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Abstract

Let (An) denote any odd, non-degenerate, non-null, fourth-order linear divisibility
sequence and let p be any prime such that p divides some term An (n > 1) of (An).
In this paper we derive a number of properties of (An). In particular, we exhibit
conditions which guarantee that if p | Ak, then ω | k. Here ω (= ω(p)) is the least
positive integer m such that p | Am.

Dedicated to the memory of Richard Guy (1916–2020).
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1 Introduction

Although we use the notation (Tn) to denote the sequence

. . . , T−n, . . . , T−2, T−1, T0, T1, T2, . . . , Tn, . . . ,

we will often be concerned in the sequel with terms of (Tn) which have only positive sub-
scripts. Let p, q ∈ C and α, β be the zeros of x2 − px + q ∈ C[x]. We define, for any
n ∈ Z,

un = un(p, q) =
αn − βn

α− β
, vn = vn(p, q) = αn + βn.

When p, q are integers, both un(p, q) and vn(p, q) are integers for all n ≥ 0 and when p, q are
coprime integers are called the Lucas functions. Note that u0 = 0, u1 = 1, v0 = 2, v1 = p.
The Lucas sequences (un(p, q)), (vn(p, q)) both satisfy the second-order linear recurrence

Tn+1 = pTn − qTn−1.

Also, m | n⇒ um(p, q) | un(p, q).
Definition 1. A linear recurrence sequence of order l over the integers is a sequence (Tn),
where we have

Tn+l = A1Tn+l−1 + A2Tn+l−2 + A3Tn+l−3 + . . .+ AlTn

and T0, T1, T2, . . . , Tl−1, A1, A2, A3, . . . , Al are given fixed integers, with Al 6= 0.
Furthermore, if Tm | Tn whenever m | n, then (Tn) is said to be a lth order linear divisibility
sequence (LDS).

Thus, we see that the Lucas sequence (un(p, q)) is a second-order LDS.
In his investigation of the problem of primality testing, Lehmer [4] introduced the func-

tions (ūn(r, q)), (v̄n(r, q)), where r, q are coprime integers. These are defined by

ūn(r, q) =







un(
√
r, q), if 2 ∤ n;

un(
√
r, q)√
r

, if 2 | n,

v̄n(r, q) =







vn(
√
r, q), if 2 | n;

vn(
√
r, q)√
r

, if 2 ∤ n.

Notice that for n positive or negative

ū−n(r, q) = −qnūn(r, q), v̄−n(r, q) = qnv̄n(r, q).

The sequences (ūn(r, q)), (v̄n(r, q)) are comprised of integers for all n ≥ 0 and both satisfy
the fourth-order linear recurrence

Tn+4 = (r − 2q)Tn+2 − q2Tn. (1)
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Here we have ū0 = 0, ū1 = 1, ū2 = 1, ū3 = r − q, v̄0 = 2, v̄1 = 1, v̄2 = r − 2q, v̄3 = r − 3q.
Furthermore, (ūn(r, q)), is a divisibility sequence; hence (ūn(r, q)) is a fourth-order LDS. We
also know from results in [4] that ū2n(r, q) = ūn(r, q)v̄n(r, q) and that v̄n(r, q) | v̄kn(r, q) when
k is odd.

Recently, by making use of the theory of generalized Vandermonde determinants, Barbero
[2] was able to give an elementary proof of an important result of Bézivin, Pethö, and van
der Poorten [3] in the specific case where the characteristic polynomial F (x) (= xl−A1x

l−1−
A2x

l−2 − . . . − Al) of (Tn) has a non-zero discriminant, but his overall result is much more
general than this.

Definition 2. We say that the sequence (Tn) is degenerate if αi/αj is a root of unity for
any two distinct roots αi, αj of the characteristic polynomial F (x).

Theorem 3. If (Tn) is a non-degenerate LDS of order l whose characteristic polynomial has
distinct roots α1, . . . ,αl, then, for all n ≥ 0, we must have Tn | rn, where

rn =
∏

(αni − αnj )/(αi − αj)

and the product is taken over all i and j such that 1 ≤ i < j ≤ l.

Theorem 3 was used by Abrate et al. [1] to prove the following result.

Theorem 4. If (Tn) is a non-degenerate LDS of order 4, then its characteristic polynomial
must be the form

x4 − Px3 + (R + 2Q)x2 − PQx+Q2,

for some integers P , Q and R.

The above polynomial is the characteristic polynomial for the Lehmer functions for P = 0,
Q = q, R = −r.

Definition 5. If (Tn) is a linear recurrence sequence, we say that an integer m (m > 1) is
a null divisor of (Tn) if, for some minimal h > 0, we have m | Tn for all n ≥ h.

Definition 6. If (Tn) has a null divisor, it is said to be a null sequence.

In what follows we shall be concerned only with non-null sequences. For example, the
condition gcd(p, q) = 1 ensures that both (un(p, q)) and (vn(p, q)) are non-null sequences.
Similarly, the condition that gcd(r, q) = 1 ensures that both (ūn(r, q)) and (v̄n(r, q)) are non-
null sequences. Also, our attention will be confined to fourth-order sequences (Tn) which are
both non-degenerate and non-null. Furthermore, as was done in Williams and Guy [12], we
will only consider the case of l = 4 and (Tn) a divisibility sequence. By Theorem 4, we need
only consider

F (x) = x4 − P1x
3 + (P2 + 2Q)x2 − P1Qx−Q2, (2)
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where P1, P2 and Q are fixed integers, i.e.,

Tn+4 = P1Tn+3 − (P2 + 2Q)Tn+2 + P1QTn+1 −Q2Tn. (3)

Note that if D ( 6= 0) is the discriminant of F (x), then

D = E∆2Q2, (4)

where
∆ = P 2

1 − 4P2, E = (P2 + 4Q)2 − 4QP 2
1 . (5)

See, for example, Williams and Guy [10]. Let ρ1, ρ2 be the roots of the quadratic polynomial
x2 − P1x+ P2 = 0. Since

F (x) = f1(x)f2(x),

where fi(x) = x2 − ρix + Q, we may assume that if α1, β1, α2, β2 denote the four distinct
roots of F (x), then

α1β1 = α2β2 = Q. (6)

Definition 7. We say that if (Tn) satisfies (3), then (Tn) is even when T−n = Tn/Q
n and

(Tn) is odd when T−n = −Tn/Qn for all n.

Certainly, if (Tn) is odd, we must have T0 = −T0/Q0 ⇒ T0 = 0 and QT−1 = −T1. We now
show that these two conditions are necessary and sufficient for (Tn) to be odd.

Theorem 8. If T0 = 0, then (Tn) is odd if and only if QT−1 = −T1.
Proof. If (Tn) is odd, then QT−1 = −T1 from the definition. Suppose that QT−1 = −T1. By
(3) we have

T2 = P1T1 − (P2 + 2Q)T0 + P1QT−1 −Q2T−2

= P1T1 − 0− P1T1 −Q2T−2 = −Q2T−2.

Also,
T3 = P1T2 − (P2 + 2Q)T1 + P1QT0 −Q2T−1 = P1T2 − (P2 +Q)T1

and since
T1 = P1T0 − (P2 + 2Q)T−1 + P1QT−2 −Q2T−3,

we see that

−Q3T−3 = QT1 − (P2 + 2Q)T1 + P1T2

= P1T2 − (P2 + 2Q)T1 −Q2T−1 = T3.

Thus, Ti = −QiT−i (i = 0, 1, 2, 3). If we assume that for some m ≥ 0 we have Tm+i =
−Qm+iT

−(m+i) (i = 0, 1, 2, 3) (this is certainly true for m = 0), we can see that Tm =
−QmT−m, Tm+1+i = −Qm+1+iT

−(m+1+i) (i = 0, 1, 2). We can now use (3) to compute

Tm+1+3 = −Qm+2(P1QT−(m+3) − (P2 + 2Q)T
−(m+2) + P1T−(m+1) − T−m).
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Also, by (3), we have

T−m = P1T−(m+1) − (P2 + 2Q)T
−(m+2) + P1QT−(m+3) −Q2T

−(m+4).

Putting this value of T−m into the previous result, we get

Tm+1+3 = Tm+4 = −Qm+4T
−(m+4) = −Qm+1+3T

−(m+1+3).

Thus, we find by induction that Tn = −QnT−n for all n ≥ 0.

If T0 = P1 = 0 and T1 = QT−1, we can show by using the above reasoning that

QnT−n = (−1)n−1Tn.

Thus, in this case we see that Tn is neither even nor odd.
We also have the following simple result, which extends an observation in [11, §1].

Proposition 9. Suppose (Tn) satisfies (3). Let η ∈ {1,−1} and suppose T ∗

j = ηj−1Tj
(j = −1, 0, 1, 2). If P ∗

1 = ηP1 and

T ∗

n+4 = P ∗

1 T
∗

n+3 − (P2 + 2Q)T ∗

n+2 + P ∗

1QT
∗

n+1 −Q2T ∗

n ,

then T ∗

n = ηn−1Tn for all n ≥ 1.

Proof. Follows easily by induction on n.

Suppose that P1 = 0. If (Tn) satisfies (3), we have

Tn+4 = −(P2 + 2Q)Tn+2 −Q2Tn. (7)

If (Tn) is to be a non-degenerate LDS, we must have

1 +QT−1 = 0 or 1−QT−1 = 0

by results in [12, §3]. In the case of QT−1 = −1, then

Tn =

{

T2ūn(−P2, Q), if 2 | n;
ūn(−P2, Q), if 2 ∤ n;

if QT−1 = 1, then

Tn =

{

T2ūn(−P2, Q), if 2 | n;
v̄n(−P2, Q), if 2 ∤ n.

Note that in either event (Tn) is a divisibility sequence because (ūn(−P2, Q)) is a divisibility
sequence, v̄n(−P2, Q) | v̄nk(−P2, Q) when k is odd and ū2n(−P2, Q) = ūn(−P2, Q)v̄n(−P2, Q).
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Now if we define u∗n = ūn(−P2− 4Q,−Q), we see that since −P2− 4Q+2Q = −P2− 2Q,
then (u∗n) must satisfy (7). Also, u∗0 = 0 = ū0(−P2, Q), u

∗

1 = 1 = v̄0(−P2, Q), u
∗

2 = 1 =
ū2(−P2, Q), u

∗

3 = −P2 − 3Q = v̄3(−P2, Q). It follows that if QT−1 = 1, then

Tn =

{

T2u
∗

n, if 2 | n;
u∗n, if 2 ∤ n

and therefore (Tn) is an odd divisibility sequence when we replace Q by −Q.
As an example of this consider Q = −1, P2 = −1. We have T0 = 0, T1 = 1, T2 = 1,

T3 = 4,
Tn+4 = 3Tn+2 − Tn (see Sloane [7, A005013 ])

and Tn = T−n. Furthermore,

Tn =

{

Fn, if 2 | n;
Ln, if 2 ∤ n,

(8)

where Fn and Ln denote the nth Fibonacci and Lucas numbers, respectively. Also, Tn =
ūn(5, 1).

Let ∆ = SU2 and E = GV 2, where S, G, U , V are integers and S and G are both non-
zero and square-free. Let (Tn) be any non-null linear divisibility sequence with characteristic
polynomial F (x) given by (2) with D 6= 0 and P1 6= 0. In [12] the following results are
proved:

• There is one and only one even (Tn) for any given F (x);

• If S 6= 1 and G 6= 1, (Tn) is either even or odd;

• If S 6= 1 and G 6= 1 and G 6= S, there can be no odd (Tn);

• If S = 1 and G 6= 1, then the only possible odd (Tn) is a Lucas sequence (un).

We can now partition the possible cases for which (Tn) can be an odd divisibility sequence
as follows:

(i) S = G 6= 1;

(ii) S = 1, G 6= 1;

(iii) S 6= 1, G = 1;

(iv) S = G = 1.

It is not known whether any (Tn) exist in cases (i) and (iii), but none are known and it seems
most unlikely in case (iii).

As the problem of determining all even LDSs of order 4 is solved, we will devote the
remainder of the paper to deriving some further properties of odd LDSs of order 4. Also, as
a result of our earlier discussion, we may assume that P1 6= 0. Let (Tn) be any divisibility
sequence satisfying (3) and p be any fixed prime such that p | Tn for some n > 0.
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Definition 10. Let ω1 be the least positive integer such that p | Tω1
. We define the increasing

sequence ω1, ω2, . . . , ωj ∈ Z by p | Tωi
and ωi ∤ ωj (1 ≤ i < j). Each ωi in this sequence is

called a rank of appearance1 of p.

Definition 11. If p | Tn implies that ω1 | n, then p has a single rank of appearance in
(Tn). Such a sequence is said to be monoapparitic modulo p and the prime p is said to be
monoapparitic in (Tn).

In [8] Ward proved that primes have only finitely many ranks of appearance in a general
LDS. In this paper we shall be concerned with the special case of an odd LDS of order 4.

With the exception of Section 2, we will reserve the notation (An) to denote an odd,
non-null and non-degenerate LDS of order 4. By [12, Proposition 4.1] we may assume that
gcd(P1, P2, Q) = 1. The purpose of this paper is to prove Theorem A below.

Theorem A. Let (An) satisfy (3) and let p be any prime such that p | An for some
n > 1; p can have at most two ranks of appearance in (An). If p ∤ P1, then p has only one
rank of appearance (is monoapparitic) in (An) when p | Q∆E. It is also monoapparitic if
S = 1, G 6= 1; S 6= 1, G = 1; or S = G 6= 1. In the case of S = G = 1, there are sequences
(An) for which p (p ∤ P1) can have two distinct ranks of appearance.

We will prove Theorem A by showing that it holds for each of the cases (i)–(iv). In
Section 2 we derive a number of useful identity relations connecting (An) to some special
sequences (Xn), (Yn), (Un) and (Wn). We also prove a version of Theorem 3 in the particular
case of (An). In the following section we provide a number of simple results which allow for
the determination of when a prime p is monoapparitic in (An) for certain special cases. We
also show that in general a prime can have at most two ranks of appearance in (An). The
remaining sections deal with the problem of when p can be monoapparitic in the cases that
remain.

2 Odd divisibility sequences of order 4

We have already seen that odd LDSs of order 4 exist; for example, (ūn(r, q)) is such a
sequence. Furthermore, the sequences A215466 and A127595 in the On-line Encyclopedia
of Integer Sequences (OEIS) (see Sloane [7]) are examples of odd LDSs of order 4 which are
not Lehmer sequences. In what follows we will derive some results which must be true for
(An) if (An) is simply an odd linear recurrence sequence of order 4. In the first part of this
section we will develop some of the machinery needed throughout the paper. We then use
these results to prove the main result of the section: Theorem 13. This theorem is a more

1Lucas used the term “le rang d’apparition” and the French word “apparition” has been–and still is–
widely used among English writers. However, it is best to avoid the ghostly or miraculous connotation that
the English word “apparition” possesses and use “appearance” instead.
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specialized version of Theorem 3 and helps in discerning when (An) can and cannot be a
divisibility sequence.

We begin, as was done in [10] and [12], by defining the auxiliary sequences (Wn), (Un),
(Xn) and (Yn) by

vn(ρi, Q) = Wn + ρiUn = αni + βni (9)

and

un(ρi, Q) = Xn + ρiYn =
αni − βni
αi − βi

; (10)

here ρi = αi + βi (i = 1, 2). Also, ρ1, ρ2 are the distinct roots of x2 − P1x + P2 = 0. We
point out here that Xn = U0,n, Yn = U1,n, Wn = V0,n, Un = V1,n, where the symbols Ui,n, Vi,n
(i = 0, 1) are defined in [9, (10.1.5) and (10.1.6)] (with k = 2). Notice each of (Wn), (Un),
(Xn), (Yn) satisfies (3). Also, the initial terms of these sequences are as follows:

W−1 = 0, W0 = 2, W1 = 0, W2 = −P2 − 2Q, W3 = −P1P2;

U−1 =
1

Q
, U0 = 0, U1 = 1, U2 = P1, U3 = P 2

1 − P2 − 3Q;

X−1 =
−1

Q
, X0 = 0, X1 = 1, X2 = 0, X3 = −P2 −Q;

Y−1 = 0, Y0 = 0, Y1 = 0, Y2 = 1, Y3 = P1.

Further,
(Xn), (Yn), (Wn), (Un) ⊆ Z (n ≥ 0).

By Theorem 8, we see that both (Xn) and (Yn) are odd. Indeed, we have

X−n = −Xn/Q
n, Y−n = −Yn/Qn.

Also,
W−n = Wn/Q

n, U−n = Un/Q
n,

thus (Wn), (Un) are even.
In [12] it is noted that if (An) is a LDS of order 4, then

An = Xn + A2Yn; (11)

however, this condition is not sufficient for (An) to be such a sequence. From Theorem 3 we
can derive the following result.

Proposition 12. For (An) defined as above we must have

An | Qn−1JY 2
nU

2
n,

where J = A2
2 − P1A2 + P2.
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Proof. By Theorem 3, we know that An must be a divisor of rn for all n ≥ 0, where here

rn =
αn1 − αn2
α1 − α2

· α
n
1 − βn1
α1 − β1

· α
n
1 − βn2
α1 − β2

· α
n
2 − βn1
α2 − β1

· α
n
2 − βn2
α2 − β2

· β
n
1 − βn2
β1 − β2

. (12)

Since
(ρ1 − ρ2)Un = αn1 + βn1 − αn2 − βn2 ,

we find from (6), that

(ρ1 − ρ2)Un =
(αn1 − αn2 )(α

n
2 − βn1 )

αn2
=

(βn1 − βn2 )(β
n
2 − αn1 )

βn2
.

Hence,
Qn(ρ1 − ρ2)

2U2
n = (αn1 − αn2 )(β

n
1 − βn2 )(α

n
2 − βn1 )(β

n
2 − αn1 );

also, for n = 1,
Q(ρ1 − ρ2)

2 = (α1 − α2)(β1 − β2)(α2 − β1)(β2 − α1).

Thus,

Qn−1U2
n =

αn1 − αn2
α1 − α2

· β
n
1 − βn2
β1 − β2

· α
n
2 − βn1
α2 − β1

· β
n
2 − αn1
β2 − α1

.

By (10), we have

αn1 − βn1
α1 − β1

· α
n
2 − βn2
α2 − β2

= (Xn + ρ1Yn)(Xn + ρ2Yn) = X2
n − P1XnYn + P2Y

2
n .

From these results and (11) we find that,

rn = Qn−1((An − A2Yn)
2 − P1(An − A2Yn)Yn + P2Y

2
n )U

2
n

= Qn−1(A2
n − (2A2 + P1)AnYn + JY 2

n )U
2
n,

where J = A2
2 − P1A2 + P2 and rn satisfies (12). Thus, we find that

An | Qn−1JY 2
nU

2
n (for all n ≥ 0).

Later in this section we will improve this result showing that (An) is a divisibility sequence
if and only if

An | JYnUn (for all n ≥ 0).

We will next establish some identities involving the sequences (An), (Xn), (Yn), (Wn),
(Un). We begin with the well-known identity

(αni + βni )
2 − (αi − βi)

2

(

αni − βni
αi − βi

)2

= 4αni β
n
i = 4Qn, (13)
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and get
(Wn + ρiUn)

2 − (ρ2i − 4Q)(Xn + ρiYn)
2 = 4Qn. (14)

Setting n = 1 in (13) yields (αi− βi)
2 = (αi + βi)

2 − 4αiβi = ρ2i − 4Q. Since ρ2i = P1ρi− P2,
we get

ρ2i − 4Q = P1ρi − P2 − 4Q,

ρi(ρ
2
i − 4Q) = ρi(P1ρi − P2 − 4Q) = (P 2

1 − P2 − 4Q)ρi − P1P2,

ρ2i (ρ
2
i − 4Q) = ρ2i (P1ρi − P2 − 4Q) = P1(P

2
1 − P2 − 4Q)ρi − P2(P

2
1 − P2 − 4Q).

It follows from (14), that

W 2
n − P2U

2
n + (P2 + 4Q)X2

n + 2P1P2XnYn + P2(P
2
1 − P2 − 4Q)Y 2

n = 4Qn,

2WnUn + P1U
2
n − P1X

2
n − 2(P 2

1 − P2 − 4Q)XnYn − P1(P
2
1 − 2P2 − 4Q)Y 2

n = 0.

From (11), we find by replacing An − A2Yn for Xn that

2WnUn + P1U
2
n − P1A

2
n + 2AnLYn − IY 2

n = 0 (15)

and
W 2
n − P2U

2
n + (P2 + 4Q)A2

n − 2AnYn(A2(P2 + 4Q)− P1P2) +KY 2
n = 4Qn. (16)

Here

I = P1A
2
2 − 2(P 2

1 − P2 − 4Q)A2 + P1(P
2
1 − 2P2 − 4Q), (17)

K = (P2 + 4Q)A2
2 − 2P1P2A2 + P2(P

2
1 − P2 − 4Q) (18)

and
L = P1A2 − P 2

1 + P2 + 4Q. (19)

From

2(Xn+m + ρiYn+m) = 2

(

αn+mi − βn+mi

αi − βi

)

=

(

αni − βni
αi − βi

)

(αmi + βmi ) +

(

αmi − βmi
αi − βi

)

(αni + βni )

= (Xn + ρiYn)(Wm + ρiUm) + (Xm + ρiYm)(Wn + ρiUn),

so we find that

2Xn+m = WnXm +WmXn − P2(UnYm + UmYn),

2Yn+m = UnXm + UmXn +WnYm +WmYn + P1(UnYm + UmYn).

Multiplying the second of these by A2 and adding, we see since An = Xn + A2Yn that

2An+m = WnAm +WmAn + A2(UnAm + UmAn)− J(UnYm + UmYn). (20)
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By using

2(Wn+m + ρiUn+m) = 2(αn+mi + βn+mi )

= (αni + βni )(α
m
i + βmi ) + (αi − βi)

2

(

αni − βni
αi − βi

)(

αmi − βmi
αi − βi

)

= (Wn + ρiUn)(Wm + ρiUm) + (ρ2i − 4Q)(Xn + ρiYn)(Xm + ρiYm),

we get

2Wn+m = WnWm − P2UnUm − (P2 + 4Q)XnXm − P1P1(XnYm +XmYn)

− P2(P
2
1 − P2 − 4Q)YnYm

and

2Un+m = UnWm + UmWn + P1(UnUm +XnXm) + (P 2
1 − P2 − 4Q)(XnYm +XmYn)

+ P1(P
2
1 − 2P2 − 4Q)YnYm.

Once again, using (11), we derive

2Un+m = UnWm + UmWn + P1(UnUm + AnAm)− L(AnYm + YnAm) + IYnYm, (21)

where L = A2P1− (P 2
1 −P2− 4Q). Note the following easily established connection between

I, J , K and L:
JL+K = A2I. (22)

If we put m = n in (20) we get

A2n = An(Wn + A2Un)− JUnYn. (23)

Also, from [10] we have

U2n = 2UnWn + P1U
2
n (24)

= P1A
2
n − 2LAnYn + IY 2

n . (25)

Since
αn+mi − βn+mi

αi − βi
= (αmi + βmi )

(

αni − βni
αi − βi

)

−Qm

(

αn−mi − βn−mi

αi − βi

)

,

we have

Xn+m + ρiYn+m = (Wm + ρiUm)(Xn + ρiYn)−Qm(Xn−m + ρiYn−m)

and we find

Xn+m = WmXn − P2UmYn −QmXn−m,

Yn+m = UmXn +WmYn + P1UmYn −QmYn−m.
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It follows from the above and (11)

An+m = An(Wm + A2Um)− JUmYn −QmAn−m, (26)

Yn+m = UmAn + Yn(Wm + (P1 − A2)Um)−QmYn−m. (27)

Since (An) is odd, we have QmAn−m = −QnAm−n and

An+m = An(Wm + A2Um)− JUmYn +QnAm−n. (28)

Putting m = kn and n = n in (28), we get

A(k+1)n = An(Wkn + A2Ukn)− JUknYn +QnA(k−1)n. (29)

We are now able to prove the main result of this section.

Theorem 13. If (An) is an odd recurrence sequence of order 4, then (An) is a divisibility
sequence if and only if An | JUnYn for all n ≥ 1.

Proof. If (An) is a divisibility sequence, then An | A2n which implies An | JUnYn by (23).
Next, suppose that An | JUnYn. Since it is well known (see [10]) that (Un) is a divisibility
sequence, we know that Un | Ukn for any k ≥ 0. Thus, by (29) we have

A(k+1)n ≡ QnA(k−1)n (mod An) (k ≥ 1).

Hence, if An | A(k−1)n, then An | A(k+1)n. Since An | An and, by (23), An | A2n, we find by
induction that An | Amn for any m ≥ 0.

Corollary 14. If (An) is an odd LDS of order 4, then A2 | P1P2.

Proof. Follows easily from the theorem and the simple fact that J ≡ P2 (mod A2).

3 Monoapparitic primes in odd divisibility sequences

of order 4

We now let (An) denote an odd, non-null, and non-degerate LDS of order 4. The purpose
of much of this section is to identify certain monoapparitic primes in (An). If all primes are
monoapparitic in (An), we say that (An) is monoapparitic. We observe by attempting all
possible values for P1, P2, Q, A2 modulo 2 that only in the case of 2 | P1, 2 ∤ P2Q, 2 | A2 is
it possible for 2 to not be monoapparitic in (An). In this case we see that 2 | I, where I is
given by (17), ω1 = 2 and ω2 = 3.

We begin with the simple result below.

Proposition 15. If m is a positive integer and m | J , where J = A2
2 − P1A2 + P2, then

An ≡ un(A2, Q) (mod m).
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Proof. We have A0 = 0 = u0(A2, Q), A1 = 1 = u1(A2, Q), A2 = u2(A2, Q), A3 = X3+A2Y3 =
P1A2 − P2 −Q ≡ A2

2 −Q = u3(A2, Q) (mod m). Also, since

Quk(A2, Q) = A2uk+1(A2, Q)− uk+2(A2, Q),

we get

Quk+1 = A2uk+2 − uk+3, Q2uk = QA2uk+1 −Quk+2 = (A2
2 −Q)uk+2 − A2uk+3.

Here we use uk to denote uk(A2, Q). It follows that

P1Quk+1 −Q2uk = (P1A2 − A2
2 +Q)uk+2 − (P1 − A2)uk+3. (30)

Now suppose for some k ≥ 0, we have Ak+i ≡ uk+i(A2, Q) (mod m) (i = 0, 1, 2, 3); this is
certainly true for k = 0. By (3), we get

Ak+4 ≡ P1uk+3 − (P2 + 2Q)uk+2 + P1Quk+1 −Q2uk

= P1uk+3 − (P2 + 2Q)uk+2 + (P1A2 − A2
2 +Q)uk+2 − (P1 − A2)uk+3

= A2uk+3 − (P2 + 2Q− P1A2 + A2
2 −Q)uk+2

≡ A2uk+3 −Quk+2 = uk+4 (mod m),

by (30) and J = A2
2 − P1A2 + P2 ≡ 0 (mod m). The result now follows by induction.

Corollary 16. If p | J , then p is monoapparitic in (An).

Proof. If p | J , then by Proposition 15 we have An ≡ un(A2, Q) (mod p). We must have
p a monoapparitic prime in (An) because (un(A2, Q)) has at most one rank of appearance
modulo p.

We next turn to the problem of p | Q. We see that from (3) that each of (Xn), (Yn) and
(Un) satisfies

Tn+2 ≡ P1Tn+1 − P2Tn (mod p) (n ≥ 2).

By the initial conditions for (Xn), (Yn) and (Un) and mathematical induction, it is easy to
show that

Yn ≡ un−1(P1, P2) (mod p) (n ≥ 1),

Xn ≡ −P2un−2(P1, P2) (mod p) (n ≥ 2),

Un ≡ un(P1, P2) (mod p) (n ≥ 0).

It follows that

An = Xn + A2Yn ≡ A2un−1 − P2un−2 (mod p) (n ≥ 2),

where we now use un to denote un(P1, P2). Observe that since u2n−1−un−2un = P 2
2 , we must

have p | P2 if p | gcd(un, un−1) or p | gcd(un−1, un−2). However, when p | P2, it is easy to
show that un ≡ P n−1

1 (mod p); hence p | P1, which since gcd(P1, P2, Q) = 1, is impossible.
Thus, gcd(un, un−1) = 1 and gcd(P2, un) = 1 for all n ≥ 1, when p | Q. We can now prove
the following proposition.
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Proposition 17. If p be a prime such that p | Q, then p must be monoapparitic in (An).

Proof. By Theorem 13, we must have An | JYnUn for all n ≥ 1. If p | An, then p | J means
that p is monoapparitic in (An). If p ∤ JYn, then p | Un which means that p | un(P1, P2) and

P1un−1 − P2un−2 ≡ 0 (mod p).

Also, p | An implies that
A2un−1 − P2un−2 ≡ 0 (mod p).

Hence, p | (A2 − P1)un−1. Since, p ∤ un−1, we get p | A2 − P1, but in this case we get An ≡
un(P1, P2) (mod p), which means that p is monoapparitic in (An). If p | Yn, then p | un−1,
which since p | An means that p | P2un−2. If p ∤ P2, then p | un−2, which is impossible. If
p | P2, then p | gcd(P2, un−1) and gcd(un−1, un) 6= 1, which is also impossible.

We next define two sequences (Gn) and (Hn):

Gn = gcd(An, Yn) and Hn = gcd(An, Un).

Note that since An = Xn + A2Yn, we have Gn = gcd(Xn, Yn). By [9, Lemma 10.3.8], we
know that (Gn) is a divisibility sequence, but not necessarily a LDS.

Proposition 18. For Gn and Hn defined as above, we have gcd(Gn, Q) = 1. Also, gcd(Hn, Q) =
1 when gcd(A2 − P1, Q) = 1

Proof. The first result follows from [9, Lemma 10.3.9]. Next, suppose that p is any prime
such that p | Q and p | Hn. Referring to the proof of Proposition 17, we find that we must
have p | A2 − P1, which means that gcd(A2 − P1, Q) 6= 1.

If p is any prime, let ρ = ρ(p) denote the least positive integer value of n (if it exists)
such that p | Gn.

Theorem 19. If p is any prime such that p | Gn, then ρ | n.

Proof. This proof can be found in [9, Theorem 10.3.13].

We will next obtain a somewhat similar result for (Hn). By making use of the identity

αn+mi + βn+mi = (αni + βni )(α
m
i + βmi )−Qm(αn−mi + βn−mi ),

we can easily derive

Wm+n = WmWn − P2UmUn −QmWn−m,

Um+n = WmUn +WnUm + P1UnUm −QmUn−m. (31)

From (23) and (24), we see that
Hn | H2n.
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By (31) and (29), we have

U(k+1)n = WknUn +WnUkn + P1UknUn −QnU(k−1)n,

A(k+1)n = An(Wkn + A2Ukn)− JUknYn +QnA(k−1)n.

Since Hn | Hn and Hn | H2n, it is easy to establish by induction on m that Hn | Hmn; thus,
(Hn) is a divisibility sequence.

For any fixed prime p, let σ = σ(p), if it exists, be the least positive value of n such that
p | Hn. If p | Q and p | Hn, then as we have seen earlier p | un(P1, P2) and An ≡ Un ≡
un(P1, P2) (mod p) (p | Q). Thus, if p | Hn, then σ | n. We next show that if p is any odd
prime such that p ∤ Q, then σ | n whenever p | Hn.

Theorem 20. Let p be any odd prime such that p ∤ Q. If p | Hn, then σ(p) | n.

Proof. We first note that by (15) we have Hn | IY 2
n for any n. Suppose p | Hn and n = qσ+r

with 0 < r < σ. From (21) and (20) we have

2Un = UqσWr +WqσUr + P1(UqσUr + AqσAr)− L(AqσYr + YqσAr) + IYqσYr

and
2An = WqσAr + AqσWr + A2(UqσAr + AqσUr)− J(UqσYr + YqσUr).

Since (Hn) is a divisibility sequence and p | Hσ (σ = σ(p)) we must have p | Hqσ and p | IYqσ.
Thus,

0 ≡ WqσUr − LYqσAr (mod p),

0 ≡ WqσAr − JYqσUr (mod p).

If p ∤ I, then p | Yqσ, p | WqσUr and p | WqσAr; consequently if p ∤ Wqσ, we get p | Hr. If
p | Wqσ, then by (16) we get p | 4Qqσ, which is impossible by selection of p. If p | I, then by
(22) and (16), we get

W 2
qσ − LJY 2

qσ ≡ W 2
qσ +KY 2

qσ ≡ 4Qqσ (mod p).

Since p ∤ 4Qqσ, we must also have p | Hr. In either case we find that we get a contradiction
to the definition of σ when r > 0. Hence, σ(p) | n.

We next address the question of the existence of ρ(p) and σ(p). We will only concern
ourselves with those primes p such that p divides some term An (n > 0) of (An) and p ∤ J .
By Theorem 13, we must have p | Gn or p | Hn; thus, at least one of ρ(p) or σ(p) must exist.
From (23) and (25), we can easily deduce that

Gn | H2n; (32)

hence, if ρ(p) exists, then p | H2ρ and therefore σ(p) must exist. Also, even if ρ(p) does not
exist, then σ(p) must exist and p is monoapparitic in (An). Since gcd(Gn, Q) = 1, we see
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that if p | Q, then ρ(p) cannot exist. Also, if p | Q and A2 6≡ P1 (mod p), then p ∤ Hn and
as a result σ(p) cannot exist.

We will now examine several additional special cases. Throughout this discussion p will
denote a prime such that p ∤ 2Q.

Case 1: p | P1.

In this case, it is easy to prove by using (3) and mathematical induction that for n ≥ 0 we
have

X2n ≡ 0, X2n+1 ≡ ūn(−P2, Q), Y2n ≡ ū2n(−P2, Q), Y2n+1 ≡ 0 (mod p). (33)

Hence, Gn = gcd(Xn, Yn) ≡ ūn(−P2, Q) (mod p). By results in [4] (See §4 below for details.)
we know that if p ∤ P2, then p | ūn(−P2, Q) if and only if τ | n, where τ is the rank of
appearance of p in (ūn(−P2, Q)). Since p ∤ Q, τ must exist and τ | p − κ, where κ is the
value of the Legendre symbol ((P 2

2 +4QP2)/p). Hence, ρ(p) exists and ρ(p) = τ when p ∤ P2.
Suppose p | P2; then p ∤ ūn(−P2, Q) for any odd n > 0 and ρ(p) does not exist. If 2 | n, then
p | (ūn(−P2, Q)) if and only if p | n; hence, ρ(p) = τ = p in this case.

Proposition 21. If p | P1, then p is monoapparitic in (An) when p ∤ A2. If p | P1, p | A2

and 2 | τ , then p is also monoapparitic in (An). If p | P1, p | A2 and 2 ∤ τ , it is possible for p
to have two ranks of appearance in (An), namely 2 and τ . Also, if p | P1, p | A2 and p | P2,
then p is monoapparitic in (An).

Proof. If p | P1, p | A2 and p | P2, then p | J and therefore p is monoapparitic in (An) by
Corollary 16. Furthermore, by (33) we have

An =

{

ūn(−P2, Q), if 2 ∤ n;

A2ūn(−P2, Q), if 2 | n.

The result now easily follows from our observations in Case 1.

Case 2: p ∤ P1, p | ∆.

In [10, §6] it is shown that

Un ≡ nun(P1/2, Q) (mod p).

Also, it is easy, on using the initial conditions for (Xn) and (Yn), to see that

Xn + (P1/2)Yn ≡ un(P1/2, Q) (mod p) (34)

for n = 0, 1, 2, 3. On putting P2 ≡ P 2
1 /4 (mod p), we use (3) and mathematical induction

to verify that (34) is true for all n ≥ 1. Thus, if p | Gn, then p | Hn. Hence, if ρ(p) exists,
then σ(p) exists and σ(p) | ρ(p) by Theorem 20.
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Case 3: p ∤ P1∆, p | E.

We first observe by [12, (2.5)] we have

∆P 2
1 + 4E = (P 2

1 − 2P2 − 8Q)2; (35)

thus, since p | E and p ∤ P1∆, we must have (∆/p) = 1. Let K be the splitting field of F (x)
in Fp[x] and let α1, β1, α2, β2 (α1β1 = α2β2 = Q) be the roots of F (x) = 0 in K. Since
E = (α1 − β1)

2(α2 − β2)
2, we have α1 = β1 or α2 = β2 in K. We assume with no loss of

generality that α1 = β1. If, as well, α2 = β2, then since (αi − βi)
2 = ρ2i − 4Q (i = 1, 2), we

see that ρ21 = ρ22, which since p ∤ P1∆ is impossible. Thus α1 = β1 and α2 6= β2. Also, since
(∆/p) = 1, we must have ρ1 − ρ2 ∈ Fp ⊆ K and therefore ρ1, ρ2 ∈ Fp. Since α1 = β1, we
have ρ1 = 2α1. Thus in Fp

un(ρ1, Q) =
αn1 − βn1
α1 − β1

= nαn−1
1 and un(ρ2, Q) =

αn2 − βn2
α2 − β2

.

By definition of (Xn) and (Yn), we find that in Fp

Xn + ρ1Yn = nαn−1
1 and Xn + ρ2Yn = un(ρ2, Q).

Thus, if p | Gn, then nαn−1
1 = 0 and un(ρ2, Q) = 0 in Fp. Since p ∤ Q, we see that p | n.

Also, by [10, Lemma 8.1] we know that if τ is the rank of appearance of p in un(ρ2, Q), then
τ | n, where τ | p− λ and λ is the value of the Legendre symbol ((P 2

1 − 2P2 − 8Q)/p). Since
α2 6= β2, we cannot have λ = 0; thus, gcd(τ, p) = 1 and pτ | n. Furthermore, if pτ | n, then
Xn + ρ1Yn = Xn + ρ2Yn in Fp. Since ρ1 − ρ2 6= 0, Yn = Xn = 0 and p | Gn. It follows that in
this case, ρ(p) exists and ρ(p) = pτ .

Finally, we deal with the case of p ∤ ∆EQ. If (∆/p) = 1, there must exist some d such
that d2 ≡ ∆ (mod p). In this case, put e = P 2

1 −∆− 16Q+ 2P1d and η is the value of the
Legendre symbol (e/p). We define the function Φ(p) by

Φ(p) =











p− η, if (∆/p) = 1, (E/p) = 1;

p2 − 1, if (∆/p) = 1, (E/p) = −1;

p2 − (E/p), if (∆/p) = −1.

We now have the following result.

Theorem 22. If p is any odd prime such that p ∤ ∆EQ, then both ρ = ρ(p) and σ = σ(p)
must exist and are divisors of Φ(p).

Proof. By [9, Theorem 10.3.10] and results in [10, §7], we know that p | GΦ(p) and p | UΦ(p);
hence p | HΦ(p). It follows that both ρ and σ exist for p and by Theorems 19 and 20, we
must have ρ(p) | Φ(p) and σ(p) | Φ(p), respectively.
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While it is the case that the Lucas sequences have a single rank of appearance, we have
seen that higher order divisibility sequences may have multiple ranks of appearance [8]. In
the theorem below we now show that (An) can have at most two ranks of appearance for
any prime p.

Theorem 23. Any prime p can have at most two ranks of appearance in (An).

Proof. By our previous results we may assume that p ∤ 2QJ . If p | An, then by Theorem 13,
we must have p | Yn or p | Un. That is, ρ(p) | n or σ(p) | n. It follows that there can be at
most two ranks of appearance of p in (An), namely ρ and σ.

We will next derive some simple conditions under which a prime p must be monoapparitic
in (An). We have already seen that this will be the case if p | Q or p | J ; thus we will assume
in what follows that p ∤ 2QJ . Let ω = ω1(p), where ω1 is defined in Definition 10 with
(Tn) = (An). Put ρ = ρ(p), σ = σ(p), when they exist. Since p | Aρ and p | Aσ, it is clear
that ω ≤ ρ and ω ≤ σ.

Proposition 24. For the symbols p, ω, σ and ρ defined above, we have ω = ρ or ω = σ.

Proof. By Theorems 23, 19 and 20, we must have ρ | ω or σ | ω. Since ρ, σ ≥ ω, we can only
have ω = ρ or ω = σ.

Proposition 25. Under the conditions of Proposition 24, p is monoapparitic in (An) when
σ | ρ or ρ | σ.

Proof. We show that if p | An, then ω | n. Suppose σ | ρ. In this case σ ≤ ρ; hence, by
Proposition 24 and the definition of ω we must have ω = σ. If p | An, then we must have
σ | n or ρ | n by Theorem 23, which means that σ | n and ω | n. Similarly, if ρ | σ, then
ω = ρ and ρ | n.

Proposition 26. If p ∤ P1, and p | ∆, then p is monoapparitic in (An).

Proof. In Case 2 we showed that if p satisfies the conditions of the proposition, then either
ρ(p) and σ(p) both exist and σ | ρ, or ρ(p) does not exist. In either case p must be
monoapparitic in (An).

By (32) we see that if p | Gρ, we must have p | H2ρ and therefore

σ | 2ρ

by Theorem 20. It follows that if 2 ∤ σ, then σ | ρ and p is monoapparitic in (An).

Proposition 27. If ρ ≤ σ, then p is monoapparitic in (An).

Proof. We may assume that 2 | σ. Since σ/2 | ρ, we get ρ = tσ/2 ≤ σ. Thus, t = 1, 2. If
t = 2, then ρ = σ and we are done. If t = 2, then ρ = σ/2. Since ρ | σ, the result follows
from Proposition 25.
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Thus, if ρ ≤ σ or 2 ∤ σ, we see that p is monoapparitic in (An). In the following result
we present another condition for this to be the case.

Theorem 28. If p ∤ I, then (An) has a single rank of appearance modulo p.

Proof. We may assume that p ∤ 2QJ . It suffices to show that if p | An, then ω | n. If p | An,
then p | Un or p | Yn which means that p | Hn or p | Gn. If p | Hn, by (15) we see that p | Gn.
Thus, p | Gω and we must have ρ | ω. Since ω ≤ ρ, we have ω = ρ. Also, since p | Gn, we
have ρ | n, which means that ω | n.

We have seen, then, that if p ∤ I, p is a monoapparitic prime in (An). If I 6= 0, this means
that only a finite number of primes can have two ranks of appearance in (An). In the next
section we will deal with the case of I = 0 and the case of p | I.

4 Some results when I = 0 or p | I
Put

g = P 2
1 − P2 − 4Q, h = P1(P

2
1 − 2P2 − 4Q) (36)

and note that
E = g2 − P1h. (37)

If I = 0, we have from (17) that

P1A
2
2 − 2gA2 + h = 0. (38)

As mentioned in Section 1, we assume that P1 6= 0. By (37) the discriminant of

P1x
2 − 2gx+ h = 0

is 4E. Thus, for A2 ∈ Z, we see that E must be a perfect integral square, which means that
G = 1.

In the case of p | I, we can convert (38) into a congruence modulo p and find that

(P1A2 − g)2 ≡ E (mod p). (39)

We are now able to complete our discussion of the special cases that arise when p | D in (4).

Proposition 29. If p ∤ 2P1 and p | E, then p is monoapparitic in (An).

Proof. Put
q ≡ (P2 + 4Q)/P1 (mod p).

Since p | E, we have
q2 ≡ 4Q (mod p).
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by the second formula in (5). From (39), we see that

A2 ≡ P1 − q (mod p);

thus,

J = A2
2 − P1A2 + P2 ≡ q2 − P1q + P2 ≡ 4Q− (P2 + 4Q) + P2 ≡ 0 (mod p).

By Corollary 16, p must be monoapparitic in (An).

By combining the results of Propositions 17, 26 and 29, we have the following result.

Theorem 30. If p is any prime such that p ∤ 2P1 and p | ∆EQ, then p is monoapparitic in
(An).

We next deal with (An) when p is an odd prime and Case (i) of Section 1 holds, i.e.,
G = S 6= 1. We put

d = P 2
1 − 2P2 − 8Q, c = P1(P

2
1 − 3P2 − 4Q). (40)

By [12, Theorem 5.2] we know that if (An) is an odd LDS, then

dA2 = c±
√
∆E; (41)

thus,
d2A2

2 − 2cdA2 + c2 −∆E = 0. (42)

In what follows we will assume that p ∤ P1. Since p | I, by (38) we have

P1A
2
2 − 2gA2 + h ≡ 0 (mod p). (43)

It is easy to verify by referring to (5), (36) and (40) that

gd− P1c = 2E (44)

and
∆P1h+ P 2

1E = c2. (45)

From (42) and (43), we have

P1d
2A2

2 − 2cdP1A2 + P1(c
2 −∆E) ≡ 0 (mod p)

and
P1d

2A2
2 − 2gd2A2 + d2h ≡ 0 (mod p).

On subtracting the second of these congruences from the first we get

2d(gd− P1c)A2 + P1(c
2 −∆E)− d2h ≡ 0 (mod p). (46)

20



Now by (45) we have

P1(c
2 −∆E)− d2h = E(P 3

1 − P1∆− 4h) = −4E(h− P1P2) = 4Ec;

it follows from this, (46) and (44) that

4dEA2 − 4Ec ≡ 0 (mod p). (47)

We are now able to derive the following simple result.

Theorem 31. If p is a prime such that p ∤ 2P1, then p is monoapparitic in (An) when
S = G 6= 1.

Proof. By Theorem 30, we see that the theorem holds when p | ∆E. Suppose p ∤ ∆E and
p | I. If p = 2 and p ∤ P1, then we have already seen that p is monoapparitic in (An). Thus,
we may assume here that p 6= 2. By (47), we get

dA2 − c ≡ 0 (mod p)

and by (41) we must have p | ∆E, a contradiction. Thus p must be monoapparitic in
(An).

In [11], it is shown that if G = 1, there must exist integers r1, r2, q1, q2 such that r1,
r2 > 0; gcd(r1, q1) = gcd(r2, q2) = 1;

P 2
1 = r1r2, P2 = q1r2 + q2r1 − 4q1q2, Q = q1q2. (48)

We find that ∆ = P 2
1 − 4P2 = d1d2, where di = ri − 4qi (i = 1, 2), E = (q1r2 − q2r1)

2 and
g = r1r2 − r1q2 − r2q1. It is also shown in [11] that for the values of P1, P2, Q given by (48),
we have

α1 = µ1µ2, β1 = ν1ν2, α2 = ν1µ2, β2 = µ1ν2,

where µi + νi =
√
ri, µiνi = qi (i = 1, 2). Since µ1/ν1 = α1/α2 and µ2/ν2 = α2/β1, we

see that since (An) is non-degenerate, we cannot have µ1/ν1 or µ2/ν2 a root of unity; in
particular µ1 6= ν1 and µ2 6= ν2.

We next observe that

(αn1 − βn1 ) + (αn2 − βn2 ) = µn1µ
n
2 − νn1 ν

n
2 + µn1ν

n
2 − µn2ν

n
1 = (µn1 − νn1 )(µ

n
2 + νn2 ) (49)

(αn1 − βn1 )− (αn2 − βn2 ) = (µn1 + νn1 )(µ
n
2 − νn2 ). (50)

Put
Mn = un(

√
r1, q1)vn(

√
r2, q2), Nn = vn(

√
r1, q1)un(

√
r2, q2).

We have

(µn1 − νn1 )(µ
n
2 + νn2 ) = (µ1 − ν1)Mn, (µn1 + νn1 )(µ

n
2 − νn2 ) = (µ2 − ν2)Nn.
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Also, by (49) and (50) and the definition of (Xn), (Yn), we get

(α1 − β1)Xn + (α1 − β1)ρ1Yn + (α2 − β2)Xn + (α2 − β2)ρ2Yn = (µ1 − ν1)Mn,

(α1 − β1)Xn + (α1 − β1)ρ1Yn − (α2 − β2)Xn − (α2 − β2)ρ2Yn = (µ2 − ν2)Nn.

Since ρi = αi + βi (i = 1, 2), we see, by (49) and (50) with n = 2, that

(α1 − β1)ρ1 + (α2 − β2)ρ2 = (µ2
1 − ν21)(µ

2
2 + ν22)

and
(α1 − β1)ρ1 − (α2 − β2)ρ2 = (µ2

1 + ν21)(µ
2
2 − ν22).

It follows that

√
r2Xn +

√
r1(r2 − 2q2)Yn =Mn, (51)

√
r1Xn +

√
r2(r1 − 2q1)Yn = Nn. (52)

From [11], we also have
Un = un(

√
r1, q1)un(

√
r2, q2).

If we put
Rn = ūn(r1, q1)v̄n(r2, q2), Sn = ūn(r2, q2)v̄n(r1, q1),

we get

Mn =
√
r2Rn, Nn =

√
r1Sn if 2 ∤ n,

Mn =
√
r1Rn, Nn =

√
r2Sn if 2 | n,

and

Un =

{

ūn(r1, q1)ūn(r2, q2), if 2 ∤ n;

P1ūn(r1, q1)ūn(r2, q2), if 2 | n. (53)

If I = 0, then with a possible interchange of the parameters r1, r2 and q1, q2, we get

A2 =
g ±

√
E

P1

=
√
r1r2 − 2q1

√

r2
r1

= v2(
√
r1, q1)

u2(
√
r2, q2)√
r1

.

Notice that

A−1 =
−1

Q
= v−1(

√
r1, q1)

u−1(
√
r2, q2)√
r1

,

A0 = 0 = v0(
√
r1, q1)

u0(
√
r2, q2)√
r1

,

A1 = 1 = v1(
√
r1, q1)

u1(
√
r2, q2)√
r1

;
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thus, if we put

Bn = vn(
√
r1, q1)

un(
√
r2, q2)√
r1

= Nn/
√
r1,

we have Ai = Bi (i = −1, 0, 1, 2). Since α1, β1, α2, β2 are the distinct roots of (2), we see
that the sequence (Bn) given by

Bn =

(

µn1 + νn1
µ1 + ν1

)(

µn2 − νn2
µ1 − ν1

)

=
αn1 − βn1 + αn2 − βn2
α1 − β1 + α2 − β2

must satisfy (3). Since the initial values of (Bn) and (An) are equal, it follows that

An = Bn = vn(
√
r1, q1)

un(
√
r2, q2)√
r1

=







v̄n(r1, q1)ūn(r2, q2), if 2 ∤ n;
r2
P1

v̄n(r1, q1)ūn(r2, q2), if 2 | n, (54)

when I = 0. Also, if p ∤ P1QE, G = 1 and p | I, we can use (39) and the above reasoning to
show that

An ≡







v̄n(r1, q1)ūn(r2, q2) (mod p), if 2 ∤ n;
r2
P1

v̄n(r1, q1)ūn(r2, q2) (mod p), if 2 | n. (55)

Thus, by Theorem 31 we have disposed of Case (i) in Section 1. Since in Case (ii), (An)
is the Lucas sequence (un), we see that p must also be monoapparitc in (An). This leaves
only the two cases when G = 1. We deal with the first of these in the next section.

5 The case of G = 1 and S 6= 1

Before proceeding any further, we will need to review some simple properties of the Lehmer
sequences (ūn(r, q)) and (v̄n(r, q)). We have the simple identities

ū2n = v̄nūn (56)

and
{

rv̄2n − dū2n = 4qn, if 2 ∤ n;

v̄2n − rdū2n = 4qn, if 2 | n. (57)

where d = r − 4q and we use ūn and v̄n to represent ūn(r, q) and v̄n(r, q), respectively. If
2 ∤ n, it is easy to prove

ūn(mr,mq) = m
n−1

2 ūn(r, q) (58)

and
ūn(r − 4q, q) = v̄n(r, q). (59)

Also, from results in [4] the sequence (ūn(r, q)) is a fourth-order linear divisibility sequence
as is (anūn(r, q)), where (an) is a special periodic sequence of integers such that a1 = 1 and
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an | a2n. Indeed, the sequence (an) must be some (v̄n(r, q)), where q = ±1 and r = q, 2q or
3q.

Let τ = τ(p) be the rank of appearance (apparition) of a prime p (p ∤ 2rq) in (ūn(r, q)).
Note that p | ūn ⇔ τ | n ([4, Theorem 1.8]). We use ψ = ψ(p) to denote the least positive
value of n, if it exists, such that p | v̄n. We have two simple results.

Theorem 32. If p ∤ 2rq, then ψ exists if and only if 2 | τ ; furthermore, if 2 | τ , then
ψ = τ/2.

Proof. Suppose 2 | τ ; by definition of τ we see that p ∤ ūτ/2 and by (56) p | v̄τ/2. Thus, ψ exists
and ψ ≤ τ/2. Also, by (56), we have p | ū2ψ and therefore τ | 2ψ ⇒ τ/2 | ψ ⇒ ψ = τ/2.
Next, assume that ψ exists; as above, we have τ | 2ψ. Also, by (57), we see that p ∤ ūψ;
hence τ ∤ ψ ⇒ 2 | τ .
Theorem 33. If p ∤ 2rq and τ is even, then p | vn ⇒ ψ | n. and 2 ∤ n/ψ.

Proof. We have ψ = τ/2 exists by Theorem 32. Suppose p | v̄n. Since p | ū2n, we have τ | 2n
and τ ∤ n. Hence, ψ | n and since 2ψ ∤ n, n/ψ is odd.

It is shown in [12] that if G = 1 and S 6= 1, then (An) is given by (54), where r1, r2, q1
must be perfect integral squares. Put ri = s2i (i = 1, 2). We find that

An = vn(s1, q1)un(s2, q2)/s1 (60)

and if (An) is to be a divisibility sequence, we must have

vn(s1, q1) | 2vn(s2, q2) (for all n ≥ 0). (61)

Let τi be the rank of appearance of the prime p (p ∤ qi) in (un(si, qi)) (i = 1, 2) and put

ω =

{

τ1/2, if 2 | τ1;
τ2, if 2 ∤ τ1.

Note that for An given by (60), we have p | Aω.
We now have the main result of this section.

Theorem 34. Let An be given by (60), subject to (61). If p ∤ 2Q and p | An, then ω | n.
Proof. If 2 ∤ τ1, then by Theorem 32 p ∤ vn(s1, q1) for any n. Thus by (60) we must have
p | un(s2, q2) and τ2 | n. Suppose 2 | τ1. If p | vn(s1, q1), we must have τ1/2 | n by Theorem
33. If p | un(s2, q2), then since, p | vτ1/2(s1, q1), we must have p | vτ1/2(s2, q2) by (61). Thus,
since ψ2 must exist, we have 2 | τ2 and τ1/2 | τ2/2. It follows that since τ2 | n, we get
τ1/2 | n.

It follows from Proposition 17 and Theorem 34 that if G = 1, S 6= 1 and p is an odd
prime, then (An) must be monoapparitic modulo p. We have also shown that if I = 0 and
S 6= 1, the primes which can divide the terms of (An) must all, with the possible exception
of p = 2, be monoapparitic.

24



6 The case of S = G = 1

We will first investigate the problem of determining those primes p which can be monoap-
paritic in (An) when all we know is just that G = 1. We may assume that p ∤ 2P1Q and
p | I. If p | Un and p | An, then by (53) and (55) we have

p | ūn(r1, q1)ūn(r2, q2) and p | v̄n(r1, q1)ūn(r2, q2).

Let τi (i = 1, 2) be the rank of appearance (apparition) of p in ūn(ri, qi). Since, by (57),
p ∤ gcd(ūn(r1, q1), v̄n(r1, q1)), we must have p | ūn(r2, q2) and this holds if and only if τ2 | n.
Thus, we must have σ = σ(p) = τ2.

If p | An and p | Yn, then p | Xn; also, by (51), (52) and (48), we must have, p | Rn and
p | Sn. Hence,

p | ūn(r1, q1)v̄n(r2, q2) and p | ūn(r2, q2)v̄n(r1, q1).
If τ1 | n, then p | ūn(r1, q1) and p ∤ v̄n(r1, q1) by (57). Thus, τ2 | n and ρ = ρ(p) = lcm[τ1, τ2].
If τ1 ∤ n, then p | v̄n(r2, q2). We must have 2 | τ2 and τ2/2 | n. Also, p ∤ ūn(r2, q2) and
p | v̄n(r1, q1) and we must also have 2 | τ1 and τ1/2 | n. In this case we put ψi = τi/2 and
let 2λi || ψi (i = 1, 2). Since n/ψi (i = 1, 2) must be odd, we must have λ1 = λ2. Thus, if
λ1 6= λ2, we have ρ = lcm[τ1, τ2]. If λ1 = λ2, then ρ = lcm[ψ1, ψ2] and σ ∤ ρ.

We now have the following result.

Proposition 35. Suppose G = 1, p is a prime such that p ∤ 2P1Q and p | I. If 2 ∤ τ1 or
2 ∤ τ2, then p must be monoapparitic in (An).

Proof. In this case σ = τ2 and ρ = lcm[τ1, τ2]. Thus, σ | ρ and the result follows by
Proposition 25.

Before proceeding any further we will need some additional results concerning Lehmer
sequences. It is easy to establish by induction that if p | r, then for n odd we have

v̄n(r, q) ≡ n(−q)n−1

2 (mod p), ūn(r, q) ≡ (−q)n−1

2 (mod p).

Thus, if p | r and 2 ∤ n, we have p | v̄n(r, q) ⇔ p | n. Also, if 2 | n and p | r, then
ūn(r, q) ≡ n/2(−q)n/2 (mod p). Thus, if p | r and 2 | n, then p | ūn(r, q) ⇔ p | n/2. Also, if
2 | n and p | r, then

un(r, q) ≡ n/2(−q)n/2 (mod p).

Thus, if p | r and 2 | n, then p | un(r, q) ⇔ p | n/2. It follows that (ūn(r, q)) is monoapparitic
modulo p when p ∤ 2q.

It is well known ([4, §4]) that p | ūp−ǫ, where ǫ is the value of the Legendre symbol (rd/p).
Thus, if p | d, then p | ūp and τ(p) = p. Since p is odd, ψ = ψ(p) does not exist in this case.
If p ∤ d, then

p | v̄ p−ǫ

2

⇔ (q/p) = −1.

Hence, if (q/p) = −1, then ψ exists and ψ | p−ǫ
2
.
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A special case of Proposition 35 occurs when (q1/p) = (q2/p) = 1 and ((d1d2)/p) = −1.
For in this case, τ1 | p−ǫ12

, τ2 | p−ǫ22
. Also, ǫ1ǫ2 = ((r1r2d1d2)/p) = ((d1d2)/p) = −1. It follows

that if 2 | τ1 and 2 | τ2 we get 2 | p−ǫ1
2

and 2 | p−ǫ2
2

, which means that p ≡ 1 (mod 4) and
p ≡ −1 (mod 4), an impossibility.

If G = 1 and S 6= 1, it is shown in [12] than any odd fourth-order LDS (An) must have
the form given in (54), i.e.,

An = vn(
√
r1, q1)un(

√
r2, q2)/

√
r1, (62)

but it is not always the case that this (An) will actually be a divisibility sequence. For
example, if r1 = r2 = 7 and q2 = 141002, we see that (An) behaves like a divisibility
sequence until we arrive at the 28th term, where we discover that A14 is not a divisor of A28.
Indeed, as mentioned in [12], it is unlikely that and (An) exists when G = 1 and S 6= 1, but
this has not yet been proved.

If in (54) we put r = r1, q = q1, µ2 = µs1, ν2 = νs1, then r2 = vs(
√
r, q)2 = rv̄s(r, q)

2 and
q2 = qs, where s is any fixed odd positive integer. For these values of r1, r2, q1, q2, (62)
becomes

An = v̄n(r, q)ūns(r, q)/ūs(r, q). (63)

(This An is essentially the same function as that discovered by Koshkin [5] when f(x) =
(x + 1)(x3 − 1) and x = α/β, where α + β =

√
r and αβ = q.) It can be shown that this

(An) is a fourth-order odd LDS with characteristic polynomial given by (2) with P1, P2, Q
defined in (48); also, by using some identities that are satisfied by the Lehmer functions,
we have P1 = rv̄s(r, q), P2 = qv̄s−1(r, q)v̄s+1(r, q), Q = qs+1, ∆ = (r − 4q)2ūs(r, q)

2, E =
(qr(r− 4q)ūs−1(r, q)ūs+1(r, q))

2, A2 = (r− 2q)v̄s(r, q) and I = 0. Notice that we have S = 1
here.

In the particular case of s = 3, we have P1 = r(r − 3q), P2 = q(r − 2q)(r2 − 4rq + 2q2),
Q = q4 and A2 = (r − 2q)(r − 3q), whereas for (Un) we would have A2 = P1 = r(r − 3q). If
we put r = 5 and q = 1, we get P1 = 10, P2 = 21, Q = 1,

Un = 0, 1, 10, 76, 540, 3751, 25840, 177451, 1217160, 8344876, 57202750,

392089501, . . . , (L4n − L2n)/4,

and the odd sequence

0, 1, 6, 38, 252, 1705, 11628, 79547, 544824, 3733234, 25585230, 175356611, . . . . (64)

These sequences are listed as A215465 and A215466, respectively in the OEIS. The sequence
(63) with different values for r and q will also yield the odd LDSs: A238536 (r = 1, q = −1),
A238537 (r = 4, q = −1) and A238538 (r = 9, q = 2).

The sequence (64) is an example of a LDS where 2 has the two ranks of appearance 2
and 3. Notice that v̄3(1, 5) = 2. Indeed, if p | v̄s(r, q), then for (An) given by (63) we have
p | P1, p | A2, P2 ≡ qs(r− 4q) (mod p) and Q = qs+1. We can now use (58) and (59) to show
that

ū2n+1(−P2, Q) ≡ (−1)nqnsv̄2n+1(r, q) (mod p).
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Thus, if p | v̄s(r, q), then ψ(p) exists and by Proposition 21 there are two possible ranks of
appearance of p in (An): 2 and ψ. Since ψ | s, we have 2 ∤ ψ and therefore the two ranks are
distinct.

Now suppose p ∤ v̄s(r, q) in (63). If p | ūs(r, q), then by (57), we have p | d2 and therefore
τ2 = τ2(p) = p. Since 2 ∤ τ2, p must be monoapparitic in (An) by Proposition 35. Next,
suppose that p ∤ ūs(r, q) and put t = gcd(s, τ1). It is easy to show that τ2 = τ1/t in this
case. Thus, if t = 1 or 2 ∤ τ1, we have τ2 | τ1 and consequently p is monoapparitic in (An).
If t > 1 and 2 | τ1, then p has two distinct ranks of apparition in (An): ω1 = σ = τ1/t and
ω2 = ρ = τ1/2.

If we next select (An) in (63) with s = 3 and set A2 = r(r − 2q), then it turns out that
this (An) is also an odd fourth-order LDS with characteristic polynomial (2) and, as before,
P1 = r(r − 3q), P2 = q(r − 2q)(r2 − 4rq + 2q2), Q = q4. Here, it can be shown that

An = ū2n(r, q)un(
√
r, q)2 =

{

v̄n(r, q)ū
3
n(r, q), if 2 ∤ n;

rv̄n(r, q)ū
3
n(r, q), if | n.

(65)

If we put r = 5, q = 1, we get the sequence

0, 1, 15, 128, 945, 6655, 46080, 317057, 2176335, 14925184, 102320625, . . . , F4n − 2F2n,

which appears as A127595 in the OEIS. This sequence is not monoapparitic modulo 5 as 5
has ranks 2 and 5 in (An). More generally, if p | r, then by Proposition 21, (An) in (65) has
ranks of appearance ω1 = 2 and ω2 = p, but if p ∤ r, then p is monoapparitic in (An) with
ω = τ/2 when 2 | τ and ω = τ , otherwise.

If we put r1 = t2, q1 = q, r2 = (t2−2q)2, q2 = q2 and A2 = t3, we find that ∆ = t2(t2−4q)2

and
An = un(t, q)

3. (66)

The corresponding sequence (An) is clearly odd and a fourth-order LDS. For t = 1, q = −1,
we get A056570 in the OEIS. Also, any prime p is clearly monoapparitic in (An). We should
mention here that versions of (63), (65) and (66) were discovered, using a different approach,
by Oosterhout [6].

We have seen, then, that there are infinitely many odd fourth-order LDSs when G =
S = 1; are there any others apart from those mentioned here? Possibly, the answer to this
question is yes, but no non-trivial examples are known to the authors, none were found
during an extensive computer search and none appear in the OEIS.

7 Conclusion

Although we have completely solved the problem of when (An) can have either one or two
ranks of appearance (modulo p), there are still three problems that remain outstanding:

1) Show that no (An) exists when S 6= 1, G = 1;
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2) Show that no (An) exists when S = G 6= 1;

3) Find all possibilities of (An) when S = G = 1.
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