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Abstract

We study tilings of rectangular and circular arrays with specified sets of colored

rectangular tiles. In particular, we consider rectangular tiles of arbitrarily large size,

but where the number of colors available to use on a particular tile is determined by

its position on the array. While tiling enumeration is often used to prove identities in-

volving Fibonacci and Lucas numbers, the tilings we examine yield natural connections

with sets of permutations.

1 Introduction

We consider tilings of rectangular and circular arrays with colored tiles. It is well known
that the number of ways to tile an n×1 rectangle with dominoes and squares is given by the
nth Fibonacci number, and the number of ways to tile an n-cell circular array with dominoes
and squares is given by the nth Lucas number. These types of tilings have been generalized
in a number of ways, and an excellent survey of enumerative and bijective results resulting
from tilings is given by Benjamin and Quinn [1].

A recent paper of Dresden and Xiao [2] considers tilings of n × 1 rectangles and n-cell
circular arrays with tiles of any size i × 1, where 1 ≤ i ≤ n and where i × 1 tiles come in i

different colors. They use these colored tilings to prove identities involving weighted sums of
Fibonacci numbers. In any Fibonacci or Lucas-type tiling, a tile is uniquely described by its
size and position. While Dresden and Xiao determined the number of colors of a tile by the
size, in this paper we ask the analogous enumeration questions when the number of colors
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Figure 1: An n-cell rectangular board and an n-cell circular array.

available to a tile is determined by its position. In particular, we number the cells of an
n× 1 rectangle consecutively from left to right, and we number the cells of an n-cell circular
array consecutively in a clockwise fashion as shown in Figure 1. We consider a family of six
enumeration questions, determined by the following parameters:

• What board is to be tiled? (n× 1 rectangle or n-cell circular array)

• What is the number of possible colors of a tile? (determined by the biggest cell that
is covered, the smallest cell that is covered, the last value cell that is covered, or the
first value cell that is covered)

In a circular array, the first and last valued cells are determined by reading the cells in
clockwise order. In a rectangle tiling, “first” and “smallest” are equivalent, as are “last” and
“biggest”. The same is true for many tiles on a circular array; however, in a circular array,
tiles of size 2 or more may cover both cell n and cell 1 simultaneously, and these conventions
differ for these “straddling tiles”.

We explore each of these questions in turn and analyze the resulting enumeration se-
quences. In particular, rather than having connections to Fibonacci and Lucas numbers, this
new family of tilings results in connections with various families of permutations. Through-
out this paper, we think of permutations combinatorially, rather than algebraically. That
is, a permutation π of size n is a list of the numbers 1, 2, . . . , n where order matters. In
particular, it will be useful to think about the inversions of the permutations in question.
An inversion in a permutation π = π1 · · · πn is a pair of entries πi and πj such that i < j

but πi > πj.
In Section 2 we consider tilings of an n×1 rectangle according to two different conventions

for the number of colors available to each tile, and in Section 3 we consider tilings of an n-cell
circular array according to four different conventions for the number of colors available to
each tile. For each tiling problem, we give both an enumeration of the possible tilings and a
bijective connection with a specific family of permutations.
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2 Rectangle tilings

Let rn be the number of tilings of an n×1 rectangular board with i×1 tiles where 1 ≤ i ≤ n.
Clearly r0 = r1 = 1. In general, we can divide the tilings into cases by conditioning on the
size of the last tile. If the last tile is of size i, then the rest of the board is an (n − i) × 1
board with the same tiling rules, so we have

rn =
n∑

i=1

rn−i.

This recurrence yields rn = 2n−1; this is sequence A000079 in the On-Line Encyclopedia of
Integer Sequences (OEIS). We can see this result more directly, since any tiling of an n× 1
rectangle corresponds to a composition of n, i.e., an ordered list of positive integers whose
sum is n. We really must decide whether each of the n − 1 boundaries between cells is a
boundary between two distinct tiles or not, yielding 2n−1 possible uncolored tilings.

Now that we understand the monochromatic tiling case, we consider colored tilings where
each tile is assigned a color and the number of colors available to a tile is determined by the
tile’s position.

Theorem 1. Let rbn be the number of tilings of an n × 1 rectangle where the number of
possible colors of a tile t is determined by the biggest cell t covers. Then for n ≥ 1 we have

rbn = n · n!. (OEIS A094258)

Proof. Notice that for n ≥ 1, n ·n! is the number of permutations of [n+1] = {1, . . . , n+1}
whose final digit is not n+ 1.

Now consider a tiling of an n × 1 rectangle where the number of colors available to a
tile is determined by the largest cell it covers and name the tiles t1, t2, . . . , tm from left to
right. Given tile ti of length ℓi and color ci let f̂(ti) be the sequence 0ℓi−1, ci. Now, for any
tiling t1t2 · · · tm of an n× 1 rectangle, we may associate a sequence s = s1 · · · sn+1 formed by
concatenating 0f̂(t1)f̂(t2) · · · f̂(tm). To find the permutation f(t1t2 · · · tm) that corresponds
to the entire tiling, begin with the permutation 12 · · · (n+1). Then, for 1 ≤ i ≤ n+1, move
the digit i to the left si positions. Since sn+1 ≥ 1, this generates a permutation of [n + 1]
that does not end in n+1. In the resulting permutation, j is the larger digit in sj inversions.

This construction is invertible. Consider a permutation π of length n+1. The position of
n+1 determines the color of the last tile. Also, after deleting the digit n+1, the longest run
of digits where πi = i at the end of the permutation (possibly of length 0) is one less than
the length of the last tile. We can then delete these final digits and recursively determine
the size and length of each successive tile from right to left.

As an example, consider the tiling t1t2t3t4 in Figure 2. We have f̂(t1) = 02, f̂(t2) = 004,
f̂(t3) = 6, and f̂(t4) = 5. Together this tells us that s = 00200465. Reading this sequence
from left to right, we begin with 12345678. Since s1 = s2 = 0, we see that 1 and 2 are
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involved in 0 inversions, but since s3 = 2, the digit 3 appears ahead of 1 and 2, and alters
our permutation to 31245678. Similarly, 4 and 5 are involved in no inversions, but s6 = 4
tells us that 6 is involved in 4 inversions so our permutation becomes 36124578. Since
s7 = 6, we move 7 to the left by 6 positions to obtain 73612458. Since s8 = 5 we move 8
to the left by 5 positions to obtain π = f(t1t2t3t4) = 73861245. Similarly, the permutation
π = 3216475 corresponds to the tiling shown in Figure 3. In general, the colors of tiles
correspond to the number of inversions involving a specified digit, so these tilings are an
alternate representation of inversion sequences. In Section 3 we will use variations of this
bijection to understand tilings of circular arrays.

2 4 6 5

Figure 2: A 7-cell biggest-color rectangle tiling, where each tile is labeled with its color,
corresponding to 73861245.

1 2 2 1

Figure 3: A 6-cell biggest-color rectangular board, where each tile is labeled with its color,
corresponding to 3216475.

Next, we consider an alternate coloring rule that is related to a different family of per-
mutations.

Theorem 2. Let rsn be the number of tilings of an n × 1 rectangle where the number of
possible colors of a tile t is determined by the smallest cell t covers. Then

rsn =
(n+ 1)!

2
. (OEIS A001710)

Proof. We prove this inductively.
When n = 1, there is one tiling, as expected.
Now suppose rsn = (n+1)!

2
and consider a tiling of an (n + 1) × 1 board. Either the last

tile is a square with one of n+1 colors, and the rest of the tiling is a tiling of an n×1 board,
or the last tile is a k × 1 tile (k > 1) with the number of colors determined by its first cell.
We can shrink this last tile to be a (k − 1) × 1 tile with the same color to obtain a tiling
of an n× 1 board. Either way, each n× 1 tiling corresponds to n+ 2 different tilings of an
(n+1)× 1 board; n+1 that end in squares, and one that results from stretching the size of

the final tile. This tells us rsn+1 = (n+ 2) rsn =
(n+ 2)!

2
, as desired.

An even (resp. odd) permutation is a permutation with an even (resp. odd) number of
inversions. Among the n! permutations of length n (where n ≥ 2), exactly half of them are
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tiling T permutation g(T ) tiling T permutation g(T )

1
1234

1 1 1
2143

1 1
2314

1 1 2
2431

1 2
3124

1 1 3
4213

1 1
1342

1 2 1
3241

1 2
1423

1 2 2
3412

1 3
4132

1 2 3
4321

Table 1: All smallest-color tilings of a 3× 1 rectangular board and their corresponding even
permutations of length 4.

even. (To see this, notice that transposing the final two digits of a permutation provides a
bijection between odd permutations and even permutations of the same length.) Although
the proof of Theorem 2 is relatively succinct, we may also give a bijection g(T ) between the
tilings counted by rsn and the even permutations of length n+ 1.

As a base case, when n = 1, there is one tiling, and there is one even permutation of
length 2, namely 12.

Now, for n ≥ 2, we show that if there is a bijection between tilings counted by rsn−1 and
even permutations of length n, then this extends to a bijection between tilings counted by
rsn and even permutations of length n+ 1.

Consider a tiling counted by rsn. If the last tile has length 2 or greater, find the permu-
tation that corresponds to shrinking the last tile by 1 square and append n + 1 on the end
of the permutation. This is guaranteed to be an even permutation because there are still an
even number of inversions among the digits 1, 2, . . . , n, and n+1 is involved in no inversions.

Otherwise, the last tile has size 1 and color c where 1 ≤ c ≤ n. Consider the permutation
π′ that corresponds to the tiling where this final tile is removed. π′ is necessarily even. Now,
if c is even, insert n+1 in position n+1−c, which involves n+1 in c inversions and produces
an even permutation. On the other hand if c is odd, then transpose the last two digits of π′

to get an odd permutation of length n and then insert n+ 1 in position n+ 1− c to involve
n+ 1 in an odd number of inversions and produce an even permutation.

This procedure is invertible. The position of the largest digit in an even permutation
uniquely determines whether the last tile has length 1 or is longer. If the last tile is square,
the position of n+1 also determines its color. We may delete digit n+1 from the permutation
and recursively determine the unique tiling that goes with this new permutation of length n

and then either extend the last tile or add an appropriately-colored square to complete the
tiling.

As an example, Table 1 gives the twelve possible smallest-color tilings of a 3×1 rectangle
along with their corresponding even permutations of length 4.
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3 Circular array tilings

Next we consider tilings of an n-cell circular array. As in the rectangular case, it is instructive
to first count uncolored tilings. Consider the tile covering 1 to be the “first” tile. This tile
has size i where 1 ≤ i ≤ n, and there are i positions this tile could have (depending on
whether cell 1 is the first, second, . . . , or ith cell covered by the tile). Then there are n− i

remaining cells, which can be covered in 2n−i−1 ways if i < n (or 1 way if i = n), since tiling
this portion of the circle is equivalent to covering an (n− i)× 1 rectangle. Therefore, there
are n+

∑n−1
i=1 i2n−i−1 = 2n − 1 (OEIS A000225) ways to tile an n-cell circular array. We can

also see this enumeration more directly; we either choose to include or omit each of the n

boundaries between adjacent cells as a boundary between distinct tiles, and the only invalid
choice is to select 0 such boundaries.

Now, consider the situation where the number of colors available to a tile is determined
by its position. Just as the number of uncolored tilings of a circular array is a weighted
sum of tilings of rectangles, the same general idea holds when we introduce colored tiles to
circular arrays. In this section, we consider four conventions: the number of colors available
to a tile is given by the first, smallest, last, or biggest cell covered. For many tiles the first
two conventions will be the same and the last two conventions will be the same, but circular
arrays may have tiles that simultaneously cover both cell n and cell 1, and these cells will
be treated differently by the various conventions. For example, a 4× 1 tile that covers cells
n− 1, n, 1, and 2 has n− 1 as its first cell, 1 as its smallest cell, 2 as its last cell, and n as
its biggest cell. Similar to the enumerations in Section 2, in this section we find sequences
connected with specific families of permutations. While two of these enumerations are equal
and the resulting sequence is in the On-Line Encyclopedia of Integer Sequences [3], the other
two appear to be new to the literature.

Theorem 3. Let cln be the number of tilings of an n-cell circular array where the number
of possible colors of a tile t is determined by the last cell t covers, and let cfn be the number
of tilings of an an n-cell circular array where the number of possible colors of a tile t is
determined by the first cell t covers. Then

cln = cfn = (n+ 1)!− 1. (OEIS A033312)

Proof. Consider an uncolored tiling T of an n-cell circular array whose tiles have last cells
c1, . . . , cm. Rotating this tiling counterclockwise by one position yields tiling T ′ whose tiles
have first cells c1, . . . , cm. Therefore the number of colorings of T counted by cln equals the
number of colorings of T ′ counted by cfn.

Now, we focus on cln and show that cln = rbn+cln−1. Consider a tiling counted by
cln. Either the colored tile covering position n also covers position 1 or not. If not, by
cutting the circular array between cells 1 and n, we have a tiling equivalent to one of the
rbn tilings counted by Theorem 1. Alternatively, if the colored tile covering position n also
covers position 1, then we may shrink the tile by 1 square and remove position n from the
circular array to obtain a colored tiling counted by cln−1, provided n > 1.
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Assuming that cln = (n + 1)! − 1, consider cln+1 = rbn+1 +cln. Using Theorem 1,
rbn = n · n! and by our inductive hypothesis we conclude that cln+1 = (n + 1) · (n + 1)! +
(n+ 1)!− 1 = (n+ 2)!− 1, as desired.

While Theorem 3 enumerates the relevant circular array tilings, we can also find a bi-
jection between the tilings counted by cln and the permutations of n + 1 that are not the
identity permutation. Consider a tiling where cell n and cell 1 are covered by different tiles.
Since this tiling is equivalent to a tiling counted by rbn, then via bijection f in the proof of
Theorem 1 it can be mapped to a unique permutation of length n+1 where n+1 is not last.
On the other hand, if cells n and 1 are covered by the same tile, suppose that there are i cells
covered by this tile to the left of 1. Delete these i cells and shrink this tile by size i to obtain
a tiling counted by cln−i where cells 1 and n − i are covered by different tiles. We can find
the unique permutation of length n + 1 − i corresponding to this tiling via bijection f and
then append the digits n− i+2, . . . , n+1 in order to complete the non-identity permutation
of length n+ 1.

Theorem 4. Let cbn be the number of tilings of an n-cell circular array where the number
of possible colors of a tile t is determined by the biggest cell t covers. Then

cbn = n

n∑

k=1

n!

k!
. (OEIS A345887)

Proof. Let rbi
k be the number of tilings of an k × 1 rectangle where the number of possible

colors of a tile t is determined by the biggest cell t covers, starting at position i+1. With this
notation, Theorem 1 addresses the case where i = 0. When i > 0, we understand positions
1, . . . , i to be all covered by the first tile, whose size is at least i+ 1.

Consider a tiling counted by cbn. Then the tile covering position n covers i positions to
the right of n where i ≥ 0. If i = 0, by cutting the circular array between cells n and 1,
we obtain one of the rbn = n · n! tilings of a rectangular array. Alternatively, if i > 0, we
can remove the positions 1, 2, . . . , i from the tiling without changing the number of tilings.
There are exactly rbi

n−i such tilings. These can be counted in a manner similar to Theorem
1, where the ordering of 1, . . . , i+ 1 in the corresponding permutation does not matter, and
thus rbi

n−i = n n!
(i+1)!

. We sum over all relevant values of i to determine

cbn =
n−1∑

i=0

rbi
n−i =

n−1∑

i=0

n
n!

(i+ 1)!
= n

n∑

k=1

n!

k!
.

While cbn is new to OEIS, cbn
n

is given by A002627, which is known to be the number of
permutations of proper subsets of a set of n objects. We can see this by modifying bijection
f from the proof of Theorem 1. Consider a tiling and focus on the tile covering cell n.
Suppose this tile covers i cells to the right of n. Necessarily, 0 ≤ i ≤ n − 1. Delete cells
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Figure 4: A 6-cell biggest-color circular array tiling and its corresponding partial rectangular
board tiling, which map to the ordered arrangement 316 of the subset {1, 3, 6}.

1, . . . , i from the tiling (and shrink this tile by i cells) to obtain a tiling of cells i + 1, . . . , n
of the circular array. Now, to generate a (partial) permutation, begin with i+1 blanks, and
then proceed similarly to bijection f , reading tiles from left to right. When a tile has color c
and covers cells j, . . . , j+a, append the digits j− i, . . . , j+a− i−1 to the end of the partial
permutation, and then place digit j + a − i in the (c + 1)st position from the end. This
produces a permutation consisting of i + 1 blanks along with the digits 1, . . . , n − i. Since
there are always n choices for the color of the last tile, there are always n possible positions
of the digit n+ 1 relative to the other digits in any underlying partial permutation. If digit
n + 1 is removed, then we produce all ways to generate a permutation of i + 1 blanks and
n− i− 1 digits. Now, if there is a digit in position p, consider p to be in our chosen subset,
and if there is a blank in position p, p is not in the subset. The digits 1, . . . , n − i in the
non-blank positions produce a permutation of our chosen elements. Since there is always at
least one blank, we always have a proper (possibly empty) subset of {1, . . . , n} that has been
chosen.

As an example, consider the coloring of a 6-cell circular array shown in the left of Figure
4. In this diagram, the tile covering cell 6 also covers cells 1 and 2 so, i = 2, and if we ignore
the first two cells, we have a rectangular tiling of cells 3, 4, 5, and 6 of the form shown on
the right of Figure 4. Since i = 2, we begin with three blanks. Now, the tile covering cell
3 is of size 1 and has color 2, so we place the digit 1 in the third position from the right to
obtain 1 . Next, the tile covering cell 4 is of size 1 and has color 4, so we place the
digit 2 in the fifth position from the right to obtain 2 1 . Finally, the tile covering
cells 5 and 6 has size 2 and color 5, so we place 3 at the end of the partial permutation and
then place 4 in the sixth position from the end to obtain 2 4 1 3. Disregarding the
4 gives 2 1 3. There are digits in positions 1, 3, and 6, and so this corresponds to a
permutation of the subset {1, 3, 6}. Since the 1 is in position 3, the 3 comes first; since the
2 is in position 1, the 1 comes second, and finally 6 comes last. This tiling corresponds to
the ordered arrangement 316.

Theorem 5. Let csn be the number of tilings of an n-cell circular array where the number
of possible colors of a tile t is determined by the smallest cell t covers. Then
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csn =
n+1∑

k=2

k!

2
. (OEIS A345889)

Proof. Consider a tiling counted by csn. Either the tile covering position n also covers
position 1 or it does not. For the first case, since the tile covering position n also covers
position 1, we can remove position n from the circular tiling and shrink the tile by size 1 to

obtain one of csn−1 =
n∑

k=2

k!

2
possible colored tilings of an (n− 1)-cell circular array. For the

later case, since the tile covering array position n does not cover position 1, by cutting the
array between cells n and 1, we obtain one of the rsn = (n+1)!

2
colored tilings of Theorem 2.

Since these cases are mutually exclusive, we conclude that csn =
n∑

k=2

k!

2
+

(n+ 1)!

2
=

n+1∑

k=2

k!

2

as desired.

While csn is new to OEIS, csn − csn−1 is given by A001710, which we saw in Theorem 2
as the number of even permutations of size n + 1. In other words, csn corresponds to the
number of even permutations of size at most n + 1 (and at least 2). We can see this as a
corollary to the proof of Theorem 5 since, if we consider the tile covering cell 1 and delete
the i cells left of 1 (0 ≤ i ≤ n − 1) that are covered with this tile, we obtain a tiling of an
n − i cell circular array where different tiles cover cell 1 and cell n − i. In this situation,
the tiling is equivalent via bijection g to a tiling counted by rsn−i, which we know to be in
bijection with the even permutations of size n− i+1, so after running over all possible values
of i, we have tilings in correspondence with all even permutations of lengths between 2 and
n+ 1 inclusive.
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