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Abstract

We determine the asymptotic behavior of log lcm(a + s1, a
2 + s2, . . . , a

n + sn), for
a ≥ 2 an integer and (sn)n≥1 a periodic sequence in {−1,+1}. We also carry out the
same analysis for (sn)n≥1 a sequence of independent and uniformly distributed random
variables in {−1,+1}.

1 Introduction

Let (Fn)n≥1 be the sequence of Fibonacci numbers, defined recursively by F1 = 1, F2 = 1,
and Fn+2 = Fn+1 + Fn, for every integer n ≥ 1. Matiyasevich and Guy [10] proved that

log lcm(F1, F2, . . . , Fn) ∼
3 log

(

1+
√
5

2

)

π2
· n2,

as n → +∞, where lcm denotes the least common multiple. This result was generalized
to Lucas sequences, Lehmer sequences, and other sequences with special divisibility proper-
ties [1–4,6, 8, 9, 16]. In particular, for every integer a ≥ 2 we have

log lcm(a− 1, a2 − 1, . . . , an − 1) ∼
3 log a

π2
· n2 (1)
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and

log lcm(a+ 1, a2 + 1, . . . , an + 1) ∼
4 log a

π2
· n2, (2)

as n → +∞. Precisely, (1) follows from [9, Lemma 3] applied to the Lucas sequence
(

an−1
a−1

)

n≥1
, while (2) follows from [6, Théorème] applied to the companion Lucas sequence

(an + 1)n≥1.
We generalize (1) and (2) by giving asymptotic formulas for least common multiples of

sequences of shifted powers (an + sn)n≥1, where (sn)n≥1 is a sequence of shifts in {−1,+1}.
This is somehow similar to a previous work of the author [14], in which least common
multiples of the sequence of shifted Fibonacci numbers (Fn + sn)n≥1 were studied.

Our first result regards periodic sequences of shifts.

Theorem 1. Let a ≥ 2 be an integer and let s = (sn)n≥1 be a periodic sequence in {−1,+1}.
Then there exists an effectively computable rational number Cs > 0 such that

log lcm(a+ s1, a
2 + s2, . . . , a

n + sn) ∼ Cs ·
log a

π2
· n2, (3)

as n → +∞.

By “effectively computable” we mean that there exists an algorithm that, given as input
the period of the periodic sequence s, returns as output the numerator and denominator
of the rational number Cs. Indeed, we implemented such algorithm and we computed the
constant Cs for periodic sequences with short period, see Table 1.

s Cs s Cs s Cs s Cs

- 3 -+-- 27/8 --+-+ 319/96 +--+- 733/216
+ 4 -++- 125/36 --++- 487/144 +--++ 769/216
-+ 4 -+++ 38/9 --+++ 7687/2160 +-+-- 487/144
+- 3 +--- 3 -+--- 101/32 +-+-+ 7687/2160
--+ 13/4 +--+ 7/2 -+--+ 319/96 +-++- 2123/576
-+- 105/32 +-++ 7/2 -+-+- 487/144 +-+++ 2219/576
-++ 173/48 ++-- 125/36 -+-++ 7687/2160 ++--- 487/144
+-- 105/32 ++-+ 38/9 -++-- 733/216 ++--+ 7687/2160
+-+ 173/48 +++- 27/8 -++-+ 769/216 ++-+- 2123/576
++- 47/12 ----+ 19/6 -+++- 2123/576 ++-++ 2219/576
---+ 7/2 ---+- 101/32 -++++ 2219/576 +++-- 2123/576
--+- 3 ---++ 319/96 +---- 101/32 +++-+ 2219/576
--++ 7/2 --+-- 101/32 +---+ 319/96 ++++- 39/10

Table 1: Values of Cs for periodic sequences s of period at most 5.

Our second result is an asymptotic formula for random sequences of shifts (see [5,7,12,13]
for similar results on least common multiples of random sequences).
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Theorem 2. Let a ≥ 2 be an integer and let (sn)n≥1 be a sequence of independent and
uniformly distributed random variables in {−1,+1}. Then

log lcm(a+ s1, a
2 + s2, . . . , a

n + sn) ∼ 6 Li2
(

1
2

)

·
log a

π2
· n2, (4)

with probability 1−o(1), as n → +∞, where Li2(z) :=
∑∞

k=1 z
k/k2 is the dilogarithm function.

Remark 1. It is known that Li2
(

1
2

)

=
(

π2 − 6(log 2)2
)

/12 (see, e.g., [17]), but in (4) we
preferred to keep explicit the factor 6 Li2

(

1
2

)

in order to ease the comparison with (1), (2),
and (3). Numerically, we have 6 Li2

(

1
2

)

= 3.493443 . . . so that the right-hand side of (4) is
a bit less than the arithmetic mean of the right-hand sides of (1) and (2).

We leave the following questions to the interested reader:

Question 1. Is there a simple characterization of the set E of sequences s = (sn)n≥1 in
{−1,+1} such that the limit

L(s) := lim
n→+∞

log lcm(a+ s1, a
2 + s2, . . . , a

n + sn)

(log a/π2) · n2

exists? (It follows from Lemma 3 below that L(s) does not depend on a.)

Question 2. What is the image L(E)?

Question 3. Does (an appropriate normalization of) the random variable on the left-hand
side of (4) converge to some known distribution?

2 Notation

We employ the Landau-Bachmann “Big Oh” and “little oh” notations O and o, as well as
the associated Vinogradov symbol ≪, with their usual meanings. For real random variables
Xn and Yn, depending on n, we say that “Xn ∼ Yn with probability 1− o(1) as n → +∞” if
for every ε > 0 we have P

[

|Xn − Yn| > ε|Yn|
]

= oε(1) as n → +∞. We let [m,n] and (m,n)
denote the least common multiple and the greatest common divisor, respectively, of the two
integers m and n. We reserve the letter p for prime numbers, and we let νp(n) denote the
p-adic valuation of the positive integer n, that is, the exponent of p in the prime factorization
of n. We write ϕ(n) and τ(n) for the Euler function and the number of positive divisors,
respectively, of a natural number n.

3 Preliminaries

Hereafter, let a ≥ 2 be a fixed integer. Define the nth cyclotomic polynomial by

Φn(X) :=
∏

1≤ k≤n
(n,k)= 1

(

X − e
2πik
n

)

, (5)
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for every integer n ≥ 1. It is well known that Φn(X) ∈ Z[X]. Moreover, from (5) we get
that

an − 1 =
∏

d∈D−(n)

Φd(a) and an + 1 =
∏

d∈D+(n)

Φd(a), (6)

for every integer n ≥ 1, where D−(n) := {d ∈ N : d | n} and D+(n) := D−(2n) \ D−(n).
We need two results about the sequence of integers (Φd(a))d∈N.

Lemma 1. We have (Φm(a),Φn(a)) | m, for all integers m > n ≥ 1.

Proof. Let d := (Φm(a),Φn(a)). By (6) we have that d divides (am − 1, an − 1) = a(m,n) − 1.
Moreover, since (m,n) < m, by (6) again we have that

d | Φm(a) |
am − 1

a(m,n) − 1
≡ 1 + a(m,n) +

(

a(m,n)
)2

+ · · ·+
(

a(m,n)
)

m
(m,n)

−1
≡

m

(m,n)
(mod d).

Consequently, d divides m/(m,n) and, a fortiori, d divides m.

Lemma 2. We have log Φn(a) = ϕ(n) log a+Oa(1), for every integer n ≥ 1.

Proof. See [11, Lemma 2.1(iii)].

For every sequence s = (sn)n≥1 in {−1,+1}, let us define

ℓa,s(n) := lcm(a+ s1, a
2 + s2, . . . , a

n + sn)

and
Ls(n) :=

⋃

k≤n

D(sk)(k),

for all integers n ≥ 1.
The next lemma will be fundamental in the proofs of Theorem 1 and Theorem 2.

Lemma 3. We have

log ℓa,s(n) =
∑

d∈Ls(n)

ϕ(d) log a+Oa

(

n2

log n

)

,

for every integer n ≥ 2.

Proof. For every integer m ≥ 1, write m = m(≤) ·m(>), where m(≤), respectively m(>), is a
positive integer having all the prime factors not exceeding 2n, respectively greater than 2n.

Suppose that pv || ℓa,s(n), for some prime number p ≤ 2n and some integer v ≥ 1. Then
pv | ak + sk for some positive integer k ≤ n, and consequently pv ≤ an+1. Therefore,

log ℓ(≤)
a,s (n) = log

(

∏

pv || ℓa,s(n)
p≤ 2n

pv
)

≤ log
(

∏

pv || ℓa,s(n)
p≤ 2n

an+1
)

≤ #{p : p ≤ 2n} · (n+ 1) log a ≪a
n2

log n
, (7)
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since the number of primes not exceeding 2n is O(n/log n).

On the one hand, in light of Lemma 1, the integers Φ
(>)
1 (a), . . . ,Φ

(>)
2n (a) are pairwise

coprime. Hence, also using (6), we have

ℓ(>)
a,s (n) = lcm

k=1,...,n
(ak + sk)

(>) = lcm
k=1,...,n

∏

d∈D(sk)(n)

Φ
(>)
d (a)

= lcm
k=1,...,n

lcm
d∈D(sk)(n)

Φ
(>)
d (a) = lcm

d∈Ls(n)
Φ

(>)
d (a) | lcm

d∈Ls(n)
Φd(a). (8)

On the other hand, using (6) again, we have

lcm
d∈Ls(n)

Φd(a) = lcm
k=1,...,n

lcm
d∈D(sk)(n)

Φd(a) | lcm
k=1,...,n

∏

d∈D(sk)(n)

Φd(a)

= lcm
k=1,...,n

(ak + sk) = ℓa,s(n). (9)

Therefore, putting together (7), (8), and (9), we get that

log ℓa,s(n) = log
(

∏

d∈Ls(n)

Φd(a)
)

+O
(

log ℓ(≤)
a,s (n)

)

= log
(

∏

d∈Ls(n)

Φd(a)
)

+Oa

(

n2

log n

)

=
∑

d∈Ls(n)

ϕ(d) log a+Oa(#Ls(n)) +Oa

(

n2

log n

)

,

where we used Lemma 2. The claim follows since Ls(n) ⊆ [1, 2n] and so #Ls(n) ≤ 2n.

For all integers r ≥ 0 and m ≥ 1, and for every x ≥ 1, let us define the arithmetic
progression

Ar,m(x) :=
{

n ≤ x : n ≡ r (mod m)
}

.

We need an asymptotic formula for a sum of the Euler totient function over an arithmetic
progression.

Lemma 4. Let r,m be positive integers and let z ∈ [0, 1). Then we have
∑

n∈Ar,m(x)

ϕ(n)
(

1− z⌊x/n⌋
)

=
3

π2
· cr,m ·

(1− z) Li2(z)

z
· x2 +Or,m

(

x(log x)2
)

,

for every x ≥ 2, where

cr,m :=
1

m

∏

p |m
p | r

(

1 +
1

p

)−1
∏

p |m
p ∤ r

(

1−
1

p2

)−1

,

while for z = 0 the factor involving Li2(z) is meant to be equal to 1, and the error term can
be improved to Or,m(x log x).

Proof. See [14, Lemma 3.4, Lemma 3.5].
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4 Proof of Theorem 1

For all integers r,m ≥ 1, let us define the sets

T −
r,m :=

{

t ∈ {1, . . . , 2m} : ∃v ≥ 1 s.t. tv ≡ r (mod m)
}

,

T +
r,m :=

{

t ∈ {1, . . . , 2m} : 2 | t, ∃v ≥ 1 s.t. 2 ∤ v and t
2
v ≡ r (mod m)

}

and the associated values

θ−r,m(t) :=
(

min{v ≥ 1 : tv ≡ r (mod m)}
)−1

for each t ∈ T −
r,m,

θ+r,m(t) := 2
(

min{v ≥ 1 : 2 ∤ v and t
2
v ≡ r (mod m)}

)−1
for each t ∈ T +

r,m.

The next lemma regards unions of D−(k), respectively D+(k), with k ∈ Ar,m(x).

Lemma 5. Let r,m ≥ 1 be integers and let u ∈ {−1,+1}. Then we have

⋃

k∈Ar,m(x)

D(u)(k) =
⋃

t∈T (u)
r,m

At,2m

(

θ(u)r,m(t)x
)

,

for every x ≥ 1.

Proof. For u = +1, the claim is [14, Lemma 3.3]. For u = −1, the claim is [14, Lemma 3.2],
taking into account that At,m(x) = At,2m(x) ∪ At+m,2m(x).

Proof of Theorem 1. Let s = (sn)n≥1 be a periodic sequence in {−1,+1}, and let m be the

length of its period. Moreover, let R
(u)
s := {r ∈ {1, . . . ,m} : sr = u} for u ∈ {−1,+1}.

By periodicity of s and by Lemma 5, it follows that

Ls(n) =
⋃

u∈{−1,+1}

⋃

r∈R(u)
s

⋃

k∈Ar,m(n)

D(u)(k)

=
⋃

u∈{−1,+1}

⋃

r∈R(u)
s

⋃

t∈T (u)
r,m

At,2m

(

θ(u)r,m(t)n
)

=
⋃

t∈Ts

At,2m

(

θs(t)n
)

where

Ts :=
⋃

u∈{−1,+1}

⋃

r∈R(u)
s

T (u)
r,m =

m
⋃

r=1

T (sr)
r,m

and
θs(t) := max

{

θ(u)r,m(t) : t ∈ T (u)
r,m for some u ∈ {−1,+1}, r ∈ R(u)

s

}

.
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Hence, from Lemma 3 and Lemma 4 (with z = 0), we get that

log ℓa,s(n) =
∑

t∈Ts

∑

d∈At,2m(θs(t)n)

ϕ(d) log a+Oa

(

n2

log n

)

= Cs ·
log a

π2
· n2 +Oa,m

(

n2

log n

)

,

where
Cs := 3

∑

t∈Ts

ct,2mθs(t)
2

is a positive rational number effectively computable in terms of s1, . . . , sm.

Example 1. Let s be the periodic sequence with period −1,+1,+1,+1 of length m = 4.
We have

T −
1,4 = {1, 3, 5, 7}, θ−1,4(1) = 1, θ−1,4(3) =

1
3
, θ−1,4(5) = 1, θ−1,4(7) =

1
3
,

T +
2,4 = {4}, θ+2,4(4) = 2,

T +
3,4 = {2, 6}, θ+3,4(2) =

2
3
, θ+3,4(6) = 2,

T +
4,4 = {8}, θ+4,4(8) = 2,

so that Ts = {1, 2, 3, 4, 5, 6, 7, 8} and

θs(1) = 1, θs(2) =
2
3
, θs(3) =

1
3
, θs(4) = 2,

θs(5) = 1, θs(6) = 2, θs(7) =
1
3
, θs(8) = 2.

Moreover, cr,8 =
1
6
if r is odd, and cr,8 =

1
12

if r is even. Therefore, we have

Cs = 3 ·
(

1
6
· 12 + 1

12
·
(

2
3

)2
+ 1

6
·
(

1
3

)2
+ 1

12
· 22 + 1

6
· 12 + 1

12
· 22 + 1

6
·
(

1
3

)2
+ 1

12
· 22

)

= 38
9
.

5 Proof of Theorem 2

Let s = (sn)n≥1 be a sequence of independent and uniformly distributed random variables
in {−1,+1}. Moreover, define

Is(n, d) :=

{

1, if d ∈ Ls(n);

0, otherwise,

for all integers n, d ≥ 1. The next lemma gives two expected values involving Is(n, d).

Lemma 6. We have
E
[

Is(n, d)
]

= 1− 2−⌊n(2,d)/d⌋ (10)
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and

E
[

Is(n, d1)Is(n, d2)
]

= 1− 2−⌊n(2,d1)/d1⌋ − 2−⌊n(2,d2)/d2⌋

+ 2−⌊n(2,d1)/d1⌋−⌊n(2,d2)/d2⌋+⌊n(2,[d1,d2])/[d1,d2]⌋

{

1, if ν2(d1) = ν2(d2);

0, otherwise,

for all integers d, d1, d2 ≥ 1.

Proof. On the one hand, by the definitions of Is(n, d) and Ls(n), we have

E
[

Is(n, d)
]

= P
[

d ∈ Ls(n)
]

= 1− P

[

∧

k≤n

(

d /∈ D(sk)(k)
)

]

= 1− P









∧

k≤n
d | 2k

(

d /∈ D(sk)(k)
)









= 1− P









∧

k≤n
d | 2k

(

(d | k ∧ sk = +1) ∨ (d ∤ k ∧ sk = −1)
)









= 1− 2−#{k≤n : d | 2k}

= 1− 2−⌊n(2,d)/d⌋,

which is (10).
On the other hand, by linearity of the expectation and by (10), we have

E
[

Is(n, d1)Is(n, d2)
]

= E
[

Is(n, d1) + Is(n, d2)− 1 +
(

1− Is(n, d1)
)(

1− Is(n, d2)
)]

= E
[

Is(n, d1)
]

+ E
[

Is(n, d2)
]

− 1 + E
[(

1− Is(n, d1)
)(

1− Is(n, d2)
)]

= 1− 2−⌊n(2,d1)/d1⌋ − 2−⌊n(2,d2)/d2⌋ + P
[

d1 /∈ Ls(n) ∧ d2 /∈ Ls(n)
]

. (11)

Let P be the probability at the end of (11).
Suppose for a moment that [d1, d2] ≤ 2n and that d1 and d2 have different 2-adic valua-

tions, say ν2(d1) < ν2(d2), without loss of generality. Let h := [d1, d2]/2 and note that h is
an integer not exceeding n. Furthermore, d1 ∈ D−(h) and d2 ∈ D+(h). Hence, no matter
the value of sh, at least one of d1, d2 belongs to Ls(n), and consequently P = 0.

Now suppose that [d1, d2] > 2n or ν2(d1) = ν2(d2). In the second case, note that for every
integer k such that [d1, d2] | 2k we have that either d1 | k and d2 | k, or d1 ∤ k and d2 ∤ k.
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Therefore,

P = P









∧

k≤n
d1 | 2k∧ d2 ∤ 2k

(

(d1 | k ∧ sk = +1) ∨ (d1 ∤ k ∧ sk = −1)
)

∧
∧

k≤n
d1 ∤ 2k∧ d2 | 2k

(

(d2 | k ∧ sk = +1) ∨ (d2 ∤ k ∧ sk = −1)
)

∧
∧

k≤n
d1 | 2k∧ d2 | 2k

(

(d1 | k ∧ d2 | k ∧ sk = +1) ∨ (d1 ∤ k ∧ d2 ∤ k ∧ sk = −1)
)









= 2−#{k≤n : d1 | 2k∨ d2 | 2k}

= 2−⌊n(2,d1)/d1⌋−⌊n(2,d2)/d2⌋+⌊n(2,[d1,d2])/[d1,d2]⌋,

and the proof is complete.

The following lemma is a simple upper bound for a sum of greatest common divisors.

Lemma 7. We have
∑

[d1, d2]≤n

(d1, d2) ≪ n2,

for every integer n ≥ 1.

Proof. Let ai := di/d for i = 1, 2, where d := (d1, d2). Then we have

∑

[d1, d2]≤n

(d1, d2) =
∑

d≤n

d
∑

a1a2 ≤n/d
(a1, a2)= 1

1 ≤
∑

d≤n

d
∑

m≤n/d

τ(m)

≪ n
∑

d≤n

log
(n

d

)

= n (n log n− log(n!)) < n2,

where we used the upper bound
∑

m≤x τ(m) ≪ x log x (see, e.g., [15, Ch. I.3, Theorem 3.2])
and the inequality n! > (n/e)n.

Proof of Theorem 2. Let us define the random variable

X :=
∑

d≤ 2n

ϕ(d) Is(n, d).
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From the linearity of expectation, Lemma 6, and Lemma 4, it follows that

E[X] :=
∑

d≤ 2n

ϕ(d)E
[

Is(n, d)]

=
∑

d≤ 2n

ϕ(d)
(

1− 2−⌊n(2,d)/d⌋)

=
∑

d∈A1,2(n)

ϕ(d)
(

1− 2−⌊n/d⌋)+
∑

d∈A2,2(2n)

ϕ(d)
(

1− 2−⌊2n/d⌋)

=
3

π2
(c1,2 + 4c2,2) Li2

(

1
2

)

n2 +O
(

n(log n)2)

=
6

π2
Li2

(

1
2

)

n2 +O
(

n(log n)2
)

. (12)

Furthermore, from Lemma 6 and Lemma 7, we get that

V[X] = E
[

X2
]

− E[X]2

=
∑

d1, d2 ≤ 2n

ϕ(d1)ϕ(d2)
(

E
[

Is(n, d1)Is(n, d2)
]

− E
[

Is(n, d1)
]

E
[

Is(n, d2)
]

)

≤
∑

[d1, d2]≤ 2n

d1d2 2
−⌊n(2,d1)/d1⌋−⌊n(2,d2)/d2⌋+⌊n(2,[d1,d2])/[d1,d2]⌋ (1− 2−⌊n(2,[d1,d2])/[d1,d2]⌋)

≤
∑

[d1, d2]≤ 2n

d1d2

⌊

n(2, [d1, d2])

[d1, d2]

⌋

≪ n
∑

[d1, d2]≤ 2n

(d1, d2) ≪ n3, (13)

where we also used the inequality 1− 2−k ≤ k/2, which holds for every integer k ≥ 0.
Therefore, by Chebyshev’s inequality, (12), and (13), it follows that

P
[

∣

∣X − E[X]
∣

∣ > εE[X]
]

≤
V[X]

(

εE[X]
)2 ≪

1

ε2n
= oε(1),

as n → +∞. Hence, again by (12), we have

X ∼ E[X] ∼
6

π2
Li2

(

1
2

)

n2,

with probability 1− o(1). Finally, thanks to Lemma 3, we have

log ℓa,s(n) = X log a+Oa

(

n2

log n

)

,

and the asymptotic formula (4) follows.
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[7] J. Cilleruelo, J. Rué, P. Šarka, and A. Zumalacárregui, The least common multiple of
random sets of positive integers, J. Number Theory 144 (2014), 92–104.

[8] J. P. Jones and P. Kiss, An asymptotic formula concerning Lehmer numbers, Publ.
Math. Debrecen 42 (1993), 199–213.
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