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Abstract

We present enumerative results on prefixes of skew Dyck paths by giving recursive

relations, Riordan arrays, and generating functions, as well as closed formulas to count

the total number of these paths with respect to the length, the height of its endpoint

and the number of left steps.

1 Introduction

A skew Dyck path is a lattice path in the first quadrant of the xy-plane that starts at the
origin, ends on the x-axis, and made of up-steps U = (1, 1), down-steps D = (1,−1), and left
steps L = (−1,−1) so that up and left steps do not overlap. We let |P | denote the length of
the path P , i.e., the number of its steps, which is an even non-negative integer. Let ǫ denote
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the skew Dyck path of length zero. For example, Figure 2 shows the skew Dyck paths of
length 6, or equivalently of semilength 3. The concept of skew Dyck path was introduced by
Deutsch, Munarini, and Rinaldi [1]. Some additional results can be found in [2, 8], where the
authors present enumerative results according to different parameters and some bijections
with other combinatorial objects, as hex trees, tree-like polyhexes, and 3-Motzkin paths.

We let S denote the set of all skew Dyck paths, and let Sn denote the set of all skew Dyck
paths of semilength n. Let sn be the cardinality of Sn. Any nonempty skew Dyck path P
can be uniquely decomposed either P = UT1DT2 or P = UT3L, where T1, T2, T3 ∈ S and
T3 6= ǫ. Figure 1 shows a graphical representation of this decomposition.

Figure 1: Decomposition of a nonempty skew Dyck path.

This decomposition induces the functional equation S(x) = 1+ xS(x)2 + x(S(x)− 1) for
the generating function S(x) :=

∑
P∈S x

|P |/2 =
∑

n≥0 snx
n, and thus we have

S(x) =
1− x−

√
1− 6x+ 5x2

2x
. (1)

The sequence sn appears in the OEIS as A002212 [15], and its first few values are

1, 1, 3, 10, 36, 137, 543, 2219, 9285, 39587.

From the above functional equation, we obtain S(x) − 1 = x(S(x)2 + S(x) − 1), and
applying directly the Lagrange inversion Theorem, (see [5, 10] for instance), we deduce the
explicit formulas:

sn =
n∑

k=1

(
n− 1

k − 1

)
ck,

sn =
n∑

k=1

(
n− 1

k − 1

)
(−1)k−15n−kck,

sn =
1

n

⌊(n−1)/2⌋∑

k=0

(
n

k

)(
n− k

k + 1

)
3n−2k−1,

where cn = 1
n+1

(
2n
n

)
is the n-th Catalan number, which is the general term of the sequence

A000108 in [15].
A prefix of a skew Dyck path is called skew meander. In a way, skew meanders appear as

the counterpart of ballot paths (prefixes of Dyck paths [6]) for skew Dyck paths. The height
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Figure 2: Skew Dyck paths of semilength 3.

α(P ) of a skew meander P is the y-coordinate of the endpoint of the last step of P . For
example, Figure 3 shows a skew meander of length 27 and height 3. Let M be the set of all
skew meanders, and let s(n, k) denote the number of skew meanders of length n and height
k.

In this paper, we present enumerative results on skew meanders by giving recursive
relations, Riordan arrays, generating functions, as well as closed formulas to count the total
number of skew meanders of a given length with respect to the height and the number of
left steps.

(0, 0)

(19, 3)

Figure 3: Skew meander of length 27 and height 3.

2 Skew meanders via Riordan arrays

The goal of this section is to study the distribution of the number of skew meanders of a
fixed height. Let S = [s(n, k)]n,k≥0 denote the matrix where s(n, k) is the number of skew
meanders of length n and height k. The first few rows of the matrix S are

S =




1
0 1
1 0 1
0 2 0 1
3 0 3 0 1
0 6 0 4 0 1
10 0 10 0 5 0 1
0 21 0 15 0 6 0 1
36 0 37 0 21 0 7 0 1
0 79 0 59 0 28 0 8 0 1

...
...

...




.
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The sequence (s(n, 1))n≥1 corresponds to the sequence A033321 that counts skew Dyck paths
of semilength n with a down-step D. Figure 4 shows the six skew meanders of length 5 and
height 1 corresponding to the bold red entry in the above matrix.

Figure 4: The six skew meanders of length 5 and height 1.

We will prove that the matrix S is a Riordan array. So, let us give some background on
Riordan arrays [14]. We will say that an infinite column vector (a0, a1, . . . )

T has generating
function f(x) if f(x) =

∑
n≥0 anx

n, and we index rows and columns starting at 0. A Rior-
dan array is an infinite lower triangular matrix whose k-th column has generating function
g(x)f(x)k for all k ≥ 0, for some formal power series g(x) and f(x), with g(0) 6= 0, f(0) = 0,
and f ′(0) 6= 0. Such a Riordan array is denoted by (g(x), f(x)). If we multiply this matrix
by a column vector (c0, c1, . . . )

T having generating function h(x), then the resulting column
vector has generating function g(x)h(f(x)). This property is known as the fundamental
theorem of Riordan arrays, or as the summation property.

The product of two Riordan arrays (g(x), f(x)) and (h(x), l(x)) is defined by

(g(x), f(x)) ∗ (h(x), l(x)) = (g(x)h(f(x)), l(f(x))) . (2)

Under the operation “ ∗ ”, the set of all Riordan arrays is a group [14]. The identity element
is I = (1, x), and the inverse of (g(x), f(x)) is

(g(x), f(x))−1 =
(
1/

(
g ◦ f

)
(x), f(x)

)
, (3)

where f(x) denotes the compositional inverse of f(x).

Recall that for a skew meander P , α(P ) is the height of P , |P | is the length of P . For a
non-negative integer k, we introduce the generating function

Hk(x) :=
∑

P∈M, α(P )=k

x|P | =
∑

n≥0

s(n, k)xn.

It is clear that H0(x) = S(x2).

Theorem 1. The matrix S = [s(n, k)]n,k≥0 is a Riordan array given by

S =

(
S(x2),

x

1− x2S(x2)

)
, (4)

where S(x) = (1− x−
√
1− 6x+ 5x2)/2x.
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Proof. Obviously, skew meanders of height zero are skew Dyck paths, and a skew meander
P of height k ≥ 1 can be decomposed either P = UP1 or UQDP2, where P1 (resp. P2) is a
skew meander of height k− 1 (resp. k), and Q is a skew Dyck path in S. Figure 5 illustrates
the two cases. Using the symbolic method (see [4]), we obtain the functional equation

k k

Figure 5: Decomposition of a skew meander of height at least one .

Hk(x) = xHk−1(x) + x2S(x2)Hk(x), k ≥ 1,

anchored with H0(x) = S(x2). Then Hk(x) = xHk−1(x)/(1−x2S(x2)), and by iterating this
expression we deduce for k ≥ 0,

Hk(x) =

(
x

1− x2S(x2)

)k

S(x2).

From the definition of Riordan array we obtain the desired result.

Corollary 2. The generating function for the total number of skew meanders of length n is
given by

∑

n≥0

n∑

k=0

s(n, k)xn =
−2 + x+ 4x2 + x3 + (2 + x)

√
1− 6x2 + 5x4

2x(1− 2x− x2)
.

Proof. Multiplying the right-hand side of the equality (4) by the vector (1, 1, 1, . . . )T , which
has generating function 1/(1 − x), and using the summation property, the resulting vector
has generating function

(
S(x2),

x

1− x2S(x2)

)
1

1− x
=

S(x2)

1− x
1−x2S(x2)

=
S(x2)

1− x− x2S(x2)
.

After simplification we obtain the desired result.

The total number of skew meanders of length n, for 0 ≤ n ≤ 10 are

1, 1, 2, 3, 7, 11, 26, 43, 102, 175, 416.

In Theorem 3, we will give a combinatorial formula for s(n, k) involving binomial co-
efficients and the entries of the Catalan triangle introduced by Shapiro [13] in the context
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of lattice paths on Z × Z. It is defined by the matrix [B(n, k)]n,k≥1 = [ k
n

(
2n
n−k

)
]n,k≥1. For

convenience, we extend this triangle by adding a row and column of indice zero by setting
B(0, 0) = 1, B(0, k) = B(k, 0) = 0 if k > 0. So, the first few rows are

B := [B(n, k)]n,k≥0 =




1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 2 1 0 0 0 0 0
0 5 4 1 0 0 0 0
0 14 14 6 1 0 0 0
0 42 48 27 8 1 0 0
0 132 165 110 44 10 1 0
0 429 572 429 208 65 12 1
...

...
...




,

which correspond to array A039598 in [15]. From the generating function of the columns of
B, see [16], we prove that the matrix [B(n, k)]n,k≥0 is the Riordan array B = (1, xC(x)2) ,

where C(x) = 1−
√
1−4x
2x

is the generating function of the Catalan numbers cn = 1
n+1

(
2n
n

)
. It

is well known that C(x) satisfies the functional equation C(x) = xC(x)2 + 1. So, if we set
B(x) := C(x)− 1, then B(x) = x(B(x)+1)2 = xΦ(B(x)), where Φ(z) = (z+1)2. Moreover,

[xn]B(x)k = [xn](C(x)− 1)k = [xn](xC(x)2)k = B(n, k).

From the Lagrange inversion theorem (see for instance [10]), we have

B(n, k) = [xn](B(x))k =
k

n
[zn−k](z + 1)2n =

k

n

(
2n

n− k

)
,

which proves that B is the Riordan array (1, xC(x)2).

Theorem 3. For n, k ≥ 0, if n+ k ≡ 0 (mod 2), then

s(n, k) =

n−k

2∑

j=0

j+1∑

i=0

n−k

2
−j∑

ℓ=0

(
j + k − 1

j

)(
j + 1

i

)(
n−k
2

− j − 1

ℓ− 1

)
B(ℓ, i),

and s(n, k) = 0 otherwise.

Proof. Let U(x) := S(x)−1, where S(x) is the generating function defined in (1). Note that
U(x) = x(U(x)2 + 3U(x) + 1) = xΦ(U(x)), where Φ(z) = z2 + 3z + 1. From the Lagrange
inversion theorem, we deduce

u(k)
n : = [xn]U(x)k =

k

n
[zn−k]Φ(z)n =

k

n
[zn−k](z2 + 3z + 1)n

=
k

n
[zn−k]((z + 1)2 + z)n =

k

n
[zn−k]

n∑

i=0

(
n

i

)
(z + 1)2izn−i
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=
n∑

i=0

(
n

i

)
k

n
[zi−k](z + 1)2i =

n∑

i=1

(
n− 1

i− 1

)
k

i
[zi−k](z + 1)2i

=
n∑

i=0

(
n− 1

i− 1

)
B(i, k).

If we set g
(k)
n := [xn]S(x2)k = (U(x2) + 1)k, then it is cleat that

g(k)n =

{∑k
i=0

(
k
i

)
u
(i)
n/2, if n ≡ 0 (mod 2);

0, otherwise.

Now, by definition of a Riordan array, we have

s(n, k) = [xn]S(x2)
xk

(1− x2S(x2))k

= [xn−k]
∑

j≥0

(
j + k − 1

j

)
S(x2)j+1x2j

=
∑

j≥0

(
j + k − 1

j

)
[xn−k−2j]S(x2)j+1

=

⌊n−k

2
⌋∑

j=0

(
j + k − 1

j

)
g
(j+1)
n−k−2j,

which provides the desired result.

By considering different expansions of the expression (z2 + 3z + 1)n, and using similar
proofs as for Theorem 3, we obtain the following two corollaries.

Corollary 4. For n, k ≥ 0, if n+ k ≡ 0 (mod 2), then

s(n, k) =

n−k

2∑

j=0

n−k

2
−j∑

i=0

(
j + k − 1

j

)(
n−k
2

− j − 1

i− 1

)(
j + 2i+ 1

i

)
j + 1

j + 2i+ 1
,

and s(n, k) = 0 otherwise.

Corollary 5. For n, k ≥ 0, if n+ k ≡ 0 (mod 2), then

s(n, k) =

n−k

2∑

j=0

j+1∑

i=0

(
j + k − 1

j

)(
j + 1

i

)
t
(i)
n−k

2
−j
,

where t
(0)
0 = 1, t

(k)
n = 0 if n = 0, k 6= 0, and t

(k)
n =

∑⌊n−k

2
⌋

i=0
k
n

(
n
i

)(
n−i
k+i

)
3n−k−2i otherwise.

Moreover, s(n, k) = 0 if n+ k ≡ 1 (mod 2).
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3 A recurrence relation for s(n, k)

In this part, we will provide a recurrence relation for s(n, k). For this, we consider the matrix
S2 := [s(2n − k, k)]n,k≥0 = [s̃(n, k)]n,k≥0, which is a compression of S obtained by deleting
some zeros. The first few rows of the matrix S2 are

S2 = [s̃(n, k)]n,k≥0 =




1 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0
3 2 1 0 0 0 0 0
10 6 3 1 0 0 0 0
36 21 10 4 1 0 0 0
137 79 37 15 5 1 0 0
543 311 145 59 21 6 1 0
2219 1265 589 241 88 28 7 1

...
...

...




.

From the summation property for Riordan arrays (see Theorem 1), we obtain directly
the following corollary.

Corollary 6. The matrix S2 is a Riordan array given by S2 =
(
S(x), x

1−xS(x)

)
, and the

generating function S2(x) for the row sums of the matrix S2 is given by

S2(x) :=
∑

n≥0

s2(n)x
n =

∑

n≥0

n∑

k=0

s̃(n, k)xn =
1− 2x−

√
1− 6x+ 5x2

x

= 1 + 2x+ 6x2 + 20x3 + 72x4 + 274x5 + 1086x6 + 4438x7 + 18570x8 + · · ·

The generating function S2(x) satisfies S2(x) = 2S(x)− 1, and s2(n) corresponds to the
general term of the sequence A122737 which has a combinatorial interpretation using special
polyominoes (bi-wall directed polygons).

A plane figure is a polyomino if it is a union of finitely many cells and the interior is
connected. A polyomino P is a polygon if P has a connected border, and this border is a
closed self-avoiding walk. We say that P is directed if each of its cells can be reached from its
bottom left-hand corner by a path which is contained in the polyomino and uses only north
and east steps. Let c be the bottom left-hand corner of P . A clockwise tour of P is a closed
walk which, starting at c, goes along the boundary of P (in the clockwise direction), and
ends when the corner c is reached again. A bi-wall directed polygon is a directed polygon such
that its clockwise tour satisfies that once the first left step has been made, up steps occur
never more [3]. For example, Figure 6 shows a bi-wall directed polygon of perimeter 66. The
sequence s2(n) counts the number of bi-wall directed polygons with perimeter 2(n+ 2). We
wonder how the bijective proof of this result will appear.
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c

Figure 6: Bi-wall directed polyomino of perimeter 66.

Notice that, due to the relation S2(x) = 2S(x)−1, bi-wall directed polygons of perimeter
2(n+2) are in one-to-one correspondence with special directed polygons of perimeter 2(2n+1)
having a clockwise tour that can be decomposed either NPSP or PEPW where N (resp.
S, E, W ) are the north- (resp. south-, east-, west-) steps, and P is obtained from a skew
Dyck path Q of semilength n by replacing U with N , D with E, and L with W , and P is
obtained from Q by reading Q from right to left and by replacing U with W , D with S,
and L with E. For instance, from the skew Dyck path P = UDUUDL we generate two
directed polygons NNENNESSESWWSW and NENNESEESWWSWW illustrated
in Figure 7. Finding a constructive bijection between this class of polyominoes and bi-wall
directed polygons remains an interesting open question.

Figure 7: Construction of two directed polygons of perimeter 14 from a skew Dyck path of
length 6.

Rogers [12] observed that every element dn+1,k+1 of a Riordan array (not belonging to
0 row or 0 column) can be expressed as a fixed linear combination of the elements in the
preceding row. The A-sequence is defined to be the sequence coefficients of this linear
combination. Similarly, Merlini et al. [9] introduced the Z-sequence, which characterizes
the elements in column 0, except for the element d0,0. Therefore, the A-sequence, the Z-
sequence and the element d0,0 completely characterize a Riordan array. We summarize this
characterization in the following theorem.

Theorem 7 ([9, 7]). An infinite lower triangular array D = [dn,k]n,k≥0 = (g(x), f(x)) is
a Riordan array if and only if d0,0 6= 0 and there exist two sequences (a0, a1, a2, . . . ), with
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a0 6= 0, and (z0, z1, z2, . . . ) (called the A-sequence and the Z-sequence, respectively), such
that

dn+1,k+1 = a0dn,k + a1dn,k+1 + a2dn,k+2 + · · · for n, k ≥ 0,

dn+1,0 = z0dn,0 + z1dn,1 + z2dn,2 + · · · for n ≥ 0,

or equivalently

g(x) =
d0,0

1− xZ(f(x))
and f(x) = x(A(f(x))),

where A(x) and Z(x) are the generating functions of the A-sequence and Z-sequence, respec-
tively.

Below we describe the A-sequence and Z-sequence for the Riordan array S2.

Theorem 8. For n, k ≥ 0, we have

s̃(n+ 1, k + 1) = s̃(n, k) + s̃(n, k + 1) +
∑

i≥2

2i−2 s̃(n, k + i),

Moreover, for n ≥ 0

s̃(n+ 1, 0) = s̃(n, 0) +
∑

i≥1

(2i−1 + 1)s̃(n, i),

with the initial value s̃(0, 0) = 1.

Proof. From Theorem 7 and Corollary 6, the generating function of the A-sequence is

A(x) =
x

f(x)
=

x
x(1−2x)
1−x−x2

=
1− x− x2

1− 2x
= 1 + x+ x2 + 2x3 + 4x4 + 8x5 + · · · .

The generating function of the Z-sequence of S2 is

Z(x) =
1

f(x)

(
1− d0,0

g(f(x))

)
=

1− x− x2

(1− x)(1− 2x)
= 1+2x+3x2+5x3+9x4+17x5+33x6+· · · .

Combining the above relations, we obtain the following corollaries.

Corollary 9. For any integers n, k ≥ 0, we have the following relations

s(n, k) = s(n− 1, k − 1) + s(n− 2, k) +

⌊n−1

2
⌋∑

i=2

2i−2 s(n− i− 1, k + i− 1),

s(n, 0) = s(n− 2, 0) +

⌊n−1

2
⌋∑

i=1

(2i−1 + 1)s(n− i− 2, i).

with s(0, 0) = 1 = s(1, 1), s(1, 0) = 0, and s(n, k) = 0 for n < k.

Corollary 10. For any integers n, k ≥ 2, we have the following relation

s(n+ 1, k − 1)− 2s(n, k) = s(n, k − 2)− s(n− 1, k − 1)− s(n− 2, k).
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4 The number of left steps

In this section, we provide a close form for the number ah(n,m) of skew meanders of length
n, height h, and with exactly m left steps L = (−1,−1). Let ℓ(P ) denote the number of
left steps in a path P . Given a non-negative integer h, we let Mh denote the set of skew
meanders of height h. We are interested in the bivariate generating function

Lh(x, y) :=
∑

P∈Mh

x|P |yℓ(P ) =
∑

n,m≥0

ah(n,m)xnym.

Theorem 11. The generating function Lh(x, y) is given by the equations

L0(x, y) =
1− x2y −

√
1− 4x2 − 2x2y + 4x4y + x4y

2x
,

and for h ≥ 1, we have

Lh(x, y) =
xhL0(x, y)

(1− x2L0(x, y))h
.

Proof. From the decomposition given in Figure 1, we obtain the functional equation

L0(x, y) = 1 + x2L0(x, y)
2 + x2y(L0(x, y)− 1).

Solving for L0(x, y), we have the first equation. If h ≥ 1, then from the decomposition given
in Figure 5 we have

Lh(x, y) = xLh−1(x, y) + x2L0(x, y)Lh(x, y).

Therefore

Lh(x, y) =
xLh−1(x, y)

1− x2L0(x, y)
= · · · = xhL0(x, y)

(1− x2L0(x, y))h
.

Let a(j)(n,m) be the coefficient of xnym in the generating function L0(x, y)
j.

Lemma 12. For n, j ≥ 1, n ≡ 0 (mod 2), and 0 ≤ m ≤ n/2− 1 we have

a(j)(n,m) =

j∑

i=0

i

n/2−m

(
j

i

)(
n/2− 1

m

)(
2(n/2−m)

n/2−m− i

)
,

with the initial values a(j)(0, 0) = 1. Moreover, for n ≡ 1 (mod 2), a(j)(n,m) = 0.

Proof. If f(x, y) = L0(x
1/2, y)− 1, then from Theorem 11 we have

f(x, y) = x(f(x, y)2 + (2 + y)f(x, y) + 1) = xΦ(f(x, y)),
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where Φ(z) = z2 + (2 + y)z + 1. From the Lagrange inversion theorem, we deduce

f (k)(n,m) := [xnym]f(x, y)k =
k

n
[zn−kym]Φ(z)n

=
k

n
[zn−kym](z2 + (2 + y)z + 1) =

(
n− 1

m

)
B(n−m, k).

Since B(n, k) = k
n

(
2n
n−k

)
, we obtain

f (k)(n,m) =
k

n−m

(
n− 1

m

)(
2(n−m)

n−m− k

)
.

If n is even then

a(j)(n,m) = [xnym](f(x2, y) + 1)j = [xnym]

j∑

i=0

(
j

i

)
f(x2, y)i

=

j∑

i=0

i

n/2−m

(
j

i

)(
n/2− 1

m

)(
2(n/2−m)

n/2−m− i

)
.

Moreover, if n is odd this sequence is equal to zero.

The summand on the right side of a(j)(2n,m) is denoted by F (j, i), that is

F (j, i) :=
i

n−m

(
j

i

)(
n− 1

m

)(
2(n−m)

n−m− i

)
.

By Zeilberger’s creative telescoping method (cf. [11]) F (j, i) satisfies the relation

(1 + j)(j − 2m+ 2n)F (j, i)− j(1 + j −m+ n)F (j + 1, i) = G(j, i+ 1)−G(j, i), (5)

with the certificate

R(j, i) =
(−1 + i)(1 + j)(i−m+ n)

1− i+ j
.

That is, R(j, i) = F (j, i)/G(j, i) is a rational function in both variables. Summing both sides
of (5) with respect to i and after simplification we obtain the following result.

Proposition 13. For 0 ≤ m ≤ n− 1

a(j)(2n,m) =
j

2(n−m+ j)

(
n− 1

m

)(
2(n−m)

n−m

)
(2m− 2n− j + 1)j
(m− n− j + 1)j

,

where (x)n := x(x+ 1) · · · (x+ n− 1) and (x)0 = 1.
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Theorem 14. For n,m, h ≥ 0 we have

ah(n,m) =

n−h

2∑

j=0

(
j + h− 1

j

)
a(j+1)(n− h− 2j,m).

Proof. For h ≥ 1 we have from Theorem 11 that

ah(n,m) = [xnym]
xhL0(x, y)

(1− x2L0(x, y))h

= [xn−h−2jym]
∑

j≥0

(
j + h− 1

j

)
L0(x, y)

j+1

=
∑

j≥0

(
j + h− 1

j

)
a(j+1)(n− h− 2j,m).

Figure 8 shows the skew meanders corresponding to a3(11, 2) = 12.

Figure 8: The skew meanders of length 11, height 3, with exactly 2 left steps.
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