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Abstract

In this paper, we study the least number L ∈ N that makes the L-fold of a weighted

r-generalized Fibonacci power complete. We can establish an upper bound and a lower

bound for L, depending on the first r terms and the limit of the consecutive ratios. We

also give the explicit value of L in some special cases. In the end, we study a particular

minimal complete sequence called a generalized distinguished sequence and show that

there exists a generalized distinguished sequence of a weighted r-generalized Fibonacci

mth power for all large m ∈ N.

1 Introduction

In 1960, Hoggatt and King [5] defined a complete sequence (an) as a sequence of positive
integers such that for each m ∈ N there exist finite distinct natural numbers n1, n2, . . . , nk

such that m =
∑k

i=1 ani
. They also showed that the Fibonacci sequence (Fn), defined by

the recurrence F0 = 0, F1 = 1, and Fn = Fn−1 + Fn−2 for n ≥ 2, is complete. Moreover,
they proved that any deletion of an element from (Fn) results in a non-complete sequence.

1Thanakorn Prinyasart is the corresponding author.
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In this case, we say that (Fn) is a minimal complete sequence. A necessary and sufficient
condition for a sequence to be complete was given by Brown [1]. A nontrivial example of
a non-complete sequence is the sequence of Fibonacci squares, which is 1, 1, 4, 9, 25, 64, . . ..
However, O’Connell [7] showed that the 2-fold of the sequence of Fibonacci squares, which
is 1, 1, 1, 1, 4, 4, 9, 9, 25, 25, 64, 64, . . ., is complete. Hunsucker and Wardlaw [6] considerably
generalized the result of O’Connell by proving that, for each m ∈ N, the 2m−1-fold, but not
(2m−1 − 1)-fold, of (Fm

n ) is complete. In their work, they also provided an example of an
increasing complete sequence, which is minimal, and mapped it onto {Fm

n : n ∈ N}.
Our aim in this paper is to extend the results of Hunsucker andWardlaw to the weighted r-

generalized Fibonacci sequences. As far as we know, these sequences were firstly described by
Dubeau et al. [2]. Let c1, c2, . . . , cr, where r ≥ 2, be positive integers and let A1, A2, . . . , Ar

be nonnegative integers with Ar > 0. A weighted r-generalized Fibonacci sequence (with
positive integral initial conditions and nonnegative coefficients) (an) is defined by

an :=

{

cn, if n = 1, 2, . . . , r;
∑r

k=1 Akan−k, if n > r.
(1)

We call c1, c2, . . . , cr initial values and A1, A2, . . . , Ar coefficients of (an). Notice that when
r = 2, and c1 = c2 = A1 = A2 = 1, this sequence is the usual well-known Fibonacci sequence.
We are concerned with not only the completeness of the L-fold of a weighted r-generalized
Fibonacci sequence but also a particular minimal sequence, called a distinguished sequence,
of a weighted r-generalized Fibonacci power as introduced by Hunsucker and Wardlaw [6].

2 Weighted r-generalized Fibonacci sequences

According to Dubeau et al. [2], a weighted r generalized Fibonacci sequence (an) is defined
as the sequence generated by the recurrence (1) with ck, Ak ∈ C for all k ∈ {1, 2, . . . , r} and
Ar 6= 0. The characteristic polynomial of (an) is p(x) := xr −∑r

k=1Akx
r−k. It is well-known

that (an) can be written in an exponential polynomial form, an =
∑l

k=1 Ck(n)λ
n
k , where

λ1, λ2, . . . , λl ∈ C are all distinct roots of p(x) and Ck(x) ∈ C[x] with deg(Ck(x)) + 1 ≤
multiplicity of λk for all k ∈ {1, 2, . . . , l}. This exponential polynomial form is convenient to
use when we want to determine the limit of the consecutive terms of the sequence, which is one
of the crucial ingredients we need to obtain most of our results. Because of the appearance of
the roots of the characteristic polynomials in the exponential polynomial forms, it is useful
to gather the results about these roots from the work of Dubeau et al. [2] and Ostrowski [8]
in this section.

The first upcoming theorem provides a useful result on the largest modulus roots of p(x),
when Ak ≥ 0 for all k ∈ {1, 2, . . . , r − 1} and Ar > 0, which is the case we are interested in.

Theorem 1. [8, Theorem 12.2] Let p(x) := xr −∑r

k=1Akx
r−k ∈ R[x] for some integer

r ≥ 2, and nonnegative real numbers A1, A2, . . . , Ar with Ar > 0. If gcd{k : Ak > 0} = 1,
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then p(x) has a unique largest modulus root in C. Moreover, this root is a positive real root
with multiplicity 1.

According to Dubeau et al. [2], a polynomial p(x) is called asymptotically simple if there
exists a unique root λ among its roots of maximum modulus that has maximal multiplicity.
The root λ is then called the dominant root and its multiplicity is called the dominant
multiplicity. By Theorem 1, if (an) is a weighted r-generalized Fibonacci sequence generated
by (1) with Ak ≥ 0 for all k ∈ {1, 2, . . . , r − 1}, Ar > 0, and gcd{k : Ak > 0} = 1, then
its characteristic polynomial is asymptotically simple with a simple positive dominant root
λ [2, Theorem 9]. Even though λ is a simple positive dominant root, it does not imply the
existence of limn→∞

an+1

an
in general [4, Example 4.6]. However, if we assume further that the

initial values c1, c2, . . . , cr are nonnegative real numbers, not all zero, then we can show that
limn→∞

an+1

an
= λ with the aid of the following theorem.

Theorem 2. [2, Theorem 5] Let A1, A2, . . . , Ar ∈ C with Ar 6= 0, and λ be an arbitrary
nonzero complex number. We denote the sequence (an) generated by the recurrence relation
(1) with initial values c := (c1, c2, . . . , cr) ∈ C

r by (an(c)). Fix c0 := (0, 0, . . . , 0, 1) ∈ C
r.

Then limn→∞
an(c)
λn exists for all c ∈ C

r if and only if limn→∞
an(c0)
λn exists. Moreover, when

all the limits exist,

lim
n→∞

an(c)

λn
=

(

cr +
r−1∑

k=1

cr−kλ
k

r−1∑

l=k

A1+l

λ1+l

)

· lim
n→∞

an(c0)

λn
(2)

for all c := (c1, c2, . . . , cr) ∈ C
r.

By the above theorem, we have the following result.

Proposition 3. Let (an) be a weighted r-generalized Fibonacci sequence defined by (1), with
ck, Ak ≥ 0 for all k ∈ {1, 2, . . . , r}, Ar > 0, and ck′ > 0 for some k′ ∈ {1, 2, . . . , r}. Assume
that gcd{k : Ak > 0} = 1. If λ is the dominant root, which is a simple positive root of its
characteristic polynomial, then there exists C > 0 such that

an = Cλn + o(λn)

as n → ∞. Consequently, limn→∞
an+1

an
= λ.

Proof. Notice that, if c′ := (λ, λ2, . . . , λr) ∈ R
r, then an(c

′) = λn for all n ∈ N, and so

limn→∞
an(c′)
λn = limn→∞

λn

λn = 1. Since λ is the dominant root, limn→∞
an(c0)
λn exists, where

c0 := (0, 0, . . . , 0, 1) ∈ R
r. Moreover, by (2), since c

′ 6= 0 and Ar > 0, we have that

limn→∞
an(c0)
λn > 0. Again, by (2), since c := (c1, c2, . . . , cr) 6= 0 and Ar > 0, we obtain that

limn→∞
an
λn = limn→∞

an(c)
λn > 0. Hence, there exists C > 0 such that an = Cλn + o(λn) as

n → ∞.
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3 Notation

In this section, we provide some notation that will be used in the following sections. From
now on, the weighted r-generalized Fibonacci sequences that we are interested in have posi-
tive integral initial values and nonnegative coefficients. Since the completeness of a sequence
is invariant under rearrangements, it is sometimes easier to consider its nondecreasing rear-
rangement to justify the completeness of the sequence. So, we define the following equivalence
relation for later use.

Definition 4. Let (an) and (bn) be sequences of real numbers. We say that (an) and (bn) are
equivalent, denoted by (an) ∼ (bn), if there exists a bijection ρ : N → N such that an = bρ(n)
for all n ∈ N. We denote the equivalence class containing (an) by [an].

From Proposition 3, we see that if gcd{k : Ak > 0} = 1, then the weighted r-generalized
Fibonacci sequence has a nice exponential polynomial form and the limit of consecutive
terms exists. This leads us to give a name to the recurrence relation of this form.

Definition 5. Let (an) be defined by (1). We say that (an) is in a primitive form if
gcd {k : Ak > 0} = 1.

The next notation will be handy in the last section when we study a sequence that may
not be in a primitive form. Moreover, we can also use this notation to define an L-fold of
any sequence.

Definition 6. For sequences (an) and (bn) of real numbers, we define [an] ⊕ [bn] to be the
equivalence class containing the sequence (cn) satisfying c2k−1 = ak and c2k = bk for all
k ∈ N.

Definition 7. Let (an) be a sequence of real numbers. For L ∈ N, we call each sequence in
the equivalence class [an]⊕ [an]⊕ · · · ⊕ [an]

︸ ︷︷ ︸

L times

an L-fold of (an).

If a weighted r-generalized Fibonacci sequence does not have a nondecreasing rearrange-
ment, then this sequence is periodic and easy to understand as shown in the following
theorem.

Theorem 8. Let (an) be a weighted r-generalized Fibonacci sequence. Then (an) does not
have a nondecreasing rearrangement if and only if there exist s ≥ 2 distinct constant se-
quences (b

(1)
n ), (b

(2)
n ), . . . , (b

(s)
n ) such that

[an] = [b(1)n ]⊕ [b(2)n ]⊕ · · · ⊕ [b(s)n ].

Moreover, when this happens, an = an−r for all n > r and, for m ∈ N, we have that (amn ) is
complete if and only if ak = 1 for some k ≤ r.
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Proof. The converse of the theorem is obvious. Now, assume that (an) does not have a
nondecreasing rearrangement. Since ci ≥ 1 for all i ≤ r, if Ak > 0 for some k < r or Ar > 1,
then limn→∞ an = ∞. So (an) has a nondecreasing rearrangement, which is a contradiction.
This implies that Ak = 0 for all k < r and Ar = 1. Thus, an = an−r for all n > r, and we
are done.

Hence, from now on, we will consider only weighted r-generalized Fibonacci sequences
that have a nondecreasing rearrangement.

Definition 9. A sequence of real numbers (an) is increasable if it has a nondecreasing
rearrangement, i.e., there exists a nondecreasing sequence (bn) such that (an) ∼ (bn).

4 L-folds of weighted r-generalized Fibonacci powers

In this section, for each x ∈ R, we let ⌈x⌉ denote the least integer greater than or equal to x.
A well-known and widely used criterion for complete sequences is the following result given
by Brown [1].

Theorem 10. [1, Theorem 1] Let (an) be a sequence of positive integers. If a1 = 1 and
∑n

k=1 ak ≥ an+1 − 1 for all n ∈ N, then (an) is complete. The converse holds for increasing
sequences of positive integers.

By the above theorem, for any sequence of positive integers (an), we see that if a1 = 1,
and L is a positive integer such that L ≥ ⌈supn∈N

an+1−1∑n
k=1 ak

⌉, then the L-fold sequence of (an)

is complete. Moreover, the converse holds when (an) is increasing. Then, for each sequence
(an) of positive integers, we define L(an) := ⌈supn∈N

an+1−1∑n
k=1 ak

⌉. For an increasable sequence

(an) of positive integers, we also let L[an] := ⌈supn∈N
bn+1−1∑n

k=1 bk
⌉, where (bn) is the nondecreasing

sequence equivalent to (an).
Hunsucker and Wardlaw [6] showed that L[Fm

n ] = L(Fm
n ) = 2m−1, where (Fm

n ) is the usual
Fibonacci mth power. Computing L[amn ] for an increasable weighted r-generalized Fibonacci
mth power is not simple in general. So, in this section, we provide bounds for this value and
give its exact value depending on finitely many terms of the sequence in some special cases.

The next lemma provides the least upper bound for the consecutive ratios of a weighted
r-generalized Fibonacci sequence. Notice that the supremum depends on only the first r
terms of the ratios, which is crucial information to obtain the upper bound for L[amn ] in the
following theorem.

Lemma 11. Let (an) be a weighted r-generalized Fibonacci sequence. Then

sup
n∈N

an+1

an
= max

1≤n≤r

an+1

an
.
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Proof. Let α := max1≤n≤r
an+1

an
. Since

α− an+1

an
=

1

an

r∑

k=1

Akan−k

(

α− an−k+1

an−k

)

for all n > r and α − ak+1

ak
≥ 0 for all k ≤ r, we have that α − an+1

an
≥ 0 for all n ∈ N by

induction.

Theorem 12. Let (an) be an increasable weighted r-generalized Fibonacci sequence with
some initial value equal to 1. Let k be a nonnegative integer and let b1 ≤ b2 ≤ . . . ≤ bk+1 be
a nondecreasing rearrangement of a1, a2, . . . , ak+1. Then, for all m ∈ N,

L[amn ] ≤ max(Sk ∪ Tk),

where Sk :=
{⌈

bmi+1−1
∑i

l=1 b
m
l

⌉

: 1 ≤ i ≤ k
}

and Tk :=
{⌈

am
k+i+1

am
k+i

⌉

− 1 : 1 ≤ i ≤ r
}

.

Proof. The theorem is obvious when an = 1 for all n ∈ N. Then assume that (an) is not
a constant sequence. Fix m ∈ N, and let ρ : N → N be a bijection such that (aρ(n)) is
nondecreasing. We show that

amρ(n+1) − 1
∑n

i=1 a
m
ρ(i)

≤ max(Sk ∪ Tk)

by induction on n ∈ N. Notice that if ρ(1) < k + 1, then aρ(1) = b1 and aρ(2) ≤ b2. So

amρ(2) − 1

am
ρ(1)

≤ bm2 − 1

bm1
≤ maxSk.

If ρ(1) ≥ k + 1, then by Lemma 11,

amρ(2) − 1

am
ρ(1)

=
amρ(2)
am
ρ(1)

− 1 ≤
amρ(1)+l

am
ρ(1)+l−1

− 1 ≤ maxTk,

where l is the least positive integer such that aρ(1)+l > aρ(1). Now, let n ∈ N be such that
am
ρ(n+1)

−1
∑n

i=1 a
m
ρ(i)

≤ max(Sk ∪ Tk).

Case 1: Assume that there is no i > k such that aρ(n+1) = ai and aρ(n+2) = aρ(n+1). Let

i′ ≤ k be minimal such that aρ(n+1) = bi′ . Then amρ(n+2) ≤ bmi′+1 and
∑n+1

i=1 amρ(i) ≥
∑i′

i=1 b
m
i .

Thus,
amρ(n+2) − 1
∑n+1

i=1 am
ρ(i)

≤ bmi′+1 − 1
∑i′

i=1 b
m
i

≤ maxSk.
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Case 2: Assume that there is no i > k such that aρ(n+1) = ai and aρ(n+2) > aρ(n+1). Let

i′ ≤ k be maximal such that aρ(n+1) = bi′ . Then amρ(n+2) ≤ bmi′+1 and
∑n+1

i=1 amρ(i) ≥
∑i′

i=1 b
m
i .

Thus,
amρ(n+2) − 1
∑n+1

i=1 am
ρ(i)

≤ bmi′+1 − 1
∑i′

i=1 b
m
i

≤ maxSk.

Case 3: Assume that there exists i > k such that aρ(n+1) = ai. Then, by Lemma 11,

amρ(n+2) − amρ(n+1)

am
ρ(n+1)

=
amρ(n+2)

am
ρ(n+1)

− 1 ≤
amρ(n+1)+l

am
ρ(n+1)+l−1

− 1 ≤ maxTk,

where l is the least positive integer such that aρ(n+1)+l > aρ(n+1). After combining this result
with the inductive hypothesis, we get

amρ(n+2) − 1
∑n+1

i=1 am
ρ(i)

=
(amρ(n+1) − 1) + (amρ(n+2) − amρ(n+1))

(
∑n

i=1 a
m
ρ(i)

)

+ am
ρ(n+1)

≤ max(Sk ∪ Tk).

If we let k = 0 in the previous theorem, we will get a nicer upper bound for L[amn ].

Corollary 13. Let (an) be an increasable weighted r-generalized Fibonacci sequence with at
least one initial value equal to 1. Then, for all m ∈ N,

L[amn ] ≤ max
1≤i≤r

⌈(
ai+1

ai

)m⌉

− 1.

Theorem 12 can also be used to find the exact value of L[amn ] as shown in the following
corollary and examples.

Corollary 14. Let (an) be an increasable weighted r-generalized Fibonacci sequence with at
least one initial value equal to 1. Assume that there exists a rearrangement b1 ≤ b2 ≤ . . . ≤
bk+1 of a1, a2, . . . , ak+1 for some k ∈ N such that bk+1 ≤ an for all n ≥ k + 1, and

max

{⌈
amk+i+1

amk+i

⌉

− 1 : 1 ≤ i ≤ r

}

≤ max

{⌈

bmi+1 − 1
∑i

l=1 b
m
i

⌉

: 1 ≤ i ≤ k

}

.

Then, L[amn ] = max
{⌈

bmi+1−1
∑i

l=1 b
m
i

⌉

: 1 ≤ i ≤ k
}

.

Example 15. Let (an) be a generalized Fibonacci sequence with r = 2, A1 = A2 = 1, and
(c1, c2) = (1, c) for some c ≥ 2. Then

L[amn ] =

⌈

am2 − 1
∑1

i=1 a
m
i

⌉

= cm − 1

for all m ∈ N.
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Example 16. Let (an) be a weighted r-generalized Fibonacci sequence with r = 2, A1 =
A2 = 1, and (c1, c2) = (c, 1) for some c ≥ 2. If (bn) is a rearrangement of (an) that is
increasing, then

L[amn ] =

⌈

bm2 − 1
∑1

i=1 b
m
i

⌉

= cm − 1

for all m ∈ N. In particular, if c = 2, then (an) is the Lucas sequence.

Example 17. Let (an) be a weighted r-generalized Fibonacci sequence with r ≥ 2, Ai =
P ∈ N, and ci = 1 for all i ≤ r. Then

L[amn ] =

⌈
amr+1 − 1
∑r

i=1 a
m
i

⌉

= Pmrm−1

for all m ∈ N. In particular, if r = 2 and P = 1, then this sequence is the usual Fibonacci
sequence.

Proof. Notice that ai = 1 for all i ≤ r and ar+j = (Pr−1)(P+1)j−1+1 for j = 1, 2, . . . , r+1.
We apply Corollary 14 with k = r. Since

ai+1

ai
≤ aj+1

aj

for r + 1 ≤ i ≤ j ≤ 2r, it suffices to show that

⌈
am2r+1

am2r

⌉

− 1 ≤ amr+1
∑r

i=1 a
m
i

,

which is equivalent to

(

P + 1− P

(Pr − 1)(P + 1)r−1 + 1

)m

− 1 ≤ Pmrm−1,

for all m ∈ N. If m = 1, then

P + 1− P

(Pr − 1)(P + 1)r−1 + 1
− 1 ≤ P,

and we are done. If m ≥ 2 and P ≥ 2, then it is easy to see that (P + 1)m − 1 ≤ Pmrm−1

and we are done. If m ≥ 2, P = 1 and r ≥ 3, then

(

2− 1

2r−1(r − 1) + 1

)m

< 2m ≤ 3m−1 + 1 ≤ rm−1 + 1.

Lastly, if m ≥ 2, P = 1 and r = 2, then
(
5
3

)m ≤ 2m−1 + 1 by induction on m.
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Example 18. Let (an) be a weighted r-generalized Fibonacci sequence with r = 2, A1 = P ,
A2 = Q, and (c1, c2) = (1, P ) for some P,Q ∈ N. Then

L[amn ] =

⌈

am3 − 1
∑2

i=1 a
m
i

⌉

=

⌈
(P 2 +Q)m − 1

Pm + 1

⌉

for all m ∈ N. This sequence is called (P,Q)-Fibonacci sequence [9]. In particular, if Q = 1,
then this sequence is called Fibonacci P -sequence [3].

Proof. Note that in this case r = 2, and a1, a2, a3, a4, a5 are

1, P, P 2 +Q,P 3 + 2PQ,P 4 + 3P 2Q+Q2,

respectively. First, fix m ≥ 2 and apply Corollary 14 with k = 2. Notice that
⌈
am4
am3

⌉

− 1 =

⌈(
P 3 + 2PQ

P 2 +Q

)m⌉

− 1 ≤
⌈(

P 4 + 3P 2Q+Q2

P 3 + 2PQ

)m⌉

− 1 =

⌈
am5
am4

⌉

− 1

because (P 3 + 2PQ)2 ≤ (P 4 + 3P 2Q+Q2)(P 2 +Q) by comparing coefficients. Also,
⌈

am2 − 1
∑1

i=1 a
m
i

⌉

= Pm − 1 ≤
⌈
(P 2 +Q)m − 1

Pm + 1

⌉

=

⌈

am3 − 1
∑2

i=1 a
m
i

⌉

because (Pm − 1)(Pm + 1) ≤ (P 2 +Q)m − 1. Then it is left to show that

⌈
am5
am4

⌉

− 1 ≤
⌈

am3 − 1
∑2

i=1 a
m
i

⌉

,

which is equivalent to
⌈(

P 4 + 3P 2Q+Q2

P 3 + 2PQ

)m⌉

≤
⌈
(P 2 +Q)m + Pm

Pm + 1

⌉

.

Case m ≥ 4: Since (P 4 + 3P 2Q + Q2)4(P 4 + 1) ≤ (P 2 + Q)4(P 3 + 2PQ)4 by comparing
coefficients and Pm + 1 ≤ (P 4 + 1)

m
4 , we have that

(
P 4 + 3P 2Q+Q2

P 3 + 2PQ

)m

≤ (P 2 +Q)m

Pm + 1
≤ (P 2 +Q)m + Pm

Pm + 1
.

Case m = 3: If Q ≥ 2, then (P 4 + 3P 2Q + Q2)3(P 3 + 1) ≤ ((P 2 + Q)3 + P 3)(P 3 + 2PQ)3

by comparing coefficients and we are done. Now, assume that Q = 1. Then
⌈
(P 2 + 1)3 + P 3

P 3 + 1

⌉

=

⌈

P 3 + 3P +
3P 2 − 3P + 1

P 3 + 1

⌉

= P 3 + 3P + 1.
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Since (P 4 + 3P 2 + 1)3 ≤ (P 3 + 3P + 1)(P 3 + 2P )3 by comparing coefficients, we are done.

Case m = 2: If Q ≥ 2, then (P 4 + 3P 2Q + Q2)2(P 2 + 1) ≤ ((P 2 + Q)2 + P 2)(P 3 + 2PQ)2

by comparing coefficients and we are done. Now, assume that Q = 1. Then
⌈
(P 2 + 1)2 + P 2

P 2 + 1

⌉

=

⌈

P 2 + 1 +
P 2

P 2 + 1

⌉

= P 2 + 2.

Since (P 4 + 3P 2 + 1)2 ≤ (P 2 + 2)(P 3 + 2P )2 by comparing coefficients, we are done.
Lastly, assume that m = 1. If P ≥ 2 and Q ≥ P + 2, then (P 4 + 3P 2Q+Q2)(P + 1) ≤

(P 2 +Q+ P )(P 3 + 2PQ) by comparing coefficients, so we are done in this subcase.
If P ∈ N and Q ≤ P , then

P 4 + 3P 2Q+Q2

P 3 + 2PQ
≤ P + 1 =

⌈
P 2 +Q+ P

P + 1

⌉

.

For the last two subcases, we cannot use the same method as in the previous cases to
obtain the result since the assumption in the Corollary 14 with k = 2 does not hold. Instead,
if P ∈ N and Q = P + 1, then one can show by induction that

⌈

a3 − 1
∑2

i=1 ai

⌉

= P =

{
an+1−1∑n

i=1 an
, if n is even;

an+1∑n
i=1 an

> an+1−1∑n
i=1 an

, if n is odd,

and we are done in this subcase.
If P = 1 and Q ≥ 3, then we apply Corollary 14 with k = 4. Notice that in this subcase,

a1, a2, . . . , a7 are

1, 1, Q+ 1, 2Q+ 1, Q2 + 3Q+ 1, 3Q2 + 4Q+ 1, Q3 + 6Q2 + 5Q+ 1,

respectively. Then
⌈
a6
a5

⌉

− 1 =

⌈
3Q2 + 4Q+ 1

Q2 + 3Q+ 1

⌉

− 1 ≤
⌈
Q3 + 6Q2 + 5Q+ 1

3Q2 + 4Q+ 1

⌉

− 1 =

⌈
a7
a6

⌉

− 1.

Also,
⌈

(2Q+ 1)− 1

1 + 1 + (Q+ 1)

⌉

≤
⌈

(Q2 + 3Q+ 1)− 1

1 + 1 + (Q+ 1) + (2Q+ 1)

⌉

≤
⌈
(Q+ 1)− 1

1 + 1

⌉

,

that is, ⌈

a4 − 1
∑3

i=1 ai

⌉

≤
⌈

a5 − 1
∑4

i=1 ai

⌉

≤
⌈

a3 − 1
∑2

i=1 ai

⌉

.

Since a7
a6

− 1 = Q3+6Q2+5Q+1
3Q2+4Q+1

− 1 ≤ (Q+1)−1
1+1

= a3−1∑2
i=1 ai

, we are done.

From the previous example, we see that it is difficult to obtain L[amn ] when m is small.
However, for a large value of m, we have the following result.
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Theorem 19. Let (an) be a weighted r-generalized Fibonacci sequence. Assume that there
is only one k0 ∈ {1, 2, . . . , 2r} such that

ak0+1

ak0
= max1≤k≤2r

ak+1

ak
. If ak ≤ ak0 for all k ≤ k0,

then there exists M ∈ N such that

L(amn ) =

⌈

amk0+1 − 1
∑k0

k=1 a
m
k

⌉

for all m ≥ M .

Proof. Since ak0+1 > 1 and ai ≤ ak0 for all i ≤ k0, there exists δ > 0 such that for all m ∈ N,

amk0+1 − 1
∑k0

i=1 a
m
i

=





1− 1
am
k0+1

∑k0
i=1

ami
am
k0




amk0+1

amk0
≥ δ · a

m
k0+1

amk0
.

Let k′ ∈ N be such that
ak′+1

ak′
= max1≤k≤2r

k 6=k0

ak+1

ak
. Then, by Lemma 11, for all m, k ∈ N with

k 6= k0,
amk′+1

amk′
≥ amk+1

amk
≥ amk+1 − 1
∑k

i=1 a
m
i

.

Since
ak0+1

ak0
>

ak′+1

ak′
, there exists M ∈ N such that, for each m ≥ M ,

amk0+1 − 1
∑k0

i=1 a
m
i

≥ δ · a
m
k0+1

amk0
≥ amk′+1

amk′
≥ amk+1 − 1
∑k

i=1 a
m
i

for all k ∈ N.

We close this section by providing a lower bound for L[amn ] related to the dominant root,
when (an) is in a primitive form.

Theorem 20. Let (an) be a weighted r-generalized Fibonacci sequence in a primitive form,
and λ the dominant root of its characteristic polynomial. Then L[amn ] ≥ ⌈λm⌉ − 1 for all
m ∈ N.

Proof. The theorem is obvious when λ = 1. Now, assume that λ > 1 and fix m ∈ N. By
Proposition 3, there exists C > 0 such that

∑n

k=1 a
m
k = Cλnm + o(λnm) as n → ∞. Then

lim
n→∞

amn+1 − 1
∑n

k=1 a
m
k

+ 1 = lim
n→∞

Cλ(n+1)m + o(λnm)

Cλnm + o(λnm)
= λm.

11



5 Generalized distinguished sequences

Before we define the distinguished sequences, let us present some important tools to study
a weighted r-generalized Fibonacci sequence that is not in a primitive form. The following
result tells us that, for any weighted r-generalized Fibonacci sequence (an), the multiset

{an : n ∈ N} can be decomposed into a disjoint union of {b(i)n : n ∈ N}’s, where (b
(i)
n ) is a

weighted r-generalized Fibonacci sequence in a primitive form for all i.

Proposition 21. Let (an) be a weighted r-generalized Fibonacci sequence. We also let d :=

gcd {k : Ak > 0}. For 1 ≤ i ≤ d, let b
(i)
n := a(n−1)d+i for all n ∈ N. Then the sequences

(b
(1)
n ), (b

(2)
n ), . . . , (b

(d)
n ) satisfy a common recurrence relation that is in a primitive form, and

[an] = [b(1)n ]⊕ [b(2)n ]⊕ · · · ⊕ [b(d)n ].

Proof. Clearly, [an] = [b
(1)
n ]⊕ [b

(2)
n ]⊕ . . .⊕ [b

(d)
n ]. Notice that, for 1 ≤ i ≤ d and n > r

d
,

b(i)n =

r
d∑

k=1

Akdb
(i)
n−k,

and gcd {k : Akd > 0} = 1. Hence, (b
(i)
n ) is in a primitive form for all i.

By the previous result and Proposition 3, we have the following consequence.

Corollary 22. Let (an) be a weighted r-generalized Fibonacci sequence and d := gcd{k :

Ak > 0}. We also let b
(i)
n be as in Proposition 21, for all 1 ≤ i ≤ d, and λ > 1 be the dominant

root of the characteristic polynomial of (b
(1)
n ). Then there exist C1, C2, . . . , Cd ∈ [1, λ) and

k1, k2, . . . , kd ∈ Z such that

and+i = Ciλ
n+ki + o(λn) for all i ∈ {1, 2, . . . , d}, as n → ∞.

From the previous section, we have obtained complete sequences of weighted r-generalized
Fibonacci mth powers. However, these sequences may not be minimal. Then, in this section,
we will study a particular minimal sequence introduced by Hunsucker and Wardlaw in [6],
called a distinguished sequence, of a weighted r-generalized Fibonacci power.

Definition 23. A distinguished sequence of a sequence of positive integers (sn) is a non-
decreasing complete sequence (dn) that maps N onto {sn : n ∈ N}, and for all n ∈ N,
1 +

∑n−1
k=1 dk < dn+1 whenever dn < dn+1.

Although the distinguished sequence of Fibonacci mth power uniquely exists for each
m ∈ N [6, Section 4], the distinguished sequence of mth power of a weighted r-generalized
Fibonacci (amn ) may not exist for all m ∈ N.

Example 24. Let (an) be such that a1 = 1, a2 = 2, a3 = 3, a4 = 4 and an = an−4 for all
n ≥ 5. Then the distinguished sequence of (an) does not exist since 1 + a1 + a2 = a4.

12



Although the distinguished sequence of a weighted r-generalized Fibonacci power may
not exist in general, the distinguished sequence of its mth power uniquely exists when the
weighted r-generalized Fibonacci sequence is in a primitive form and m is large enough.

Lemma 25. Let (sn) be a strictly increasing sequence of positive integers with s1 = 1 such
that sn + sn+1 ≤ sn+2 for all n ∈ N. Then there exists a unique distinguished sequence of
(sn).

Proof. Construct a distinguished sequence (dn) from (sn) as follows: For each i ∈ N, start
from i = 1, add multiple si’s to the sequence (dn) so that

(1) (dn) is nondecreasing,

(2) 1 +
∑

k∈N
dk≤si

dk ≥ si+1, and

(3) 1− si +
∑

k∈N
dk≤si

dk < si+1.

Since sn + sn+1 ≤ sn+2 for all n ∈ N, the sequence (dn) can be always constructed so that
condition (3) is satisfied. Moreover, the uniqueness of the distinguished sequence results
from the properties (2) and (3) of (dn).

Theorem 26. Let (an) be an increasable weighted r-generalized Fibonacci sequence in a
primitive form with at least one initial value equal to 1. Then there exists M ∈ N such that
the distinguished sequence of (amn ) uniquely exists for all m ≥ M .

Proof. Let λ ≥ 1 be the dominant root of the characteristic polynomial of (an). If λ = 1,
then we are done because an = 1 for all n ∈ N. Now, assume that λ > 1. Let (bn) be a
rearrangement of (an) such that (bn) is nondecreasing. Since an = Cλn + o(λn) for some
C > 0 and all large n ∈ N, there exists N ∈ N such that an = bn for all n ≥ N . Hence, there
exists M ∈ N such that, for each n ∈ N, if bn+2 > bn+1, then

bmn + bmn+1 ≤ bmn+2 for all m ≥ M

because λ > 1 and limn→∞
bmn +bmn+1

bmn+2
=
(

1
λ2m + 1

λm

)
for all m ∈ N. Let (sn) be a strictly

increasing sequence that maps onto {bmn : n ∈ N}. By Lemma 25, we obtain a unique
distinguished sequence of (sn) and we are done.

The previous theorem does not hold for weighted r-generalized Fibonacci sequences that
are not in a primitive form in general.
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Example 27. Let a1 = 1, a2 = 2, a3 = 3, a4 = 4, a5 = 5, a6 = 4, a7 = 3, a8 = 2, and
an = an−4 + 2an−8 for all n > 8. Then, for all n ∈ N,

a4(n−1)+i =







2n + (−1)n, if i = 1;

2n, if i = 2;

2n − (−1)n, if i = 3;

2n − 2(−1)n, if i = 4.

Let m ∈ N. Notice that in any nondecreasing rearrangement (bn) of (an), there are infinitely
many four consecutive terms bl < bl+1 < bl+2 < bl+3 in the form of a4(2n−1)+4 < a4(2n−1)+3 <
a4(2n−1)+2 < a4(2n−1)+1, for some n ∈ N, such that

bml + bml+1 = (22n − 2)m + (22n − 1)m ≥ (22n + 1)m = bml+3.

Hence, there is no distinguished sequence of (amn ).

The next theorem provides information on the repetition of amn in its distinguished se-
quence for large m,n ∈ N.

Theorem 28. Let (an) be an increasable weighted r-generalized Fibonacci sequence in a
primitive form, M be as in the previous theorem, m ≥ M , and (dn) be the distinguished
sequence of (amn ). We also let s be the greatest integer less than or equal to λm, where
λ := limn→∞

an+1

an
. If λ > 1, then there exists N such that, for each n ≥ N , dk = amn for

exactly s or s− 1 values of k. In particular, if λ = 1, then dn = 1 for all n ∈ N.

Proof. Assume that λ > 1. Then, by the definition of limits, there exists N ∈ N such that

s − λ−1
2λ

<
(

an+1

an

)m

< s + 1 and
(

an−1

an

)m

< 1
λ
+ λ−1

2λ
for all n ≥ N . Fix n ≥ N and let

n0 := min{k : dk = amn }. We show that

1 +

n0−1∑

k=1

dk + (s− 2)amn < amn+1 ≤ 1 +

n0−1∑

k=1

dk + samn .

Since (dn) is a distinguished sequence,

1 +

n0−1∑

k=1

dk < amn−1 + amn .

So

1 +

n0−1∑

k=1

dk + (s− 2)amn < amn−1 + (s− 1)amn <

(

s− λ− 1

2λ

)

amn < amn+1.

Also, notice that

amn+1 < (1 + s)amn ≤ 1 +

n0−1∑

k=1

dk + samn .
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In general, Theorem 26 does not hold for weighted r-generalized Fibonacci sequences
that are not in a primitive form. However, it does hold for weighted r-generalized Fibonacci
sequences satisfying some particular conditions as shown in the following theorem and ex-
ample.

Theorem 29. Let (an) be an increasable weighted r-generalized Fibonacci sequence with

ai = 1 for some i ≤ r. Assume that [an] = [b
(1)
n ]⊕ [b

(2)
n ]⊕ . . .⊕ [b

(d)
n ], where d ≥ 2 and (b

(k)
n )

is as in Proposition 21 for all k ≤ d. Let λ > 1 be the dominant root of the characteristic

polynomial of (b
(1)
n ). If limn→∞ logλ

(
b
(p)
n

b
(q)
n

)

/∈ Z for all 1 ≤ p < q ≤ d, then for all but finitely

many m ∈ N, there exists a unique distinguished sequence of (amn ).

Proof. Assume that limn→∞ logλ

(
b
(p)
n

b
(q)
n

)

/∈ Z for all 1 ≤ p < q ≤ s. Then, by Corollary 22,

there exist k1, k2, . . . , kd ∈ Z and distinct numbers C1, C2, . . . , Cd ∈ [1, λ) such that

and+i = Ciλ
n+ki + o(λn) for all i ∈ {1, 2, . . . , d}, as n → ∞.

Without loss of generality, we may assume that 1 ≤ C1 < C2 < . . . < Cd < λ. Let (bn)
be a nondecreasing rearrangement of (an). Then there exists k ∈ Z such that, for each
i ∈ {1, 2, . . . , d}, we have that bnd+i = Ciλ

n+k+o(λn) as n → ∞. Since 1 ≤ C1 < C2 < . . . <
Cd < λ, there exist α < 1 and N ∈ N such that bn

bn+1
≤ α for all n ≥ N . Thus, there exists

M ∈ N such that whenever bn+2 > bn+1 for n ∈ N and bmn + bmn+1 ≤ bmn+2 for all m ≥ M .
Let (sn) be a strictly increasing sequence that maps onto {bmn : n ∈ N}. By Lemma 25, we
obtain a unique distinguished sequence of (sn) and we are done.

Example 30. Let a1 = 2, a2 = a3 = a4 = 1, and an = an−2 + an−4 for all n > 4. Then
[an] = [Ln] ⊕ [Fn], where (Ln) is the sequence of Lucas numbers and (Fn) is the Fibonacci
sequence. Notice that the dominant root of the characteristic polynomial of (Ln) is ϕ, where

ϕ = 1+
√
5

2
is the golden ratio. It is also well-known that, for all n ∈ N,

Ln = ϕn−1 + (1− ϕ)n−1 and Fn =
ϕn − (1− ϕ)n√

5
.

Thus

lim
n→∞

logϕ

(
Ln

Fn

)

= logϕ(
√
5)− 1 /∈ Z.

By Theorem 29, there exists a unique distinguished sequence of (amn ) for all but finitely many
m ∈ N.

The converse of Theorem 29 does not hold in general. For instance, it does not hold for
any sequence that can be decomposed into multiple identical sequences as shown in the next
example.
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Example 31. Let a1 = 1, a2 = 1, and an = 2an−2 for all n > 2. Then [an] = [b
(1)
n ] ⊕ [b

(2)
n ],

where b
(i)
1 = 1 and b

(i)
n = 2b

(i)
n−1, for all i ∈ {1, 2} and n > 1. Notice that the dominant root

of the characteristic polynomial of (b
(1)
n ) is λ = 2. Moreover,

lim
n→∞

log2

(

b
(1)
n

b
(2)
n

)

= 0 ∈ Z.

However, since {an : n ∈ N} = {b(1)n : n ∈ N}, by using Theorem 26 with the sequence (b
(1)
n ),

there exists a unique distinguished sequence of (amn ) for all but finitely many m ∈ N.

As we see in Example 27, it may happen that the distinguished sequence of the mth
powers of a weighted r-generalized Fibonacci does not exist for any m ∈ N. However, if
we generalize Definition 23 as in the following definition, then this generalized distinguished
sequence of the weighted r-generalized Fibonacci mth power exists for all but finitely many
m ∈ N.

Definition 32. A generalized distinguished sequence of a sequence of positive integers (sn)
is a nondecreasing complete sequence (dn) that is minimal and maps N onto {sn : n ∈ N}.

Theorem 33. Let (an) be an increasable weighted r-generalized Fibonacci sequence with at
least one initial value equal to 1. If (an) is not a constant sequence, then there exists a
generalized distinguished sequence of (amn ) for all large m ∈ N.

Proof. Assume that (an) is not a constant sequence. Then, by Corollary 22, there exist
λ > 1, C1, C2, . . . , Cd ∈ [1, λ), and k1, k2, . . . , kd ∈ Z such that

and+i = Ciλ
n+ki + o(λn) for all i ∈ {1, 2, . . . , d}, as n → ∞.

Without loss of generality, we may assume that 1 ≤ C1 ≤ C2 ≤ . . . ≤ Cd < λ. Let
(bn) be a nondecreasing rearrangement of (an). Then there exists k ∈ Z such that, for all
i ∈ {1, 2, . . . , d}, we have bnd+i = Ciλ

n+k + o(λn) as n → ∞. Since Cd

C1λ
< 1 and

lim
n→∞

(d+ 1)bmnd+d

bm(n+1)d+1

= (d+ 1)

(
Cd

C1λ

)m

for all m ∈ N,

there exist M,N ∈ N such that, for all m ≥ M

• bmNd < bmNd+1,

• if n ≥ N , then (d+ 1)bmnd+d ≤ bm(n+1)d+1, and

• if n ≤ Nd+ 1 and bn−1 < bn, then bmn−2 + bmn−1 ≤ bmn .

Now, fix m ≥ M . Let (sn) be a strictly increasing finite sequence that maps onto
{bmn : n ≤ Nd + 1}. Similarly to Lemma 25, we can construct a finite nondecreasing
sequence d1, d2, . . . , dl ∈ {bmn : n ≤ Nd+ 1} such that
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• dl = bmNd+1,

• {d1, d2, . . . , dl−1} = {bmn : n ≤ Nd},

• 1 +
∑j

i=1 di ≥ dj+1 for all j < l, and

• 1 +
∑j−1

i=1 di < dj+1 for all j < l with dj < dj+1.

Next, let us append bmNd+1, b
m
Nd+2, . . . , b

m
(N+1)d+1 to our sequence (dn). Notice that 1 +

∑l−1
i=1 di < dl + dl−1 ≤ 2bmNd+d. Thus,

bm(N+1)d+1 −
(

1 +
l−1∑

i=1

di +
Nd+d∑

i=Nd+2

bmi

)

> bm(N+1)d+1 − (d+ 1)bmNd+d ≥ 0.

Let p :=
⌈

1
bm
Nd+1

(

bm(N+1)d+1 −
(

1 +
∑l−1

i=1 di +
∑Nd+d

i=Nd+2 b
m
i

))⌉

∈ N. Define dl+i := bmNd+1 for

all i ∈ {1, . . . , p− 1}, and dl+p+j−2 := bmNd+j for all j ∈ {2, 3, . . . , d+ 1}. Then

1 +

(
l+p+d−2
∑

i=1

di

)

− dj ≤ 1 +

(
l+p+d−2
∑

i=1

di

)

− bmNd+1

= (p− 1)bmNd+1 + 1 +
l−1∑

i=1

di +
Nd+d∑

i=Nd+2

bmi

< bm(N+1)d+1

= dl+p+d−1

for l ≤ j < l + p+ d− 1. For j ∈ {l, l + 1, . . . , l + p− 2}, since dj = dj+1, we have that

1 +

j
∑

i=1

di ≥ dj+1.

Moreover, for all j ∈ {l + p− 1, l + p, . . . , l + p+ d− 3},

1 +

j
∑

i=1

di = 1 + pbmNd+1 +
l−1∑

i=1

di +

Nd+j−l−p+2
∑

i=Nd+2

bmi

≥ bm(N+1)d+1 −
Nd+d∑

i=Nd+j−l−p+3

bmi

≥ bm(N+1)d+1 − (d− 1)bmNd+d

= bm(N+1)d+1 − dbmNd+d + bmNd+d

≥ bmNd+d

≥ dj+1,
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and

1 +

l+p+d−2
∑

i=1

di = 1 + pbmNd+1 +
l−1∑

i=1

di +
Nd+d∑

i=Nd+2

bmi ≥ bm(N+1)d+1 = dl+p+d−1.

After this process, we have that bmNd+1, b
m
Nd+2, . . . , b

m
(N+1)d+1 ∈ {dn}. After doing this pro-

cess for bmnd+1, b
m
nd+2, . . . , b

m
(n+1)d+1, for all n ≥ N + 1, we obtain a generalized distinguished

sequence (dn) for (a
m
n ).

We illustrate the proof of the previous theorem by the following example.

Example 34. Let (an) be as in Example 27 and let (bn) be its nondecreasing rearrangement,
which is

1, 2, 2, 3, 3, 4, 4, 5 , 7, 8, 9, 10 , 14, 15, 16, 17 , 31, 32, 33, 34 , . . . .

According to the proof, d = 4, λ = 2, and C1 = C2 = C3 = C4 = 1. Let N = 2 and M = 5.
Notice that for all m ≥ 5,

• bm8 < bm9 ,

• if n ≥ 2, then 5 · bm4n+4 ≤ bm4(n+1)+1, and

• if n ≤ 9 and bn−1 < bn, then bmn−2 + bmn−1 ≤ bmn .

Now, fix m = 5. We show that there exists a generalized distinguished sequence of (a5n).
As in the proof of Theorem 26, there is a finite nondecreasing sequence d1, d2, . . . , d50 ∈

{15, 25, 35, 45, 55, 75} with the number of 15, 25, 35, 45, 55, 75 equal to 31, 7, 4, 2, 5, 1, respec-
tively, such that

• 1 +
∑j

i=1 di ≥ dj+1 for all j < 50 and

• 1 +
∑j−1

i=1 di < dj+1 for all j < 50 with dj < dj+1.

Next, we add 75, 85, 95, 105 to (dn). In this case, according to the proof,

p =

⌈
1

75
(
145 −

(
1 + (31 · 15 + 7 · 25 + 4 · 35 + 2 · 45 + 5 · 55) + (85 + 95 + 105)

))
⌉

= 20.

Then we define d51, d52, . . . , d69 to be 75, and define d70, d71, d72, d73 to be 85, 95, 105, 145

respectively.
If we repeat the process in the previous paragraph with each of the following 4 consecutive

terms, we will obtain a generalized distinguished sequence for (a5n).

18



6 Acknowledgments

The authors wish to thank Department of Mathematics, Faculty of Science, Silpakorn Uni-
versity. We would also like to thank anonymous reviewers for valuable and constructive
comments and suggestions.

References

[1] J. L. Brown, Jr., Note on complete sequences of integers, Amer. Math. Monthly 68

(1961), 557–560.

[2] F. Dubeau, W. Motta, M. Rachidi, and O. Saeki, On weighted r-generalized Fibonacci
sequences, Fibonacci Quart. 35 (1997), 102–110.
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