

Journal of Integer Sequences, Vol. 24 (2021), Article 21.7.7

Representation of Integers of the Form

 $x^2 + my^2 - z^2$

Supawadee Prugsapitak and Nattaporn Thongngam Algebra and Applications Research Unit Division of Computational Science Faculty of Science Prince of Songkla University Hatyai, Songkhla 90110 Thailand supawadee.p@psu.ac.th 6310220031@psu.ac.th

Abstract

Let *m* be a positive integer. A positive integer *k* is called *m*-special if every integer *n* can be expressed as $n = x^2 + my^2 - kz^2$ for some nonzero integers *x*, *y* and *z*. In this article, we show that 1 is *m*-special if and only if *m* is not divisible by 4.

1 Introduction

Representations of integers as sums of squares have a long history. Ramanujan [4] proved that there exist 54 quadruples (a, b, c, d) with $1 \le a \le b \le c \le d$ such that every natural number n is representable in the form $aw^2 + bx^2 + cy^2 + dz^2$. Panaitopol [3] proved that there exists no triple (a, b, c) with $1 \le a \le b \le c$ such that every natural number is representable in the form $ax^2 + by^2 + cz^2$. However, if we allow c in the representation $ax^2 + by^2 + cz^2$ to be negative, then the representation is possible. Nowicki [2] showed that if all natural numbers are representable in the form $x^2 + y^2 - cz^2$, then c is of the form q or 2q, where either q = 1 or q is a product of primes of the form 4m + 1. Lam [1] proved its sufficiency. In what follows, we are concerned with the problem of representing natural numbers n in the form $n = x^2 + my^2 - z^2$ for a given positive integer m, where $xyz \neq 0$. We provide necessary and sufficient conditions for representing all integers n in the form $x^2 + my^2 - z^2$ where x, yand z are nonzero.

Definition 1. A positive integer k is *m*-special if for every integer n there exist nonzero integers x, y, and z such that $n = x^2 + my^2 - kz^2$.

Nowicki [2] showed that 1 is 1-special, that is, for every integer n there exist nonzero integers x, y, and z such that $n = x^2 + y^2 - z^2$. Nowicki [2] and Lam [1] showed that k is 1-special if and only if k is of the form q or 2q where either q = 1 or q is a product of primes of the form 4m + 1.

2 Main Results

Theorem 2. Let m be a positive integer. If m is divisible by 4, then 1 is not m-special.

Proof. Let m be a positive integer divisible by 4. Assume that 1 is m-special. Then there exist nonzero integers x, y, z such that $x^2 + my^2 - z^2 = 2$. So we have $x^2 - z^2 \equiv 2 \pmod{4}$. Since quadratic residues modulo 4 are 0 and 1, it follows that $x^2 - z^2 \equiv 0, 1, 3 \pmod{4}$. This is a contradiction. Hence 1 is not m-special.

In 2015, Nowicki [2] showed that 1 is 1-special.

Lemma 3. [2] 1 is 1-special.

We present an elementary result. The following well-known lemma plays an important role in our main result. The proof is given in [5, Theorem 3.18]:

Lemma 4. Let m be a rational number. Then m is an integer if and only if m^2 is an integer.

Theorem 5. Let m > 1 be a positive integer. If m is not divisible by 4, then 1 is m-special.

Proof. Let m > 1 be a positive integer not divisible by 4. We show that for any integers n there exist nonzero integers x, y and z such that $n = x^2 + my^2 - z^2$, i.e., $x^2 - z^2 = (x - z)(x + z) = n - my^2$. In each case, we provide a choice of nonzero integers x, y and z.

Case 1: Suppose $n \equiv 0 \pmod{4}$. Thus n = 4l for some integer l. If $l \neq 0$, then we choose

$$y = 4l + 2$$
, $x = 1 + l - m(2l + 1)^2$, $z = -1 + l - m(2l + 1)^2$.

Obviously, $y \neq 0$. We next show that x and z are nonzero. If x = 0 or z = 0, then $m(2l+1)^2 = l+1$ or $m(2l+1)^2 = l-1$ respectively. Since m > 1, we have l > 0 or l > 3, respectively. Both cases imply that m is not an integer, which is a contradiction.

Case 2: Suppose $n \equiv 1 \pmod{4}$. Thus n = 4l + 1 for some integer *l*. In this case, we choose

$$y = 2(4l+1), \quad x = 1 + 2l - 2m(4l+1), \quad z = -2l - 2m(4l+1),$$

Again, we have that $y \neq 0$. If x = 0, then 1 is divisible by 2, which is a contradiction. If z = 0, then $m^2(4l+1)^2 = l^2$. Thus m^2 is not an integer for all $l \neq 0$. Then by Lemma 4, we get that m is not an integer. Thus x and z are nonzero.

Case 3: Suppose $n \equiv 2 \pmod{4}$. Thus n = 4l + 2 for some integer l.

Case 3.1: Suppose $m \equiv 2 \pmod{4}$. Hence m = 4k + 2 for some non-negative integer k. We choose

$$y = 2l + 1$$
, $x = l - k - 2kl + 1$, $z = -3l - k - 2kl - 1$.

It is easy to see that $y \neq 0$. If x = 0 or z = 0, then $k = \frac{l+1}{2l+1}$ or $k = \frac{-(3l+1)}{2l+1} = -1 - \frac{l}{2l+1}$ respectively. Since k is an integer, we have l = -1 or 0. Therefore x or z can be zeros only if (m, n) = (2, -2), (6, 2). To handle these cases, we can use the representations

$$2 = x^{2} + 6y^{2} - z^{2} \text{ where } (x, y, z) = (12, 3, 14)$$

$$-2 = x^{2} + 2y^{2} - z^{2} \text{ where } (x, y, z) = (4, 3, 6).$$

Case 3.2: Suppose $m \equiv 1 \pmod{2}$. Therefore m = 2k + 1 for some positive integer k. Here we choose

$$y = 2l + 1$$
, $x = 1 - k - 2kl$, $z = -k - 2l - 2kl$.

Since y is odd, we have that y is nonzero. If x = 0, then l = 0 and k = 1. We obtain m = 3 and n = 2. For this exceptional case, we use the representation $2 = 12^2 + 3(3)^2 - 13^2$. If z = 0, then $k^2(1+2l)^2 = (2l)^2$. Thus k^2 is not an integer for $l \neq 0$. Thus again by Lemma 4, k is not an integer for $l \neq 0$.

Case 4: Let $n \equiv 3 \pmod{4}$. Thus n = 4l + 3 for some integer *l*. We choose

$$y = 2(4l+3), \quad x = 2l - 6m - 8ml + 2, \quad z = -2l - 6m - 8ml - 1.$$

It is easy to see that y and z are nonzero. If x = 0, then m(4l+3) = l+1. Since $m = \frac{l+1}{4l+3} > 1$, we obtain that l is not an integer which is a contradiction.

In conclusion, we have proved the following theorem.

Theorem 6. Let m be a positive integer. Then 1 is a m-special if and only if m is not divisible by 4.

3 Acknowledgments

We thank the referee for valuable comments and suggestions.

References

- [1] P. C. H. Lam, Representation of integers using $a^2 + b^2 dc^2$, J. Integer Sequences 18 (2015), Article 15.8.6.
- [2] A. Nowicki, The numbers $a^2 + b^2 dc^2$, J. Integer Sequences 18 (2015), Article 15.2.3.
- [3] L. Panaitopol, On the representation of natural numbers as sums of squares. Amer. Math. Monthly, 112 (2005), 168–171.
- [4] S. Ramanujan, On the expression of a number in the form ax² + by² + cz² + dw², Proc. Cambridge Philos. Soc. 19 (1917), 11–21. Reprinted in Collected Papers of Srinivasa Ramanujan, AMS Chelsea Publishing, 2000, pp. 169–178.
- [5] K. H. Rosen, *Elementary Number Theory and its Applications*, 5th edition, Pearson Education Inc. Press, 2005.

2010 Mathematics Subject Classification: Primary 11E25. Keywords: sum of squares.

Received March 18 2021; revised versions received April 6 2021; July 10 2021. Published in *Journal of Integer Sequences*, July 19 2021.

Return to Journal of Integer Sequences home page.