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Abstract

For given positive integers a, b, c, and d, we consider the generalized bi-periodic
Fibonacci sequence (Fn)n≥0 defined by the recurrence relation Fn = aFn−1+ cFn−2 for
n even and Fn = bFn−1 + dFn−2 for n odd, with initial conditions F0 = 0, F1 = 1. In
the present paper, we study the periodicity of (Fn)n≥0 modulo a given integer m ≥ 2
relatively prime to c and d. We extend some well-known results on the period and the
rank of the classical Fibonacci sequence to the bi-periodic case.

1 Introduction

The Fibonacci sequence and its various generalizations have interested mathematicians for
many years. Edson and Yayenie [4] introduced the generalized Fibonacci sequence, also
known as the bi-periodic Fibonacci sequence, by considering the following piecewise linear
recurrence relation with two non-zero real parameters a and b:

q0 = 0, q1 = 1, qn =

{

aqn−1 + qn−2, for n even;

bqn−1 + qn−2, for n odd,
(n ≥ 2). (1)
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Many sequences in the literature are special cases of this sequence. The case a = b = 1
corresponds to the classical Fibonacci sequence A000045, and the case a = b = 2 gives the
Pell sequence A000129, while for a = b = k for some positive integer k, we obtain the k-
Fibonacci sequence [5]. A further generalization has been defined in [10, 17] by preserving the
initial conditions and modifying the recurrence relation (1) in such a way that the resulting
sequence (2) depends on four real parameters a, b, c, and d. Let (Fn)n≥0 be the generalized
bi-periodic Fibonacci sequence defined as follows:

F0 = 0, F1 = 1, Fn =

{

aFn−1 + cFn−2, for n even;

bFn−1 + dFn−2, for n odd,
(n ≥ 2). (2)

Notice that for c = d = 1, (Fn)n≥0 reduces to the sequence (1). For the case a = b and c = d,
we have the (a, c)−Fibonacci sequence.

The periodicity of linear recurrence sequences reduced modulo an integer m has been
studied by several authors. The interest in this topic is the diversity of the fields of application
such that cryptography (the generation of pseudo-random numbers), coding theory and
electrical engineering. Wall [16] studied the periodicity of the Fibonacci sequence modulo
an arbitrary integer m and established many interesting results. Vinson [15] extended the
work of Wall and studied the rank of apparition of m in the Fibonacci sequence. Recently,
the periodicity of various generalizations of the Fibonacci sequence has been investigated in
several papers; see [1, 2, 3, 6, 7, 8, 9, 14].

In the present paper, we investigate the periodicity of the generalized bi-periodic Fi-
bonacci sequence (Fn)n≥0 modulo m ≥ 2, where a, b, c, and d are given positive integers.
Assuming that m is chosen such that m is relatively prime to c and d, we prove that (Fn)n≥0

reduced modulo m is periodic, i.e., there exists a positive integer r such that

Fn+r = Fn, for all n ≥ 0. (3)

We extend some well-known results on the period and the rank of the classical Fibonacci
sequences to the bi-periodic case.

Since we are dealing with the generalized bi-periodic Fibonacci sequences, reduced mod-
ulo m, the condition a 6≡ b (mod m) or c 6≡ d (mod m) ensures that the considered sequences
are actually bi-periodic. For the case where a ≡ b (mod m) and c ≡ d (mod m) (Fn mod m)
coincides with the (a, c)-Fibonacci sequence; see [7, 9].

Tascı and Kızılırmak [13] studied the period of the generalized bi-periodic Fibonacci
sequences Fn for the case c = d = 1. The authors defined the period of Fn modulo m to be
the least positive integer r such that Fr ≡ 0 (modm) and Fr+1 ≡ 1 (modm). However, unlike
the case where a = b, the integer r does not necessarily satisfy Property (3); see Example
2. Furthermore, we mention that [13, Theorem 4] is true only if we add the condition ab is
also a quadratic residue modulo p (see Example 9 for p = 11).
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2 The periodicity of the generalized bi-periodic Fi-

bonacci sequences modulo m

Let a, b, c, d, and m be positive integers, and assume m is chosen such that gcd(c,m) =
gcd(d,m) = 1. In this section, we investigate the period of (Fn)n≥0 reduced modulo m.
Flacon and Plaza [6] determined the length of the period of the k-Fibonacci sequences
reduced modulo an integer m. Notice that for a = b = k and c = d = 1, (Fn)n≥0 corresponds
to the k-Fibonacci sequences.

Following the proof of [6, Theorem 2], we show in the next theorem that the sequence
(Fn mod m)n is periodic.

Theorem 1. The sequence (Fn)n≥0 is periodic modulo m.

Proof. Since there are only m2 pairs of integers modulo m, at least one repetition of a pair
must occur within the following m2 + 1 pairs of the sequence:

(F0, F1), (F2, F3), . . . , (F2m2 , F2m2+1).

Let i and j be integers such that 0 ≤ i < j ≤ m2. Let (F2i, F2i+1) ≡ (F2j , F2j+1) (mod m),
with r = 2j − 2i. It follows by induction that

Fn+r = Fn for all n ≥ 2i.

Now, since c and d are invertible modulo m, by backward induction we see that the sequence
Fn is periodic. Indeed, from the recurrence relation (2) we have

F2i−1 ≡ F2j−1, F2i−2 ≡ F2j−2, . . . , F1 ≡ F2j−2i+1 = Fr+1, and F0 ≡ F2j−2i = Fr.

Let k(m) denote the period of the sequence (Fn mod m), i.e., the least positive integer
r, for which (3) is satisfied.

Example 2. We consider the generalized bi-periodic Fibonacci sequence generated by a = 2
and b = c = d = 1 that we find in [11] as A048788. The first few terms of this sequence
reduced modulo p = 3 are

0, 1, 2, 0, 2, 2, 0, 2, 1, 0, 1, 1 . . . .

Then we only have repetitions of these terms, so k(3) = 12.

Theorem 3. Let r be a positive integer. If a 6≡ b (mod m) or c 6≡ d (mod m), the following
assertions are equivalent:

(i) Fn+r ≡ Fn (mod m) for all n ≥ 0;

(ii) (Fr, Fr+1, Fr+2, Fr+3) ≡ (F0, F1, F2, F3) (mod m);

(iii) (Fr, Fr+1) ≡ (F0, F1) (mod m), and the integer r is even.
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In particular, the period k(m) is an even number.

Proof. Let r be a positive integer such that (Fr, Fr+1, Fr+2, Fr+3) ≡ (F0, F1, F2, F3) (mod m).
If r is an odd number, we have modulo m

a = F2 ≡ Fr+2 = bFr+1 + dFr ≡ bF1 + dF0 = b,

and
bF2 + dF1 = F3 ≡ Fr+3 = aFr+2 + cFr+1 ≡ aF2 + cF1.

Contradiction.

So when a 6≡ b (mod m) or c 6≡ d (mod m), the period k(m) is the smallest integer r
satisfying one of the three properties of Theorem 3. Since any positive integer r that satisfies
(3) is a multiple of the period k(m) by Theorem 3, we have

{

Fr ≡ 0 (mod m)

Fr+1 ≡ 1 (mod m)
⇐⇒ k(m) | r, (4)

for any r ∈ 2N.
The following theorem shows that we can reduce the computation of k(m) to that of

k(pe) for all prime power factor pe of m.

Theorem 4. Let m = pe11 pe22 · · · pess be the prime decomposition of m. Then

k(m) = lcm(k(pe11 ), k(pe22 ), . . . , k(pess )).

Proof. The proof is similar to the proof of [16, Theorem 2].

Theorem 5. If m | a, then we have k(m) = 2 ordm(d), where ordm(d) is the multiplicative
order of d modulo m.

Proof. Assume that a ≡ 0 (mod m). Using Relation (2), and following a straightforward
induction we get

Fn mod m =

{

0, if n = 2k;

dk, if n = 2k + 1.

Since n = 2ordm(d) is the least integer satisfying the congruences F2n ≡ 0 (mod m) and
F2n+1 ≡ 1 (mod m), it follows from (4) that k(m) = 2 ordm(d).
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2.1 The generalized bi-periodic Fibonacci sequences over a finite

field

Sahin [10] provided the Binet formula for even and odd indices as follows:














F2n = a
αn − βn

α− β
;

F2n+1 =
αn+1 − βn+1

α− β
− c

αn − βn

α− β
,

(5)

where α, β = (A±
√
∆)

2
are the roots of the quadratic equation f(x) = x2 − Ax + B = 0 with

A = ab+ c+ d, B = cd, and ∆ the discriminant of f(x).
Let Fq denote the finite field of order q = pe with e ≥ 1, and let p be an odd prime. In

this subsection, we investigate the period of (Fn)n≥0 over the finite field Fq using as a main
tool the Binet formula (5) and Statement (4).

We assume that gcd(c, p) = gcd(d, p) = 1 to guarantee that (Fn)n≥0 is periodic over the
field Fpe . We begin by investigating the period modulo a prime p, then we generalize to
a power of p. We deal only with the cases where a 6≡ b (mod p) or c 6≡ d (mod p). For
analogous results in the case a ≡ b (mod p) and c ≡ d (mod p); see [7, 8, 9]. We establish
a divisibility relation for k(p) according to the nature of the discriminant ∆ in F∗

p. When
∆ ≡ 0 (mod p), we obtain an equality statement for k(p) in terms of the order of the zero
of the polynomial f(x) in F∗

p.
Notice that if p | a, then we get k(p) = 2 ordp(d) using Theorem 5, where ordp(d) is

the order of d in F∗
p. So in the sequel, we may assume that gcd(a, p) = 1. We also use the

Legendre symbol:

(

q

p

)

=

{

1, for r a nonzero quadratic residue modulo p;

−1, for r a quadratic residue modulo p.

Theorem 6. Let p be an odd prime. If ∆ is a nonzero quadratic residue modulo p, then

k(p) | 2(p− 1). Furthermore, if
(

α
p

)

=
(

β

p

)

= 1, then k(p) | (p− 1).

Proof. Suppose that ∆ is a nonzero quadratic residue modulo p. Then we have α, β ∈ F∗
p,

and by the Fermat little theorem we get

αp−1 ≡ 1 (mod p) and βp−1 ≡ 1 (mod p).

Now, using the Binet formula for even and odd indices (5), we obtain

F2(p−1) = a
αp−1 − βp−1

α− β
≡ 0 (mod p)

and

F2(p−1)+1 =
αp − βp

α− β
− c

αp−1 − βp−1

α− β
≡ 1 (mod p).
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Thus, by (4), k(p) | 2(p− 1).

For the second part, suppose that
(

α
p

)

=
(

β

p

)

= 1. Then we have

α
p−1
2 = β

p−1
2 ≡ 1 (mod p).

Therefore,

Fp−1 = a
α

p−1
2 − β

p−1
2

α− β
≡ 0 (mod p)

and

Fp =
α

p+1
2 − β

p+1
2

α− β
− c

α
p−1
2 − β

p−1
2

α− β
≡ 1 (mod p).

Thus, by (4), we get k(p) | (p− 1).

Remark 7. If c = d, then we have αβ = c2. Using the properties of Legendre symbol, we get
(

α

p

)

=

(

β

p

)

Moreover, since α ∈ F∗
p, we have ab = α−1(α − c)2, where α−1 is the inverse of α modulo p.

Thus,
(

α

p

)

=

(

ab

p

)

.

Now, if ∆ is a quadratic nonresidue modulo p, then the polynomial f(x) is irreducible in
Fp. Therefore, we work in Fp2 = Fp[

√
∆], the splitting field of the polynomial f(x) over Fp.

Since the Frobenius automorphism of Fp2 fixes Fp, it must permute the zeros of any irre-
ducible quadratic polynomial of Fp[x]. Therefore, by applying the Frobenius automorphism
to α, a root of the equation f(x) = 0, we obtain the other root β = αp. Hence,

αp+1 = βp+1 = αβ. (6)

Theorem 8. Let p be an odd prime. If ∆ is a quadratic nonresidue modulo p, then k(p) |
2 ordp(cd)(p+ 1).

Proof. Suppose that ∆ is a quadratic nonresidue modulo p. Then we have αp+1 = βp+1 = cd.
Using the Binet formula (5), we get

F2 ordp(cd)(p+1) = a
(αp+1)ordp(cd) − (βp+1)ordp(cd)

α− β
≡ 0 (mod p)

and

F2 ordp(cd)(p+1)+1 =
α(αp+1)ordp(cd) − β(βp+1)ordp(cd)

α− β
−c

(αp+1)ordp(cd) − (βp+1)ordp(cd)

α− β

≡ 1 (mod p).

Therefore, (4) implies that k(p) | 2 ordp(cd)(p+ 1).

6



Example 9. We take a = c = d = 1 and b = 2. So Fn corresponds to A002530 in [11], and
we have ∆ = 12.

Let p = 11; notice that ∆ is a nonzero quadratic residue and ab is a quadratic nonresidue.
From Theorem 6, we have k(p) | 2(p− 1) and k(p) ∤ (p− 1). So by giving the first few terms
up to n = 5 (0, 1, 1, 3, 4, 0) we get k(11) = 20.

We take p = 7. Since ∆ is a quadratic nonresidue modulo p from Theorem 8, we obtain
k(p) | 16. So we only have to calculate 10 terms of this sequence modulo 7

0, 1, 1, 3, 4, 4, 1, 6, 0, 6.

Thus, we have k(7) = 16.

Example 10. Take a = 3, b = d = 1, and c = 4. For p = 11 both ∆ and ab are nonzero
quadratic residues modulo p, and from Theorem 6 we have k(p)|(p − 1). Moreover, k(p) is
an even integer and F2 mod 11 = 3. So the only possible value is k(11) = 10.

In the following, we consider the case where ∆ ≡ 0 (mod p). We begin by giving the
Binet formula of Fn for even and odd indices as follows:























F2n = a

n
∑

i=1

αn−iβi−1;

F2n+1 = αn +
n

∑

i=1

αn−(i+1)βi(α− c).

Since ∆ ≡ 0 (mod p), the equation f(x) = 0 has a repeated root α in F∗
p. So modulo p, we

get the following congruences:

{

F2n ≡ anαn−1;

F2n+1 ≡ (n+ 1)αn − cnαn−1.
(7)

We give in the next theorem an explicit equality statement for k(p) in terms of the order of
α in F∗

p.

Theorem 11. Let p be an odd prime. If ∆ ≡ 0 (mod p), then we have k(p) = 2p · ordp(α).

Proof. Assume that ∆ ≡ 0 (mod p) and gcd(a, p) = 1. By using (7) we obtain the following:

F2n ≡ 0 and F2n+1 ≡ 1 ⇐⇒ n(α)n−1 ≡ 0 and (α)n ≡ 1

⇐⇒ p | n and ordp(α) | n
⇐⇒ lcm(p, ordp(α))| n
⇐⇒ p · ordp(α) | n.

Therefore, k(p) = 2p · ordp(α).
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Theorem 4 shows that it is easy to compute k(m) once we know k(pe) for all prime power
factors pe of m. The corollary of the following theorem is crucial to the investigation of the
period modulo pe.

Theorem 12. Let p be a prime number and n be a positive integer. If a ≡ 1 (mod p), then
ap

n ≡ 1 (mod pn+1).

Proof. Let P (n) be the proposition ap
n ≡ 1 (mod pn+1). We have

a ≡ 1 (mod p) =⇒ ∃s ∈ Z such as a = sp+ 1.

For n = 1, ap = (sp+ 1)p =

p
∑

i=0

(

p

i

)

(sp)i = 1 + sp2 +

p
∑

i=2

(

p

i

)

(sp)i ≡ 1 (mod p2).

Thus, P (1) is true. Assume that P (n) is true up to some n and consider P (n+ 1)

ap
n+1

= (ap
n)p = (spn+1 + 1)p =

p
∑

i=0

(

p

i

)

(spn+1)i = 1 + spn+2 +

p
∑

i=2

(

p

i

)

(spn+1)i.

Since pn+2 | (spn+1)i for 2 ≤ i ≤ p, we obtain ap
n+1 ≡ 1 (mod pn+2).

Thus, P (n) holds by induction.

Corollary 13. Let p be an odd prime such that gcd(a, p) = 1, and let e be a positive integer.
Then

α
k(p)
2

pe−1 ≡ β
k(p)
2

pe−1 ≡ 1 (mod pe).

Proof. If we assume p | ∆, then α ≡ β (mod p). From Theorem 11, we get k(p) = 2p·ordp(α).
Thus,

α
k(p)
2 ≡ β

k(p)
2 ≡ 1 (mod p).

Now, assume that p ∤ ∆. Since p ∤ a by the Binet formula (5), we have

Fk(p) = a
α

k(p)
2 − β

k(p)
2

α− β
≡ 0 (mod p) ⇐⇒ α

k(p)
2 ≡ β

k(p)
2 (mod p)

and

Fk(p)+1 =
αα

k(p)
2 − ββ

k(p)
2

α− β
− c

α
k(p)
2 − β

k(p)
2

α− β

≡ α
k(p)
2

≡ 1 (mod p).

Hence, by applying Theorem 12 to α
k(p)
2 and β

k(p)
2 we obtain the desired result.
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Now that we have results helping in the calculation of k(p), we connect k(p) to k(pe) in
Theorem 14.

Theorem 14. Let p be an odd prime such that gcd(a, p) = 1, and let e be a positive integer.
Then k(pe) | pe−1k(p).

Proof. Since gcd(a, p) = 1 from Corollary 13, we have

α
k(p)
2

pe−1 ≡ β
k(p)
2

pe−1 ≡ 1 (mod pe).

• If we assume p ∤ ∆, then we have

Fk(p)pe−1 = a
α

k(p)pe−1

2 − β
k(p)pe−1

2

α− β
≡ 0 (mod pe)

and

Fk(p)pe−1+1 =
αα

k(p)pe−1

2 − ββ
k(p)pe−1

2

α− β
− c

α
k(p)pe−1

2 − β
k(p)pe−1

2

α− β

≡ 1 (mod pe).

• If we assume p | ∆, then using (7) we obtain

Fk(p)pe−1= a
k(p)pe−1

2
α

k(p)pe−1

2
−1

and

Fk(p)pe−1+1 = (
βk(p)pe−1

2
+ 1)α

k(p)pe−1

2 − c
βk(p)pe−1

2
α

k(p)pe−1

2
−1

≡ α
k(p)
2

pe−1

(mod pe).

Now, since we have k(p) = 2p · ord p(α), the following congruences holds

{

Fk(p)pe−1 ≡ 0 (mod pe);

Fk(p)pe−1+1 ≡ 1 (mod pe).

Therefore, by (4), k(pe) | pe−1k(p).

3 The rank of the generalized bi-periodic Fibonacci

sequences modulo m

The rank of (Fn)n≥0 modulo m is the least positive integer r such that Fr ≡ 0 (mod m). Let
d(m) denote the rank of (Fn mod m). It is obvious that if m | a, we have d(m) = 2.

In the rest, we assume that c = d and gcd(a,m) = 1.
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Lemma 15. ([12]) Let ζ(n) be the parity function, and assume that c = d. The sequences
(Fn)n≥0 satisfies the following identities:

(i) (b/a)ζ(ng+n)FgFn+1 + (b/a)ζ(ng+g)cFnFg−1 = Fg+n (g ≥ 1, n ≥ 0).

(ii) (b/a)ζ(ng+n)FnFg+1 + (b/a)ζ(ng+g)Fn+1Fg = (−c)gFn−g (g ≥ 0, n ≥ 0).

Wall [16, Theorem 3] proved that the indices of the Fibonacci sequence terms that are zero
modulo m form an arithmetic progression. In the following theorem we give an analogous
result for the bi-periodic case.

Theorem 16. The terms for which Fn ≡ 0 (mod m) have subscripts that form a simple
arithmetic progression, i.e., n = xl; for x = 0, 1, 2, . . .. Moreover, l = d(m) gives all n with
Fn ≡ 0 (mod m).

Proof. Assume that gcd(a,m) = 1, Fi ≡ 0 (mod m), and Fj ≡ 0 (mod m). By setting g = i
and n = j in the identities (i) and (ii) of Lemma 15, we obtain

Fi+j ≡ 0 (mod m). (8)

And with (i ≥ j)
Fi−j ≡ 0 (mod m). (9)

Let
S = {k ∈ Z∗ | Fk ≡ 0 (mod m)} .

Since Fk(m) ≡ 0 (mod m) the set S is not empty. Let d be the smallest integer in S. By
using induction and congruence (8), we get Fld ≡ 0 (mod m) for l ∈ Z∗. Now let α ∈ S, and
suppose that d | α. Then there are two nonnegative integers θ and γ such that α = dθ + γ
with 0 < γ < d. From (9), we have Fα−θd = Fγ ≡ 0 (mod m). This is a contradiction, since
d is the smallest integer in S. Thus, α is a multiple of d.

From Theorem 16, we have

Fn ≡ 0 (mod m) ⇐⇒ d(m) | n. (10)

In particular, since Fk(m) ≡ F0 ≡ (mod m) then d(m) | k(m).
Let c = 1 and a, b ∈ F2. Table 1 gives the rank of (Fn mod 2).

a b c d(p)
0 1 1 2
1 0 1 4

Table 1: p = 2

We are now ready to state our theorem containing some fundamental results about the
rank of (Fn mod m).
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Theorem 17. Let m ≥ 2, and p be an odd prime such that gcd(a, p) = gcd(c, p) = 1. Then

(a) If ∆ is a nonzero quadratic residue modulo p, then d(p) | (p− 1).

(b) If ∆ is a quadratic nonresidue modulo p, then d(p) | 2(p+ 1).

(c) If ∆ ≡ 0 (mod p), then if p | b we have d(p) = 2p otherwise, d(p) = p.

(d) If n | m, then d(n) | d(m).

(e) Let m = pe11 pe22 · · · penn be the prime decomposition of m. Then

d(m) = lcm(d(pe11 ), d(pe22 ), . . . , d(penn )).

Proof. Let p be an odd prime, and let gcd(a, p) = 1.

(a) Suppose that ∆ is a nonzero quadratic residue modulo p. Then α, β ∈ F∗
p and

(

α
p

)

=
(

β

p

)

. Hence, we have

Fp−1 = a
α

p−1
2 − β

p−1
2

α− β
≡ 0 (mod p).

Thus, by (10), d(p) | (p− 1).

(b) Suppose that ∆ is a quadratic nonresidue modulo p. Then by (6), we have

F2(p+1)=a
αp+1 − βp+1

α− β
≡ 0 (mod p).

Thus, from (10), we get d(p) | 2 (p+ 1).

(c) Suppose that ∆ ≡ 0 (mod p).

If we assume that p | b, then we have α = c. Using (7), we obtain

F2n ≡ an(c)n−1 and F2n+1 ≡ (c)n.

Then we have F2n+1 6≡ 0 (mod p) since gcd(c, p) = 1, and d(p) must be even. Note
that we have F2n ≡ 0 (mod p) if and only if p | n. Therefore, we obtain d(p) = 2p.

Now, if p ∤ b then α = −c, and we have

F2n ≡ an(−c)n−1 ≡ 0 (mod m) ⇐⇒ p | n

and
F2n+1 ≡ (2n+ 1)(−c)n ≡ 0 (mod m) ⇐⇒ p | (2n+ 1).

Since d(p) is the smallest positive integer n for which Fn ≡ 0 (mod p), we obtain
d(p) = p.
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(d) Since Fd(m) ≡ 0 (mod m) and n | m, then we have Fd(m) ≡ 0 (mod n). Thus, by (10),
d(n) | d(m).

For the proof of (e), see [15, Lemma 2].
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