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Abstract

We present a variety of not-well-known asymptotic series for factorials, binomial

coefficients and Catalan numbers, all having only even or odd powers. We discuss the

significance of this property in terms of the asymptotic evenness or oddness of the

underlying quantities.

1 Introduction and statement of results

Probably the best-known asymptotic series in existence is Stirling’s series for n! [1, Equation
5.11.3]:

n! ∼
√
2πnn+ 1

2 e−n

(

1 +
1

12n
+

1

288n2
−

139

51840n3
−

571

2488320n4
+ · · ·

)

. (1)
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There is no simple explicit formula for the coefficients in this series, but the more fundamental
object is the corresponding series for lnn! [1, Equation 5.11.1], which takes the form

lnn! ∼ ln
(√

2πnn+ 1

2 e−n
)

+
∞
∑

i=1

B2i

2i(2i− 1)n2i−1
, (2)

where Bi denotes the ith Bernoulli number. Note the sum in Eq. (2) involves only odd
powers of n, making it easier to use than Eq. (1). Stirling’s series can be used to derive
asymptotic series for many functions related to the factorial, such as the central binomial
coefficients

CBC(n) =

(

2n

n

)

∼
4n

√
πn

(

1−
1

8n
+

1

128n2
+

5

1024n3
−

21

32768n4
+ · · ·

)

, (3)

and the Catalan numbers [2, Section 7.2.1.6, Formula (16)],

Cat(n) =
(2n)!

n!(n+ 1)!
∼

4n
√
πn3

(

1−
9

8n
+

145

128n2
−

1155

1024n3
+

36939

32768n4
+ · · ·

)

. (4)

We note that as a direct result of the “odd powers only” series for lnn! there is also an “odd
powers only” series for lnCBC(n)

lnCBC(n) ∼ ln

(

4n
√
πn

)

+
∞
∑

i=1

B2i

i(2i− 1)n2i−1

(

1

22i
− 1

)

. (5)

The aim of this paper is to present a variety of alternative asymptotic series to the
standard ones just presented, and some generalizations, including some very surprising results
which have barely appeared in the literature. For example, it turns out that when the central
binomial coefficients are expanded in powers of n + 1

4
, and when the Catalan numbers are

expanded in powers of n + 3
4
, they have asymptotic expansions involving only even powers,

viz.:

CBC(n) ∼
4n

√

π
(

n+ 1
4

)

(

1−
1

64
(

n+ 1
4

)2 +
21

8192
(

n+ 1
4

)4 −
671

524288
(

n+ 1
4

)6 + · · ·

)

(6)

Cat(n) ∼
4n

√

π
(

n+ 3
4

)3

(

1 +
5

64
(

n+ 3
4

)2 +
21

8192
(

n+ 3
4

)4 +
715

524288
(

n+ 3
4

)6 + · · ·

)

(7)

Each of these results is remarkable in its own right: There would seem, ab initio, to be no
good reason to expand the central binomial coefficients in terms of n + 1

4
and the Catalan

numbers in terms of n+ 3
4
. But the results are even more outlandish in juxtaposition: the nth

Catalan number is just the nth central binomial coefficient divided by n+1. But, somehow,
this act of division morphs a series involving only even powers of n + 1

4
into one involving

only even powers of n+ 3
4
.
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Using the formulae

CBC(n) =
4nΓ(n+ 1

2
)

√
πΓ(n+ 2)

, Cat(n) =
4nΓ(n+ 1

2
)

√
πΓ(n+ 1)

,

the series (6) and (7) can be obtained as special cases of an asymptotic expansion in even
powers of the ratio of two gamma functions obtained by Fields [3] and mentioned in the book
of Luke [4, Section 2.11, Equation (14)] and in the DLMF [1, Subsection 5.11]. However,
given the importance of central binomial coefficients, and, in particular, the Catalan numbers
[5], the series (6) and (7) merit being better known in their own right. We thank P. Luschny
for the observations in this paragraph, bringing references [3] and [4] to our attention, and
publicizing the series (6) and (7) on the website [6].

There are corresponding series for lnCBC(n) and lnCat(n) for which there are explicit
expressions for the coefficients, viz.:

ln CBC(n) ∼ ln





4n
√

π
(

n+ 1
4

)



+
∞
∑

i=1

E2i

42i+1i
(

n+ 1
4

)2i (8)

= ln





4n
√

π
(

n+ 1
4

)



−
1

64
(

n+ 1
4

)2 +
5

2048
(

n+ 1
4

)4 −
61

49152
(

n+ 1
4

)6 + · · · ;

ln Cat(n) ∼ ln





4n
√

n+ 3
4

√
π
(

n+ 1
2

)

(n+ 1)



−

∞
∑

i=1

E2i

42i+1i
(

n+ 3
4

)2i (9)

= ln





4n
√

n+ 3
4

√
π
(

n+ 1
2

)

(n+ 1)



+
1

64
(

n+ 3
4

)2 −
5

2048
(

n+ 3
4

)4

+
61

49152
(

n+ 3
4

)6 + · · · ,

where Ei denotes the ith Euler number.
There are several well-known variations on the original Stirling series, for example the

convergent version of Stirling’s series [7] and the Lanczos approximation [8, 9, 10]. Another
often overlooked series is the expansion of lnn! in powers of n+ 1

2
. Of course, any asymptotic

expansion in (negative) powers of n can be rewritten as an asymptotic expansion in powers
of n + a for any constant a. The remarkable fact about the expansion of lnn! in powers of
n+ 1

2
is that like the standard expansion (2), it only contains odd powers of n+ 1

2
. Explicitly,

we have

lnn! ∼ ln

(

√
2π

(

n+
1

2

)n+ 1

2

e−n− 1

2

)

+
∞
∑

i=1

B2i

2i(2i− 1)
(

n+ 1
2

)2i−1

(

1

22i−1
− 1

)

. (10)
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Writing
lnCBC(n) = ln ((2n+ 1)!)− ln(2n+ 1)− 2 ln (n!) ,

and using the series (2) to expand the ln ((2n+ 1)!) factor and the series (10) to expand the
ln (n!) factor, gives an “odd powers only” series for lnCBC(n) in powers of n+ 1

2
:

ln CBC(n) ∼ ln





4n
√

π
(

n+ 1
2

)



+
∞
∑

i=1

B2i

i(2i− 1)
(

n+ 1
2

)2i−1

(

1−
1

22i

)

. (11)

This is the third different series we have seen for lnCBC(n); Eq. (5) and Eq. (11) have only
odd powers and Eq. (8) has only even powers. As we shall see in the sequel, the fact the
coefficients in the two “odd powers only” series (5) and (11) are “opposite and equal” gives
rise to the existence of the “even powers only” series (8). Other binomial coefficients also
have asymptotic expansions with only odd powers. We will show that for any integer m

ln

(

2n

n+m

)

∼ ln





4n
√

π
(

n+ 1
2

)



+
∞
∑

i=1

2−2iB2i + B2i(m)− 21−2iB2i(2m)

i(2i− 1)
(

n+ 1
2

)2i−1 (12)

and

ln

(

2n− 1

n+m

)

∼ ln

(

22n−1(n−m)
√
πn(n+m)

)

+
∞
∑

i=1

2−2iB2i −B2i(m)

i(2i− 1)n2i−1
, (13)

where Bj(x) denotes the jth Bernoulli polynomial [1, Section 24]. The series (11) is obtained
from the case m = 0 of (12) using the result Bj(0) = Bj.

Having stated our main results (the series (6)–(13)), the rest of this paper proceeds as
follows: in Section 2 we discuss what it means when an asymptotic series has only odd
or only even terms, and show how to prove the existence of such series. In Section 3 we
present proofs of the explicit forms of the various “odd powers only” results listed above.
In Section 4 we do the same for the “even powers only” series, including a generalization.
Throughout the continuation of this paper we extend the factorial, CBC and Cat functions
beyond integer values by replacing n! by Γ(n+ 1), and defining

CBC(n) =
Γ(2n+ 1)

Γ(n+ 1)2
, Cat(n) =

Γ(2n+ 1)

Γ(n+ 1)Γ(n+ 2)
.

Whenever necessary (for the definition of ln and fractional powers) we use a branch cut along
the negative real axis in the complex n-plane. All the series we have given above are valid
in any sector of the complex n plane with arg(n) bounded away from π.

2 What does it mean for an asymptotic series to have

only odd or only even powers?

The fact that the standard series (5) for ln Γ(n+ 1) has only odd powers is usually thought
of as related to the fact that all the odd Bernoulli numbers vanish except B1 = −

1
2
. But

4
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in fact it is a statement about the function ln Γ(n + 1). If the Taylor or Laurent series of a
function consists of only even or only odd powers, then the function must be even or odd.
Similarly, if the asymptotic series of a function consists of only even or only odd powers,
then the function must be even or odd, modulo exponentially small terms. Thus the absence
of even powers in the series in Eq. (2) indicates that the function

f(n) = ln

(

Γ(n+ 1)en
√
2πnn+ 1

2

)

is odd modulo exponentially small terms, i.e., that f(n) + f(−n) is exponentially small, at
least whenever the asymptotic series for f(n) and f(−n) are valid (which in this case means
in any sector of the complex plane with arg(n) bounded away from 0 and π). To check
this is straightforward: because of the choice of branch cut along the negative real axis, for

Im(n) > 0 we have (−n)−n+ 1

2 = eiπ(n−
1

2)n−n+ 1

2 , and thus

f(n) + f(−n) = ln

(

Γ(n+ 1)Γ(1− n)

2πneiπ(n−
1

2)

)

= ln

(

Γ(n)Γ(1− n)

2πeiπ(n−
1

2)

)

(using Γ(n+ 1) = nΓ(n))

= − ln
(

2eiπ(n−
1

2) sin πn
)

(using Γ(n)Γ(1− n) =
π

sin πn
)

= − ln
(

1− e2πin
)

,

which is exponentially small if Im(n) > 0.
As further examples of this technique we have the following:

Theorem 1.

(a) For every integer m, the quantity ln

(
√

π(n+ 1

2)
4n

(

2n
n+m

)

)

has an asymptotic expansion

involving only odd powers of n+ 1
2
. (See (12).)

(b) For every integer m, the quantity ln
( √

πn

22n−1

n+m
n−m

(

2n−1
n+m

)

)

has an asymptotic expansion

involving only odd powers of n. (See (13).)

(c) For every integer k, the quantity ln

(

√
π(n+ 1

4
+ k

2 )
k+1

2

4n
(2n)!

n!(n+k)!

)

has an asymptotic expan-

sion involving only even powers of n+ 1
4
+ k

2
. (The special case k = 0 gives the series

(8). The special case k = 1 gives the series (9). Since the property of being an even
series is preserved under exponentiation, these in turn give rise to the even series (6)
and (7).)

Proof. The proofs of (a) and (b) are similar so we omit (b).
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(a) Here we want to show that

f(n) = ln





√

π
(

n+ 1
2

)

4n
Γ(2n+ 1)

Γ(n+m+ 1)Γ(n−m+ 1)





is “almost odd” as a function of n+ 1
2
. Define

g(n) = f

(

n−
1

2

)

= ln

(√
πn

4n−
1

2

Γ(2n)

Γ
(

n+m+ 1
2

)

Γ
(

n−m+ 1
2

)

)

.

For Im(n) > 0 we then have

g(n) + g(−n) = ln

(

−4iπnΓ(2n)Γ(−2n)

Γ
(

n+m+ 1
2

)

Γ
(

n−m+ 1
2

)

Γ
(

−n+m+ 1
2

)

Γ
(

−n−m+ 1
2

)

)

= ln

(

2i sin
((

n+m+ 1
2

)

π
)

sin
((

n−m+ 1
2

)

π
)

sin 2nπ

)

(using the reflection formula 3 times)

= ln

(

2i cos2(nπ)

sin 2nπ

)

= ln

(

1 + e2inπ

1− e2inπ

)

,

and the latter is exponentially small.

(c) Here we want to show that

f(n) = ln





√
π
(

n+ 1
4
+ k

2

)k+ 1

2

4n
Γ(2n+ 1)

Γ(n+ 1)Γ(n+ k + 1)





is “almost even” as a function of n + 1
4
+ k

2
. The calculation is simplified if we first

exploit the duplication formula for the gamma function Γ(2z) = 1√
π
22z−1Γ(z)Γ

(

z + 1
2

)

to write
√
π

4n
Γ(2n+1)
Γ(n+1)

= Γ
(

n+ 1
2

)

. Then we have the simplified formula

f(n) = ln

(

(

n+
1

4
+

k

2

)k+ 1

2 Γ
(

n+ 1
2

)

Γ(n+ k + 1)

)

.

Define

g(n) = f

(

n−
1

4
−

k

2

)

= ln

(

nk+ 1

2

Γ
(

n+ 1
4
−

k
2

)

Γ
(

n+ 3
4
+ k

2

)

)

.
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For Im(n) > 0 we have

g(n)− g(−n) = ln

(

eiπ(k+
1

2)
Γ
(

n+ 1
4
−

k
2

)

Γ
(

−n+ 3
4
+ k

2

)

Γ
(

n+ 3
4
+ k

2

)

Γ
(

−n+ 1
4
−

k
2

)

)

= ln

(

eiπ(k+
1

2)
sin
(

π
(

n+ 3
4
+ k

2

))

sin
(

π
(

n+ 1
4
−

k
2

))

)

(using the reflection formula twice)

= ln

(

1− qe2πin

1− q−1e2πin

)

,

where q = eiπ(k+
3

2). The answer is clearly exponentially small.

It should be emphasized that in all the calculations above we assume that arg(n) is
bounded away from 0 and π. As the real axis is approached the functions will no longer
exhibit “almost odd” or “almost even” behavior (there are singularities on the negative real
axis).

The technique we have used in the theorem is sufficient to prove the absence of odd or
even terms in all of the series given in the introduction. But the technique does not give
explicit expressions for the coefficients. This requires some further calculations and we now
turn to these.

3 Some series with only odd powers

Proof of (10). The proof of the alternative series (10) for lnn! is very simple. From the
duplication formula for the gamma function we have

Γ(n+ 1) =

√
π

22n+1

Γ
(

2
(

n+ 1
2

)

+ 1
)

Γ
((

n+ 1
2

)

+ 1
) .

Applying the logarithm to both sides and using the standard series for ln Γ(z + 1) twice on
the right clearly yields a series for Γ(n+ 1) in powers of n+ 1

2
, which is precisely (10).

The series can also be obtained directly. We recall that the standard series for lnn! can
be obtained from the Euler-Maclaurin summation formula [11, Section 14, Equation (18)]

n
∑

i=1

f(i) ∼

∫ n

f(x)dx+ C +
1

2
f(n) +

∞
∑

j=1

B2j

(2j)!
f (2j−1)(n),

by setting f(x) = ln x. The alternative series can be obtained from the “midpoint version”
of the Euler-Maclaurin summation formula [11, Section 14, Equation (19)]

n
∑

i=1

f(i) ∼

∫ n+ 1

2

f(x)dx+ C ′ +
∞
∑

j=1

B2j

(

1
2

)

(2j)!
f (2j−1)

(

n+
1

2

)

.
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Note that B2j

(

1
2

)

= B2j (2
1−2j − 1) [1, Equation 24.4.27].

Proof of (12) and (13). The proofs of (12) and (13) are similar, so we give full details just
for the latter, and an outline for the former.

We start the proof of (13) by writing

ln

(

2n− 1

n+m

)

= ln

(

n−m

2n

(2n)!

(n+m)!(n−m)!

)

. (14)

We now apply the standard expansion (2) of ln z! to this expression 3 times. Each application
gives a ln term (the leading order term) and an infinite series. Ignoring the three infinite
series for now gives the leading order term

ln

(

1
√
2π

n−m

2n

(2n)2n+
1

2

(n+m)n+m+ 1

2 (n−m)n−m+ 1

2

)

= ln

(

22n−1

√
πn

n−m

n+m

)

+ ln





1
(

1 + m
n

)n+m− 1

2
(

1− m
n

)n−m+ 1

2





= ln

(

22n−1

√
πn

)

−

(

n+m−
1

2

)

ln
(

1 +
m

n

)

−

(

n−m+
1

2

)

ln
(

1−
m

n

)

.

Using the Taylor series ln(1 + x) =
∑∞

i=1
(−1)i−1

i
xi to expand the logarithms in the second

and third terms, we find the leading order term of (14) is

ln

(

22n−1

√
πn

n−m

n+m

)

+
∞
∑

i=1

m2i−1(i−m)

i(2i− 1)n2i−1
. (15)

We now have to incorporate the correction terms (the infinite series coming from the 3
applications of (2) to (14)). These are

∞
∑

i=1

B2i

2i(2i− 1)

(

1

(2n)2i−1
−

1

(n+m)2i−1
−

1

(n−m)2i−1

)

=
∞
∑

i=1

B2i

2i(2i− 1)n2i−1

(

1

22i−1
−

(

1 +
m

n

)1−2i

−

(

1−
m

n

)1−2i
)

.

Using the binomial theorem (1 + x)1−2i =
∑∞

r=0

(

2i−2+r

r

)

(−x)r twice and rearranging the

8
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sums, this can be written

∞
∑

i=1

B2i

2i(2i− 1)(2n)2i−1
−

∞
∑

i=1

B2i

2i(2i− 1)n2i−1

∞
∑

r=0

(

2i− 2 + r

r

)

((

−
m

n

)r

+
(m

n

)r)

=
∞
∑

i=1

B2i

i(2i− 1)(2n)2i−1
−

∞
∑

i=1

∞
∑

s=0

B2i

i(2i− 1)n2i−1

(2i− 2 + 2s)!

(2i− 2)!(2s)!

(m

n

)2s

=
∞
∑

i=1

B2i

2i(2i− 1)(2n)2i−1
−

∞
∑

j=1

j
∑

i=0

2(2j − 2)!B2im
2(j−i)

(2i)!(2(j − i))!n2j−1

=
∞
∑

i=1

B2i

2i(2i− 1)(2n)2i−1
−

∞
∑

i=1

i
∑

j=0

(2i)!B2jm
2(i−j)

i(2i− 1)(2j)!(2(i− j))!n2i−1

=
∞
∑

i=1

1

i(2i− 1)n2i−1

(

B2i

22i
−

i
∑

j=0

(

2i

2j

)

B2jm
2(i−j)

)

. (16)

Here between the first and second line in the double sum we have replaced r by 2s as only
even values of r contribute; between the second and the third line we have replaced the index
s with a new index j = i + s; and between the third and fourth lines we have switched the
indices i and j. Combining the dominant terms (15) and the correction terms (16) we have

ln

(

2n− 1

n+m

)

∼ ln

(

22n−1

√
πn

n−m

n+m

)

+
∞
∑

i=1

1

i(2i− 1)n2i−1

(

(i−m)m2i−1 +
B2i

22i
−

i
∑

j=1

B2j

(

2i

2j

)

m2(i−j)

)

.

At this stage we observe that since B0 = 1, B1 = −
1
2
and all the other odd Bernoulli numbers

vanish,
2i
∑

k=0

Bk

(

2i

k

)

m2i−k = m2i
− im2i−1 +

i
∑

j=1

B2j

(

2i

2j

)

m2(i−j),

and thus our result so far can be written in the simpler form

ln

(

2n− 1

n+m

)

∼ ln

(

22n−1

√
πn

n−m

n+m

)

+
∞
∑

i=1

1

i(2i− 1)n2i−1

(

B2i

22i
−

2i
∑

k=0

Bk

(

2i

k

)

m2i−k

)

.

To obtain the final result (13) it just remains to use the standard fact about the Bernoulli
polynomials [1, Equation 24.2.5]

Bs(x) =
s
∑

k=0

(

s

k

)

Bkx
s−k.

9
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For the proof of (12) we start by writing

ln

(

2n

n+m

)

= ln

(

1

2n+ 1

(

2
(

n+ 1
2

))

!

(n+m)!(n−m)!

)

,

but we now expand the factorial in the numerator using the standard series (2) and the
factorials in the denominator using the alternative series (10). The leading order terms
become

ln





4n
√

π
(

n+ 1
2

)



+ ln







1
(

1 + m

n+ 1

2

)n+ 1

2
+m (

1− m

n+ 1

2

)n+ 1

2
−m






,

and the correction terms become

∞
∑

i=1

B2i

2i(2i− 1)
(

n+ 1
2

)2i−1

(

1

22i−1
−

1
22i−1 − 1

(1 + m

n+ 1

2

)2i−1
−

1
22i−1 − 1

(1− m

n+ 1

2

)2i−1

)

.

Both of these expressions are easily expanded in inverse powers of n + 1
2
and combined to

give (12).

A final comment in this section concerns the existence of two odd-power expansions for
lnCBC(n), Equations (5) and (11). The coefficients in the series are “opposite and equal”.
Denoting the series (of odd powers) in (5) by s(n) we have

lnCBC(n) ∼ ln

(

4n
√
πn

)

+ s(n), ln CBC(n) ∼ ln





4n
√

π
(

n+ 1
2

)



− s

(

n+
1

2

)

.

Averaging these two results gives

lnCBC(n) ∼ ln





4n

√
π
(

n
(

n+ 1
2

)) 1

4



+
1

2

(

s(n)− s

(

n+
1

2

))

∼ ln





4n

√
π
(

n
(

n+ 1
2

)) 1

4



−
1

2

(

s(−n) + s

(

n+
1

2

))

∼ ln





4n

√
π
(

n
(

n+ 1
2

)) 1

4



−
1

2

(

s

(

1

4
−

(

n+
1

4

))

+ s

(

1

4
+

(

n+
1

4

)))

.

The last expression is evidently an even function of n + 1
4
. Thus we see there is a direct

connection between the existence of two “opposite and equal” odd power series for lnCBC(n)
and the even power series for lnCBC(n).
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4 Some series with only even powers

The remaining results from the introduction that need to be explained are the explicit forms
of the coefficients in the even power series for lnCBC(n) and lnCat(n), (8) and (9). In
greater generality, part (c) of Theorem 1 stated that for any integer k the quantity

ln





√
π
(

n+ 1
4
+ k

2

)k+ 1

2

4n
(2n)!

n!(n+ k)!





has an asymptotic expansion involving only even powers of n + 1
4
+ k

2
. We now show the

following:

Theorem 2. For any integer k

ln

(

(2n)!

n!(n+ k)!

)

∼ ln





4n

√
π
(

n+ 1
4
+ k

2

)k+ 1

2



−

∞
∑

i=1

1

i(2i+ 1)
(

n+ 1
4
+ k

2

)2iB2i+1

(

1

4
−

k

2

)

,

(17)
where Bj(x) denotes the jth Bernoulli polynomial. The series (8) is obtained from the case
k = 0 using the result [1, Equations 24.4.31 and 24.2.7]

B2i+1

(

1

4

)

= −
(2i+ 1)E2i

42i+1
, i = 1, 2, . . . .

The series (9) is obtained from the case k = 1 using the result [1, Equations 24.4.3 and
24.4.31]

B2i+1

(

−
1

4

)

=
(2i+ 1)(E2i − 4)

42i+1
, i = 1, 2, . . .

and the Taylor series for ln
(

1+x
1−x

)

.

Proof. As in the proof of part (c) of Theorem 1 we write

f(n) = ln





√
π
(

n+ 1
4
+ k

2

)k+ 1

2

4n
(2n)!

n!(n+ k)!





and g(n) = f
(

n−
1
4
−

k
2

)

. Our task is to compute the asymptotic expansion of g(n) in
inverse powers of n. As before we obtain

g(n) = ln

(

nk+ 1

2

Γ
(

n+ 1
4
−

k
2

)

Γ
(

n+ 3
4
+ k

2

)

)

.
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Writing x = 1
4
−

k
2
we now proceed as in the proofs given in Section 3:

g(n) = (1− 2x) lnn+ lnΓ (n+ x)− ln Γ (n+ 1− x)

∼ (1− 2x) lnn+

(

n+ x−
1

2

)

ln (n+ x− 1)−

(

n+
1

2
− x

)

ln (n− x)

+ (1− 2x) +
∞
∑

j=1

B2j

2j(2j − 1)

(

1

(n+ x− 1)2j−1 −
1

(n− x)2j−1

)

= n

(

ln

(

1 +
x− 1

n

)

− ln
(

1−
x

n

)

)

+

(

x−
1

2

)(

ln

(

1 +
x− 1

n

)

+ ln
(

1−
x

n

)

)

+ (1− 2x)

+
∞
∑

j=1

B2j

2j(2j − 1)n2j−1

(

(

1 +
x− 1

n

)−2j+1

−

(

1−
x

n

)−2j+1
)

= n

∞
∑

r=1

(−1)r+1

r

((

x− 1

n

)r

−

(

−x

n

)r)

+

(

x−
1

2

) ∞
∑

r=1

(−1)r+1

r

((

x− 1

n

)r

+

(

−x

n

)r)

+ (1− 2x)

+
∞
∑

j=1

B2j

2j(2j − 1)n2j−1

∞
∑

r=0

(−1)r
(2j + r − 2)!

(2j − 2)!r!

((

x− 1

n

)r

−

(

−x

n

)r)

=
∞
∑

r=2

(−1)r+1

rnr−1
((x− 1)r − (−x)r) +

(

x−
1

2

) ∞
∑

r=1

(−1)r+1

rnr
((x− 1)r + (−x)r)

+
∞
∑

j=1

∞
∑

r=0

(−1)rB2j

n2j+r−1

(2j + r − 2)!

(2j)!r!
((x− 1)r − (−x)r) .

Since Bi = 0 for i odd and greater than 1, we can rewrite the sum on the last line as

∞
∑

k=2

∞
∑

r=0

(−1)rBk

nk+r−1

(k + r − 2)!

k!r!
((x− 1)r − (−x)r)

=
∞
∑

s=1

s+1
∑

k=2

Bk

ns

(s− 1)!

k!(s+ 1− k)!

(

(1− x)s+1−k
− xs+1−k

)

. (18)

where in the double sum we have replaced summation over r by summation over s = k +
r − 1. Furthermore, recalling that B0 = 1, B1 = −

1
2
, a straightforward but rather lengthy

manipulation of the terms on the penultimate line of the calculation of g(n) shows that they
are exactly the terms required to increase the range of summation over k in (18) to start
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from 0. Thus we obtain

g(n) ∼
∞
∑

s=1

1

s(s+ 1)ns

s+1
∑

k=0

(

s+ 1

k

)

Bk

(

(1− x)s+1−k
− xs+1−k

)

=
∞
∑

s=1

1

s(s+ 1)ns
(Bs+1(1− x)−Bs+1(x)).

Finally, using the symmetry property of the Bernoulli polynomials [1, Equation 24.4.3]

Bn(1− x) = (−1)nBn(x)

we see that the contribution to this sum from odd values of s vanishes, and writing s = 2i
we have

g(n) ∼ −

∞
∑

i=1

1

2i(2i+ 1)n2i
B2i+1(x),

from which the result in the theorem follows.

Notes

1. The series appearing in the k = 0 and k = 1 cases, i.e., the expansions (8) and (9), have
identical coefficients. As mentioned in the introduction, there is an obvious relation
between the CBC and Cat functions, namely

Cat(n) =
CBC(n)

n+ 1
.

This does not make the passage between the expansions (8) and (9) obvious. There is,
however, a second relation between the functions

CBC

(

n+
1

2

)

Cat(n) =
24n+1

π
(

n+ 1
2

)

(n+ 1)
,

which can easily be established using the duplication formula for the gamma function.
Using this, it is easy to pass between the series (8) and (9).

2. The previous note concerned the relation between the cases k = 0 and k = 1 in the
theorem. Other cases can also be related. For example we now explain how to pass
from the case k = 0 to the case k = 2. The k = 0 result tells us about the expansion
of

(2n)!

(n!)2

in powers of n+ 1
4
. Shifting n by 1, this tells us about the expansion of

(2n+ 2)!

((n+ 1)!)2
= 2

(2n+ 1)!

n!(n+ 1)!
= 2

(

2n+ 1

n

)
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in powers of n + 5
4
. Dividing by 4(n + 1

2
)(n + 2) = 4

(

n+ 5
4

)2
−

9
4
, which is an even

function of n + 5
4
, this tells us about the expansion of (2n)!

n!(n+2)!
in powers of n + 5

4
, i.e.,

we obtain the result of the theorem for k = 2.

5 Postscript

This paper is a slightly updated version of a paper originally posted by one of the authors on a
personal website in 2006. It is being submitted for publication in 2021 as the aforementioned
website is about to be closed. The original paper has been cited by Luschny on the website
[6] and in entries A220002, A220422 and A239739 in the On-Line Encyclopedia of Integer
Sequences, by Elezov́ıc in [12], and by others.
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