquely all possible λ,
which implies (23).

To show (24), first let An,k for 1 ≤ k ≤ n denote the set of ordered pairs (π, ρ), where π is
a partition of I with k blocks and ρ is a member of Pk using the blocks of π as its non-special
elements (together with the members of [r]), where blocks are ordered by the relative sizes of
their smallest elements. Define the (signed) weight of (π, ρ) ∈ An,k as (−1)n−kαν1(ρ)βν2(ρ)xj,
where j denotes the number of non-special blocks of ρ. Then the left side of (24) is seen to
give the sum of the weights of all members of An = ∪n

k=1An,k, where we may assume n ≥ 1.
Let A′

n denote the subset of An consisting of those (π, ρ) such that π = {r + 1}, {r +
2}, . . . , {r + n} and within all blocks of ρ, the singletons of π occur in descending order. To
define an involution of An − A′

n, consider the largest j ∈ I, which we denote by j∗, such
that either (i) the singleton {j} occurs in π, with {j} directly following another block B of
π within some block of ρ such that j is greater than the largest element of B, or (ii) j is the
largest element of some non-singleton block of π. Replacing option (i) with (ii) by removing
the singleton {j∗} from π and adding j∗ to the block B, or vice versa if (ii) occurs, is seen to
define an involution of An −A′

n. It always preserves the weight (since the number of blocks
of ρ does not change and neither does its number of lr min), while it reverses the sign (the
number of blocks of π changing by one). Upon considering the number k of singleton blocks
of π occurring in the non-special blocks of ρ, the sum of the weights of all members of A′

n is
seen to be given by the right side of (24), which completes the proof.

The Lr(n, k) serve as connection constants between the polynomial bases ((αr + βx)n)n≥0

and (xn)n≥0, as pointed out in [17, Corollary 4]. Here, we provide a combinatorial explanation
as to why, which makes use of a sign-changing involution.

Theorem 12. If n, r ≥ 0, then

(αr + βx)n =
n∑

j=0

Lr(n, j)x
j . (25)

Proof. Given π ∈ Pn,j, let π
∗ denote a permutation of the non-special blocks of π. Let m(π∗)

be the number of left-right minima of π∗, where it is understood that the blocks permuted by
π∗ (which are construed as the elements in a permutation) are ordered by the relative sizes

of their respective smallest elements. Let P̃n,j = {(π, π∗) : π ∈ Pn,j}, where it is understood
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that π∗ can range over all possible permutations of the non-special blocks of π for each π.
Given π̃ = (π, π∗) ∈ P̃n,j, define the (signed) weight w(π̃) by

w(π̃) = (−1)j−m(π∗)αν1(π)βν2(π)xm(π∗).

It is seen from the definitions that the right-hand side of (25) gives the sum of the weights

of all π̃ ∈ P̃n, where P̃n = ∪n
j=0P̃n,j.

To complete the proof, we define a sign-reversing involution on P̃n as follows. In each
block permuted by π∗ within π̃ = (π, π∗) ∈ P̃n,j, consider the ordering of the elements of I
that it contains. Decompose the ordering sℓ of the elements contained in the ℓ-th block of
π∗ (from left to right) by

sℓ = s
(ℓ)
1 α

(ℓ)
1 s

(ℓ)
2 α

(ℓ)
2 · · · s(ℓ)rℓ

α(ℓ)
rℓ
, 1 ≤ ℓ ≤ j,

where s
(ℓ)
1 > s

(ℓ)
2 > · · · > s

(ℓ)
rℓ denote the lr min of sℓ and the α

(ℓ)
i are possibly empty. We call

a sequence sℓ for some ℓ ∈ [j] disqualifying if (i) rℓ ≥ 2 (i.e., block ℓ contains at least two lr
min), or (ii) rℓ = 1 where ℓ > 1, with the ℓ-th block of π∗ (when viewed from left to right)
having larger first element than its predecessor.

Let ℓ′ denote the largest ℓ such that sℓ is disqualifying. If sℓ′ is disqualifying via (i), then

break off the initial segment s
(ℓ′)
1 α

(ℓ′)
1 of sℓ′ and form a separate (contents-ordered) block

with it to directly follow the remaining part of the parent block. Otherwise, reverse this
operation if (ii) applies. One may verify that this defines a sign-reversing involution on P̃n

since j always changes by one, and hence the sign, with the other factors in the definition
of w(π̃) unchanged. In particular, note that m(π∗) does not change since blocks are ordered
by the size of their smallest elements and thus an lr min is neither introduced nor removed
when performing the operations above. The survivors of the involution are those members
of P̃n in which the smallest element is first in each non-special block of π, with these blocks
arranged in decreasing order of smallest elements from left to right (i.e., π∗ corresponds to
the permutation j(j − 1) · · · 1). Each additional non-special block within such members of

P̃n then yields a factor of βx (as it corresponds to an lr min of π∗). Thus, the sum of the
weights of the survivors is given by (αr+βx)(αr+βx+1) · · · (αr+βx+n−1) = (αr+βx)n,
since for each i ∈ I, one can either insert i as an lr min in a special block, as a non-special
block starter, or as a direct successor of some member of [r + 1, r + i− 1].

The following reciprocity result was shown in [17] using generating functions.

Theorem 13. If n, r ≥ 0, then

L(α,β)
n,r (x) =

n∑

k=0

(−1)k
⌊
n

k

⌋
L
(−α,−β)
k,r (x). (26)

Proof. Let Un,k denote the set of ordered pairs ρ = (ρ1, ρ2), where ρ1 is a partition of [n]
into k contents-ordered blocks and ρ2 ∈ Pk, with the weight of ρ taken to be that of ρ2, but
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with α and β replaced respectively by −α and −β. Let members of Un,k have sign (−1)k

and Un = ∪n
k=0Un,k. Then the right side of (26) gives the sum of the (signed) weights of all

members of Un. To show that the left side of (26) also achieves this, we first regard members
ρ of Un as follows. Let ρ′ be obtained from ρ by arranging the blocks of ρ1, ordered by relative
size of their smallest elements, according to the partition ρ2 (where r extra special elements
are added that are distinct from the blocks of ρ1). We let ρ′ have sign and weight equal to
that of ρ. Thus, the right side of (26) gives the sum of the weights of all configurations ρ′,
the set of which we again denote by Un.

We define an involution on Un as follows. Let us refer to the blocks of ρ′ whose elements
are themselves blocks of ρ1 as superblocks. In a left-to-right scan of the superblocks of
ρ′ ∈ Un, where the special superblocks are written before the non-special, consider the first,
denoted by B, which contains within its blocks at least two elements of [n] altogether. Let
B denote the rightmost block within B. If B is not a singleton, then break off the final
element of B and form a singleton block with it to follow B. If B is a singleton, then we
add its element to the block that directly precedes it at the end. Note that this operation
always reverses the sign and preserves the weight except in the cases (I) B = {αbβa} or
(II) B′ = {αbβ} and B = {a}, where B′ denotes the penultimate block of B, a < b are the
two smallest elements of [n] contained within the blocks of B, and α and β are (possibly
empty) sequences of elements of [n]. Note in this case that the weight is not preserved since
moving a as indicated adds or takes away a factor of either α or β (depending on whether
B is special or not) since both B and B′ are lr min (as they correspond to the two ‘smallest’
blocks within B).

If the elements a and b occur according to (I) or (II) above, then let c < d denote the
two smallest elements of [n] contained within blocks of B excluding those containing a or b.
(If there are less than two such elements of [n] left at this point, then we stop.) We repeat,
if possible, the involution above using the elements c and d just as we did a and b, where the
block or blocks containing a and b are left undisturbed. If c and d cannot be moved without
preserving the weight, then consider the two smallest elements in the remaining blocks and
so on. We repeat this process until the operation of breaking or fusing blocks as described
can be performed or until all of the blocks of B have been considered (except for possibly an
initial singleton block). We then consider the next superblock C from left to right within ρ′

containing at least two elements of [n] within its blocks and repeat. We continue until it is
possible to perform the involution on adjacent blocks as described within some superblock
or all of the superblocks have been exhausted.

The set of survivors of this involution, which is denoted by U∗
n, are those configurations in

Un in which each superblock B is comprised of a sequence of blocks where those containing
a and b are of the form (I) or (II) above and occur at the end of B, with the remaining
blocks of B arranged in the same manner inductively from right to left upon considering the
two smallest remaining elements. Note that each block within any superblock of a member
of U∗

n is seen to be an lr min. Thus since each block receives a weight −α or −β, and the
sign is −1 to the number of blocks, one may thus assign a weight of α or β to each block
(depending on whether or not the superblock to which it belongs is special). Therefore, to
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complete the proof, it suffices to define a weight-preserving bijection between U∗
n and Pn,

where the associated weights for either set are α and β.
Let λ ∈ U∗

n and we replace the blocks within each superblock B of λ with a sequence of
elements in [n]. If B is empty (in which case it is special), then it is left empty. If B contains
one block that is a singleton, then simply remove the brackets enclosing the element contained
therein. So assume B contains at least two elements of [n] altogether in its blocks. If the last
block within B is of the form (I) above, then form the word aαbβ, whereas if it is of form
(II), then put bαaβ. Then consider the relative positions of the elements c and d defined
above. If c and d occur together in a block as {γdδc}, then write cγdδ directly prior to the
current word, whereas if they occur as {γdδ}, {c}, then put dγcδ instead. We continue in
this manner working from right to left within the blocks of B, forming a sequence in [n] with
distinct letters. If B has an initial singleton block that is left after all other blocks have been
used as described, then we simply write its entry at the beginning of the current word.

Thus, the sequence of blocks within B has been replaced by a word w such that its length
equals the sum of the cardinalities of the blocks. Note that the number of lr min in w is seen
to be the same as the number of blocks within β. This follows from the inductive manner in
which w was formed. Note for example that if (I) holds, then only a out of {a, b} corresponds
to an lr min in w, whereas if (II) holds, then both a and b do so. Since each block within B is
an lr min, it follows that the weight associated with B is the same as the weight of the word
w. Forming a word for each of the superblocks of λ as described then results in a member
λ̃ ∈ Pn having the same weight. Furthermore, one may verify that the mapping λ 7→ λ̃ is
a bijection. It follows that the sum of the weights of all members of U∗

n is L
(α,β)
n,r (x), which

completes the proof.

Equivalent versions of the following identities involving transformations of the α and β
parameters occur in [17] and were shown using generating function techniques. Their elegant
form suggests trying to find some sort of a combinatorial explanation as to why.

Theorem 14. If n ≥ 0, r ≥ 1 and β′ 6= 0, then

(αr + βx)n =
n∑

j=0

(−1)jL

(

α+α′β

rβ′
, β

β′

)

r (n, j)(α′ − β′x)j (27)

and

L(α,β)
r (n, k) =

n∑

j=k

(−1)jL

(

α+α′β

rβ′
, β

β′

)

r (n, j)L
(α′,−β′)
1 (j, k), 0 ≤ k ≤ n. (28)

Proof. We first describe a set of configurations, the members of which have sum of weights
given by the right-hand side of (27). Given 0 ≤ j ≤ n, let Kj denote the set of ordered pairs

(π, ρ) such that π ∈ P
(r+1)
n,j and ρ is a permutation of the non-special blocks of π wherein

blocks corresponding to lr min may be marked (where it is understood that blocks of π are
ordered by the relative sizes of their smallest elements). Let K = ∪n

j=0Kj and members of
Kj have sign (−1)j. We define a weighting of the members of K as follows. Let γ1(π) denote
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the number of lr min in the first r special blocks of π, where lr min for both special and
non-special blocks are defined as before. Let γ2(π) denote the number of lr min in just the
(r + 1)-st special block of π and γ3(π) the number of lr min in its non-special blocks. Let
δ1(ρ) and δ2(ρ) denote the number of marked and unmarked lr min in ρ, respectively. Note
that an lr min of ρ corresponds to a block B of π whose smallest element is less than the
smallest element of any block occurring to the left of B within ρ. Define the weight of the
ordered pair (π, ρ) ∈ K by

αγ1(π)

(
α′β

β′

)γ2(π)( β

β′

)γ3(π)

(α′)δ1(ρ)(−β′x)δ2(ρ).

Then, upon considering the product of terms in (α′ − β′x)j and recalling the definition of
Lr(n, j), it is seen that the right side of (27) gives the sum of the (signed) weights of all
members of K.

To define an involution on K, the following definition will be useful. Suppose that the
sequence of elements within a non-special block C of π is expressed as s = a1τ1a2τ2 · · · apτp,
where a1, . . . , ap denotes the complete set of lr min of s and τ1, . . . , τp are possibly empty.
Then we refer to a subsequence of elements of the from aiτi for some 1 ≤ i ≤ p as a section
of C. Similar terminology is applied to the special blocks of π, where it is understood in this
case that s does not include the special element and hence can be empty. Let λ = (π, ρ) ∈ K
and we pair λ with some λ′ ∈ K of opposite weight. To define the mapping λ 7→ λ′, first
suppose that ρ has exactly t lr min which we denote by Q1, . . . , Qt. Let Qi be the (possibly
empty) sequence of blocks of π occurring between Qi and Qi+1 if 1 ≤ i ≤ t − 1 and to the
right of Qt if i = t.

We first consider the case whenQt is non-empty with the blocks comprisingQt containing
at least two sections altogether. Let D denote the last block of Qt. If D contains two or more
sections, then we remove the first section and form a separate block of π that is to directly
follow D. We reverse this operation if D contains a single section whose first element is
greater than the first element of the block directly preceding it. Thus, we may assume that
D contains a single section whose first element is less than the first element of its predecessor.
In this case, we consider the penultimate block of Qt and apply one of the above operations
if possible. If not, continue considering blocks of Qt from right to left until it is the case that
a block having two or more sections is encountered or one having a single section whose first
element is greater than the first element of its predecessor in Qt. Note that if no such block
is ever encountered, then it must be the case that the blocks in Qt each have one section
and occur in decreasing order of their smallest elements.

We now extend our involution to the last aforementioned case concerning Qt. Here, we
also allow for Qt to consist of a single block containing one section or for Qt to be empty,
with Qt containing more than one section if the latter applies. Let E denote the first block
of Qt. If the first element of E is greater than the first element of Qt, then we write the
elements comprising the section E directly prior to the current sequence of elements in Qt. If
the first element of Qt is greater than that of E (or if Qt is empty), then we break off the first
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section of Qt and form a new block to directly follow. Observe that since the blocks of Qt

occur in decreasing order of first elements, these operations are inverses. Note further that in
the latter case, the block Qt must contain more than one section since min(Qt) < min(E) if
Qt is non-empty. Let λ′ denote the member of K obtained by applying any of the preceding
operations. In all cases, the magnitude of the weight of λ and λ′ is the same since moving a
section as described does not change the weighting of π with respect to its non-special blocks
and neither does it affect the weighting of ρ since no lr min are introduced or removed. On
the other hand, since the number j of non-special blocks of π changes by one in all cases,
the sign of the weight is always reversed. Finally, one may verify that the mapping λ 7→ λ′

is indeed an involution where defined.
So we may assume henceforth that Qt contains a single section and is the final block of

ρ (i.e., Qt is empty). Now let i0 denote the largest index i < t, if it exists, such that either
Qi is non-empty or Qi is empty, but Qi contains two or more sections. We then apply in
this case the previous involution λ 7→ λ′ to the blocks belonging to Qi0 ∪ {Qi0}, leaving the
remainder of ρ undisturbed. The set of survivors in K of this extended involution are those
members (π, ρ) where i0 fails to exist, i.e., those in which the non-special blocks of π all
contain a single section and are arranged within ρ in decreasing order from left to right. In
particular, every block of ρ corresponds to an lr min.

In this case, we let U denote the set consisting of the sections contained either within the
(r+1)-st special block of π or within the non-special blocks of π corresponding to any marked
lr min of ρ. Assume for now U 6= ∅. We compare the various sections in U by comparing
the sizes of their first elements. If the smallest section F in U belongs to a non-special
block, then delete the block containing F from ρ and move F to the (r+1)-st special block,
writing its sequence of elements so that they directly follow any elements already present.
If F belongs to the (r + 1)-st special block of π, necessarily as the final section, then we
form a new (non-special) block containing only the elements in F , which we mark and insert
into ρ so that ρ is still decreasing after the insertion. Note that this uniquely determines
the position of F within ρ and implies that these operations are inverses of one another.
Furthermore, the magnitude of the weight is preserved since a section within the (r + 1)-st
special block of π or within a non-special block of π corresponding to a marked lr min of ρ
both contribute a factor of α′β

β′
towards the overall weight. On the other hand, the sign is

again reversed since a non-special block is either created or removed.
Thus, the set K′ of survivors of all the preceding involutions are those (π, ρ) in which

(i) the (r + 1)-st special block of π contains only r + 1, (ii) each non-special block of π
contains one section, and (iii) ρ is the decreasing permutation, with no blocks in ρ marked.
Within members of K′, each new lr min in one of the first r special blocks of π contributes
α and each non-special block of π within ρ contributes − β

β′
(−β′x) = βx towards the signed

weight. Thus, there are αr + βx possibilities for each section starter. All other members
of [r + 2, r + n + 1] fail to be lr min and thus contribute one towards the weight. Upon
successively considering each element of [r + 2, r + n+ 1] starting with r + 2, it is seen that
the sum of the weights of all the members of K′ is given by (αr+ βx)n, which completes the
proof of (27).
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To show (28), we extend the proof of (27) and let Lj for k ≤ j ≤ n denote the set of
ordered pairs (π, τ) such that π is as before and τ is a partition of the non-special blocks of

π arranged according to a member of P
(1)
j,k . Let L = ∪n

j=kLj and members of Lj have sign

(−1)j. Define the weight of (π, τ) ∈ L by

αγ1(π)

(
α′β

β′

)γ2(π)( β

β′

)γ3(π)

(α′)ν1(τ)(−β′)ν2(τ).

Here, the statistics γi are as in the proof of (27) and the νi are as in the second section
above, with the latter now applied to the partition τ whose “elements” are blocks of π. (We
refer to the blocks of τ as superblocks.) From the various definitions, it is seen that the sum
of the (signed) weights of all members of L is given by the right side of (28).

We now define a sign-reversing, weight-preserving involution on L. We first apply the
involution defined above in the third and fourth paragraphs of this proof to the sequence
of blocks of π contained in the special and each of the non-special superblocks of τ . Thus,
we may assume that all non-special blocks of π contain one section and are arranged in
decreasing order within each superblock of τ . Now let V denote the set consisting of sections
that belong either to the (r + 1)-st special block of π or to non-special blocks of π going in
the special superblock of τ (necessarily in decreasing order). Assume V 6= ∅ and let H be
the smallest section in V . We now apply the same type of involution as we did in conjunction
with the set U above, moving the section H from a special to a non-special block, or vice
versa. Combining this mapping with the previous, one may verify that this yields the desired
involution on L.

The set L′ of survivors of this involution consists of those (π, τ) such that (i) the (r+1)-st
special block of π contains only r + 1, (ii) the special superblock of τ contains no blocks of
π, and (iii) non-special blocks of π each have a single section and occur in decreasing order
within the non-special superblocks of τ . Note that within members of L′, each non-special
block of π contributes − β

β′
(−β′) = β towards the weight and may be viewed itself as some

section of a larger contents-ordered block, upon removing the enclosing parentheses. Thus,
combining the k non-special superblocks of τ with the first r special blocks of π, it is seen
that the sum of the weights of all members of L′ is given by L

(α,β)
r (n, k), which completes

the proof of (28).

Remark 15. Equivalent forms of (27) and (28) involving Sα,β(n, k) occur as [17, Corollary 18]
and are given by

(−α− βx)n =
n∑

j=0

(−1)jS
α−α′β

β′
, β

β′
(n, j)(−α′ − β′x)j

and

Sα,β(n, k) =
n∑

j=k

(−1)jS
α−α′β

β′
, β

β′
(n, j)Sα′,β′(j, k).

18



Note that the first identity above can be obtained from (27) by replacing α, β and α′ with

−α/r, −β and −α′, respectively, and using L
(α,β)
r (n, k) = S−rα,−β(n, k). The second identity

may be obtained similarly from (28).

5 A further polynomial extension

In this concluding section, we derive a (p, q)-analogue of Lr(n, k) and Ln,r(x) by considering
two further statistics on Pn,k. Suppose that the special blocks of π ∈ Pn,k are labeled
0, 1, . . . , r − 1 from left to right. For each special block lr min x of π, let px denote the
position number of the block containing x. Define σ1(π) =

∑
x px, where the sum is taken

over all possible x in π. Furthermore, suppose that the non-special blocks of π are arranged
from left to right in increasing order of minimal elements and then labeled 0, 1, . . . , k − 1.
Similarly, let σ2(π) be the sum of the block position numbers corresponding to the non-special

lr min of π. Let Lr(n, k) = L
(α,β)
r (n, k; p, q) for 0 ≤ k ≤ n be given as the distribution

Lr(n, k) =
∑

π∈P
(r)
n,k

αν1(π)βν2(π)pσ1(π)qσ2(π).

Define Ln,r(x) = L
(α,β)
n,r (x; p, q) by Ln,r(x) =

∑n

k=0 Lr(n, k)x
k. Note that Lr(n, k) and

Ln,r(x) reduce to Lr(n, k) and Ln,r(x) when p = q = 1. Letting α = p and β = q, one
gets the joint distribution on Pn,k for variants of the σ1 and σ2 statistics obtained by using
instead the labelings 1, . . . , r and 1, . . . , k for the special and non-special blocks, respectively.
We remark that σ1 and σ2 are related to a family of statistics on set partitions considered
originally in [3] and later studied (see, e.g., [25]).

Let mq = 1+ q+ · · ·+ qm−1 for m ≥ 1, with 0q = 0. By an argument similar to the proof
of Theorem 1 above, we have the recurrence

Lr(n, k) = βqk−1Lr(n− 1, k − 1) + (αrp + βkq + n− 1)Lr(n− 1, k), n, k ≥ 1, (29)

with initial conditions Lr(n, 0) = (αrp)
n and Lr(0, k) = δk,0 for all n, k ≥ 0.

To find an explicit formula for Lr(n, k), we make use of a previous result. Let u(n, k) be
an array defined recursively by

u(n, k) = u(n− 1, k − 1) + (an−1 + bk)u(n− 1, k), n, k ≥ 1, (30)

and satisfying the initial conditions u(n, 0) =
∏n−1

i=0 (ai + b0) and u(0, k) = δk,0 for n, k ≥ 0,
where the ai and bi denote arbitrary sequences and it is assumed that the bi are distinct.
Then there is the formula [12, Theorem 1.1]:

u(n, k) =
k∑

j=0



∏n−1

i=0 (bj + ai)∏k
i=0
i 6=j

(bj − bi)


 , n, k ≥ 0. (31)
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Dividing both sides of (29) by βkq(
k
2), and letting

L∗
r(n, k) =

Lr(n, k)

βkq(
k
2)

,

we have that L∗
r(n, k) satisfies recurrence (30) with an = αrp + n and bk = βkq, where

L∗
r(n, 0) = (αrp)

n =
∏n−1

i=0 (ai + b0) and L∗
r(0, k) = δk,0 for n, k ≥ 0. Applying (31) gives

L∗
r(n, k) =

k∑

j=0



∏n−1

i=0 (βjq + αrp + i)
∏k

i=0
i 6=j

(βjq − βiq)


 =

k∑

j=0

∏n−1
i=0 (αrp + βjq + i)

(−1)k−jβkq(
j
2)+j(k−j)j!q(k − j)!q

,

where j!q = 1q2q · · · jq denotes the q-factorial. Let
(
k

j

)
q
=

k!q
j!q(k−j)!q

for 0 ≤ j ≤ k denote the

q-binomial coefficient. By the preceding, we have the following explicit formula for Lr(n, k).

Theorem 16. If n, k, r ≥ 0, then

Lr(n, k) =
1

k!
q

k∑

j=0

(−1)k−jq(
k−j
2 )
(
k

j

)

q

(αrp + βjq)
n. (32)

Note that (32) reduces to (13) when p = q = 1. We now establish the log-concavity of
each row within the array Lr(n, k). Recall that a sequence dn of non-negative real numbers
is said to be log-concave if d2n ≥ dn−1dn+1 for all n.

Theorem 17. Let n ≥ 2 be fixed. If α, β, p, r ≥ 0 and 0 ≤ q ≤ 1, then the sequence Lr(n, k)
for 0 ≤ k ≤ n is log-concave.

Proof. Let Mr(n, k) = q−(
k
2)Lr(n, k), where we may assume q 6= 0. Then Lr(n, k)

2 ≥
Lr(n, k − 1)Lr(n, k + 1) if and only if q−1Mr(n, k)

2 ≥ Mr(n, k − 1)Mr(n, k + 1). Since
0 < q ≤ 1, it suffices to establish the log-concavity of Mr(n, k). To do so, we proceed
by induction on n, the n = 2 case following from a direct calculation. Let n ≥ 3 and
1 ≤ k ≤ n − 1. If β = 0, then the result is trivial, so assume further β 6= 0, in which case
Mr(n, k) > 0 for 1 ≤ k ≤ n. Then Mr(n, k)

2 ≥ Mr(n, k − 1)Mr(n, k + 1) if and only if

(
βMr(n− 1, k − 1) + (αrp + βkq + n− 1)Mr(n− 1, k)

)2

≥
(
βMr(n− 1, k − 2) + (αrp + β(k − 1)q + n− 1)Mr(n− 1, k − 1)

)
·
(
βMr(n− 1, k)

+ (αrp + β(k + 1)q + n− 1)Mr(n− 1, k + 1)
)
. (33)

Upon expanding both sides and comparing the various terms, it suffices to show

(αrp + βkq + n− 1)2 ≥ (αrp + β(k − 1)q + n− 1) (αrp + β(k + 1)q + n− 1) (34)
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and

(αrp + β(2kq − (k − 1)q) + n− 1)Mr(n− 1, k − 1)Mr(n− 1, k)

≥ (αrp + β(k + 1)q + n− 1)Mr(n− 1, k − 2)Mr(n− 1, k + 1), (35)

from which (33) would follow by induction. Note that (34) may be simplified to

2(αrp + n− 1)kq + βk2
q ≥ (αrp + n− 1)((k − 1)q + (k + 1)q) + β(k − 1)q(k + 1)q.

The last inequality follows from observing that 2kq ≥ (k − 1)q + (k + 1)q for 0 ≤ q ≤
1 and k2

q ≥ (k − 1)q(k + 1)q for all q ≥ 0. Inequality (35) follows from observing that

Mr(n−1, k−1)Mr(n−1, k) ≥ Mr(n−1, k−2)Mr(n−1, k+1) since the ratio Mr(n−1,ℓ)
Mr(n−1,ℓ+1)

is

increasing by the induction hypothesis and since 2kq − (k− 1)q ≥ (k + 1)q, which completes
the proof.

Remark 18. The p = q = r = 1 case of Theorem 17 is equivalent to [17, Corollary 13], which
was shown by a different method making use of Newton’s inequality.

Extending prior proofs yields generalizations of several of the identities given above for
Lr(n, k). For example, extending the combinatorial proof of (16) to account for the σ1 and
σ2 statistics gives

Lr(n+m, k) =
n∑

i=0

m∑

j=0

(
n

i

)(
m

j

)
(αps(r − s)p)

i+j
Ls(n+m− i− j, k), 0 ≤ s ≤ r, (36)

the m = 0 case of which is

Lr(n+m, k) =
n∑

j=k

(
n

j

)
(αps(r − s)p)

n−jLs(j, k). (37)

Note that (37) may also be shown by an algebraic argument comparable to the one given
above for (14), using (32) in place of (13).

The proof given above for (19) may be generalized to give

L(α,β)
r (n+ 1,m+ j + 1; p, q) = βqm

n∑

k=m

n−k∑

ℓ=j

(
n− k

ℓ

)
(αrp + β(m+ 1)q + k + 1)n−k−ℓ

× L(α,β)
r (k,m; p, q)L

(α,βqm+1)
0 (ℓ, j; p, q). (38)

Note that the qm factor at the beginning accounts for the lr min created when m + 1 is
initially placed in the (k + 1)-st non-special block. Also, the β parameter must be replaced
by βqm+1 in the final factor within the summand since each lr min within the final j non-
special blocks contributes an extra m + 1 (more than it ordinarily would) towards the σ2

statistic value.
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Finally, extending prior arguments yields the following recurrence for Ln,r(x):

L
(α,β)
m+n,r(x; p, q) =

m∑

i=0

n∑

j=0

(
n

j

)
xi
(
αpr−ssp + βiq +m

)n−j
L(α,β)

r (m, i; p, q)L
(α,βqi)
j,r−s (x; p, q),

(39)
which provides a (p, q)-analogue of (20).
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