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Abstract

Arithmetic progressions of length three may be found in compact subsets of the reals

that satisfy certain Fourier- as well as Hausdorff-dimensional requirements. Similar

results hold in the integers under analogous conditions, with Fourier dimension being

replaced by the decay of a discrete Fourier transform. In this paper we make this

correspondence more precise, using a well-known construction by Salem. Specifically,

we show that a subset of the integers can be mapped to a compact subset of the

continuum in a way which preserves certain dimensional properties as well as arithmetic

progressions of arbitrary length. The higher-dimensional version of this construction

is then used to show that certain parallelogram configurations must exist in sparse

subsets of Zn satisfying appropriate density and Fourier-decay conditions.

1 Introduction

Subsets of Rn satisfying certain Hausdorff- and Fourier-dimensional properties have been
shown to have interesting arithmetic properties [2, 6, 12]. To obtain sets with the relevant
properties, it has been standard practice to use integer sequences to construct Cantor-type
subsets of Rn. However, little has been said about the interpretation of such results in
subsets Zn. It seems likely that such interpretations should exist, because similar notions of
dimension and of Fourier decay can be formulated in both the continuum and in Zn. Yet the
translation of results from the continuum to the discrete case is not necessarily trivial and
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there is at present no canonical method for doing so. We have, for example, the following
result in the continuum:

Theorem 1. [6] Assume that E ⊂ [0, 1] is a closed set which supports a probability measure
µ with the following properties:

(i) µ([x, x + ǫ]) ≤ C1ǫ
α for all 0 < ǫ ≤ 1,

(ii) |µ̂(k)| ≤ C2(1 − α)−B|k|−β
2 for all k 6= 0,

where 0 < α < 1 and 2/3 < β ≤ 1. If α > 1−ǫ0, where ǫ0 > 0 is a sufficiently small constant
depending only on C1, C2, B, β, then E contains a non-trivial 3-term arithmetic progression.

The first condition of the theorem ensures that the Hausdorff dimension of E is at least α.
Theorem 3 shows that very similar conditions apply in N to obtain arithmetic progressions
of length 3. We first define an integer analogue to Hausdorff dimension [8]. Throughout the
paper, [0, N) denotes the interval {0, 1, 2, . . . , N − 1} in N.

Definition 2. We say that a set A ⊆ N has upper fractional density α if

lim sup
N→∞

|A ∩ [0, N)|
Nβ

is ∞ for any β < α and 0 for any β > α. We indicate this by the notation d∗f (A) = α.

The lower fractional density can be similarly defined, and if the upper and lower fractional
densities coincide we can of course simply refer to the fractional density of A, which will
be denoted by df (A). The definition can trivially be extended to all of Z. We have the
following analogue of Theorem 1 in the integers, where now we use the discrete Fourier
transform instead of the Fourier-Stieltjes transform of a measure.

Theorem 3. [8] Let A ⊆ N. Suppose A satisfies the following conditions:

(i) A has upper fractional density α, where α > 1/2.

(ii) For some C > 0, the Fourier coefficients of the indicator functions χAN
of AN =

A ∩ [0, N) satisfy
|χ̂AN

(k)| ≤ C(kN)−β/2

for any 0 < k < N , for large N , for some 2/3 < β ≤ 1 satisfying β > 2 − 2α.

Then A contains a non-trivial arithmetic progression of length 3.

Examples of sets satisfying the conditions of Theorems 1 and 3 were constructed by  Laba
and Pramanik [6] and Potgieter [8], respectively. One could ask whether the results could
be extended to longer arithmetic progressions by, for instance, requiring a larger Hausdorff
or Fourier dimension. This seems to be unlikely, since these dimensional conditions do not
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seem to provide enough structure to the set for longer progressions to be inevitable. Tao
[13] discusses in full the failure of Fourier-dimensional conditions to guarantee progressions
larger than 3. As was shown by Shmerkin [11], given equal Fourier and Hausdorff dimensions,
the dimension can be increased arbitrarily whilst avoiding the existence of any non-trivial
arithmetic progressions.

Theorem 3 was proved independently of Theorem 1, but using related techniques. The
question is whether there is some method which can extract results such as Theorem 3 from
results like Theorem 1. This paper partially answers this question in two cases, namely
deducing the existence of arithmetic progressions in subsets of Z or parallelogram configura-
tions in subsets of Zn from their existence in corresponding subsets of R or Rn, respectively.
The techniques utilized are mostly elementary, and seem to indicate that arithmetic proper-
ties analytically obtained in Rn may be interpreted in Zn, as long as one is careful with the
construction used.

The basis of these results is the examination of the construction of Salem-type sets in the
continuum using integer sequences. These methods are not dissimilar to the construction
of the standard triadic Cantor set, although the specific construction used in this paper is
a version of one used by Salem himself [10]. They form the core of much of the study of
sparse sets in Rn, including important restriction phenomena [1, 5, 7]. The construction is
presented here not only for completeness, but because it is an integral part of the results
obtained. The construction for higher dimensions is also rarely presented in full in a manner
which highlights the dependencies of chosen constants, and therefore including it promotes
self-containment.

The notion of density that will be used throughout is Hausdorff dimension, and its ana-
logue in the integers, fractional density. Uniformity will be defined in terms of the decay
of a Fourier-Stieltjes transform of a measure on a compact subset of Rn, and in Zn by a
decay condition on the Fourier transform of the indicator function of a set. We define the
Fourier-Stieltjes transform of a finite Borel measure µ supported on a compact set A ⊂ Rn

as

µ̂(ξ) =

∫

A

e−2πiξ·xdµ(x). (1)

The Fourier dimension of a set is a measure of exactly how rapid the decay of the
transform of that measure is.

Definition 4. A compact set A ⊆ [0, 1]n is said to have Fourier dimension β if

β = sup{α ∈ [0, n] : ∃M+
1 (A)

(
|µ̂(ξ)|2 = o(|ξ|−α)

)
}.

Here M+
1 (A) denotes the set of probability measures on the set A. Condition (ii) of

Theorem 1, for example, ensures that the Fourier dimension of the set under consideration is
at least β. Salem [9] first showed how to construct sets with a specific Fourier dimension, and
in a way that it coincides with the set’s Hausdorff dimension. Hence, sets of equal Fourier
and Hausdorff dimension are called Salem sets. It is possible for sets to have a positive
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Fourier dimension which is strictly smaller than their Hausdorff dimension (it can never be
larger). Such sets are referred to as Salem-type sets.

Following Theorem 3, we can define the Fourier dimension of a subset of the positive
integers.

Definition 5. The Fourier dimension of set A ⊆ N is the supremum of all β ∈ [0, 1] for
which there exist a constant C > 0 such that, for AN = A ∩ [0, N),

1

N

N−1∑

n=0

χAN
(n)e−2πimn

N ≤ C(mN)−β/2,

for any 0 < m < N , m ∈ N, for all large N .

A Salem-type subset of the positive integers will then be one which has Fourier dimension
strictly less than its fractional density.

In Section 2 we present the construction of a subset of [0, 1] from a given subset of
the positive integers. Briefly, given some A ⊆ N and some strictly increasing sequence
of positive integers (Ni)i≥1, we form the subsets Ai = A ∩ [0, Ni). The interval [0, 1] is
divided into N1 equal intervals, and a subinterval [i/k, i/k + ξ1) is chosen whenever i ∈ A1,
where 0 < ξ1 < 1/N1. The union of all subintervals chosen can be denoted by B1. Once
Bk is chosen, we find Bk+1 by applying the construction applied to [0, 1] to each interval
comprising Bk. That is, each interval in Bk is divided into Nk+1 equal intervals, and from
the i-th interval the initial subinterval of length ξk+1, 0 < ξk+1 < (N1 · · ·Nk+1)

−1 is chosen
whenever i ∈ Ak+1. The intersection of all the Bk, k = 1, 2, . . ., is denoted by B, or B(A) if
we want to highlight the dependence on A. We then have the following proposition:

Proposition 6. Suppose that A ⊆ N satisfies the conditions of Theorem 3. Then the set B
obtained from A via the construction in Section 2.1 has Fourier dimension no less than β.

As is noted in Section 2, it is easily shown that the Hausdorff dimension of the set B is
equal to the upper fractional density of the set A.

The fact that such dimensional concepts are preserved is an indication that arithmetic
properties might also be preserved, as evinced by the correspondence between Theorems 1
and 3. That this is indeed the case is illustrated by the following, which holds irrespective
of Hausdorff and Fourier dimension.

Proposition 7. For any n ∈ N, a set A ⊆ N contains an arithmetic progression of length n
if and only if the set B(A) defined by (5) contains an arithmetic progression of length n.

The construction can be generalized to higher dimensions in a straightforward way, as
presented in Section 3.2, in a manner which preserves relevant dimensions similarly to the
one-dimensional case. The concept of a Salem-type set in Zn is defined analogously to the
one-dimensional case (Definition 11). The type of linear configuration we will examine is
given by the following.
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Definition 8. Suppose that n ≥ 2, m ≥ n and k ≥ 3. Let B = {Bi: i = 1, . . . , k} be
a collection of (m − n) × n matrices with non-negative integer entries. We say that a set
A ⊆ Zn contains a B-configuration if there exist x ∈ Zn and y ∈ Zm−n \ {0} such that
x + Biy ∈ A for each i.

As is shown in Section 4.3, we can define parallelograms in Zn as such B-configurations.
Setting aside the technical definition of a non-degenerate collection of matrices until Section
4.1, the main result of the paper is as follows:

Theorem 9. Suppose

n

⌈
k + 1

2

⌉
= m

and
2(nk −m)

k
< β < n.

Let B = {B1, . . . , Bk} be a collection of n×(m−n) matrices with non-negative integer entries
such that Aj = (In×nBj) is non-degenerate in the sense of Definition 14. Furthermore, letting

b
(l)
i,j denote the entries of the matrix Bl, l = 1, . . . , k, we require that

(i) B1 is the n× (m− n) zero matrix,

(ii) for each l = 1, . . . ,m/n and each i = 1, 2, . . . , n,
∑n

j=1 b
(l)
i,j ≤ 1,

(iii) for each l = m/n+ 1, . . . , k, Bl is of the form Bi +Bj for some i, j ∈ {2, 3, . . . ,m/n}.

Then for any constant C > 0 there exists a positive ε = ε(C, n, k,m,B) ≪ 1 with the
following property. Suppose that the set A ⊆ Zn is of Salem-type, as in Definition 11, with
a fractional density α, where n− ε < α < n and a Fourier dimension of at least β. Then A
contains a B-configuration.

The proof of Theorem 9 is presented in Section 4.2. In Section 4.3, Theorem 9 is applied
to show the existence of parallelograms in certain subsets of Zn. Section 4.4 discusses some
possible generalizations of the current work.

2 Correspondence between Z and [0, 1]

2.1 Constructing sets in [0, 1] from the integers

The construction used in this section to generate subsets of [0, 1] from subsets of Z is essen-
tially due to Salem [10]. We now proceed with the construction, adjusted to our needs. Let
A be a subset of the non-negative integers, with a fractional density of α > 0. Let (αi)i≥1

be any real sequence strictly increasing to α, and let (γi)i≥1 be any real, increasing sequence
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tending to infinity. By the definition of upper density, we can find a sequence (Ni)i≥1 (to be
used in (10)) such that

ci :=
|A ∩ [0, Ni)|

Nαi

i

> γi. (2)

Thus, ci → ∞. We can also observe that, given the fractional density of A, certainly

|A ∩ [0, Ni)| = o(2βNβ
i )

for any β > α, and therefore that

ci = o(2βNβ−αi

i ) (3)

for any β > α. This observation is useful in the determination of the Hausdorff dimension
of the set to be constructed.

Divide [0, 1] into N1 equal intervals and choose an interval [i/N1, i/N1 + ζ1), where 0 <
ζ1 < N−1

1 , if i ∈ A1 = A ∩ [0, N1). The set of intervals chosen is denoted by B1. That is,

B1 =
⋃

i∈A1

[
i

N1

,
i

N1

+ ζ1

)
.

Therefore, B1 consists of |A1| intervals of length ζ1. Let Ak = A ∩ [0, Nk) and inductively
define Bk+1 by dividing the intervals belonging to Bk into Nk+1 equal intervals and setting

[
x +

ζ1 · · · ζki
Nk+1

, x +
ζ1 · · · ζki
Nk+1

+ ζ1 · · · ζk+1

)
⊂ Bk+1

if
[x, x + ζ1 · · · ζk) ⊆ Bk (4)

and i ∈ Ak+1, where 0 < ζk+1 < N−1
k+1 and x is of the form

x =
j1
N1

+
ζ1j2
N2

+ · · · +
ζ1 · · · ζk−1jk

Nk

for some j1 ∈ A1, . . . , jk ∈ Ak. Thus, the set Bk+1 consists of |A1| · · · |Ak+1| intervals, each
of length ζ1 · · · ζk+1. More concisely by letting Jk be the set of all x such that (4) holds,

Bk+1 =
⋃

x∈Jk

⋃

i∈Ak+1

[
x +

ζ1 · · · ζki
Nk+1

, x +
ζ1 · · · ζki
Nk+1

+ ζ1 · · · ζk+1

)
.

We define the set B as

B =
∞⋂

k=1

Bk. (5)
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The set B obtained in this manner is denoted by B(ζ1, ζ2, . . . , ζk, . . .), although we usually
do not find it necessary to explicitly indicate the parameters used in the construction. If it
is necessary to reference the set A used in the construction, we denote the resulting set by
B(A).

In Salem’s original construction, it was required that, if we set ξi = N−1
i for each i, the

interval lengths ζi satisfy

(
1 − 1

2i2

)
ξi ≤ ζi < ξi, i = 1, 2, . . . .

This condition is specific to Salem’s approach and not necessary in our construction, and
would in fact be detrimental to our goal of showing that arithmetic progressions are preserved
by the construction. Thus, we set our parameters

ζi = 1/2Ni (6)

at each stage. To verify that the set B has Hausdorff dimension equal to α, the upper
fractional density of A, is easy to do, since the fractional density of the original subset of the
integers dictates exactly how many intervals there are at each stage of the construction, and
the diameter of each is known. What is more, no interval is contiguous to any other, which
makes the sum involved in determining Hausdorff dimension trivial to compute, guaranteeing
a dimension of no less than α. The condition (3) in turn ensures that the Hausdorff dimension
is no larger than α, hence the desired result. (See, for instance, Example 4.6 of Falconer [4].)

There is a way of representing each element of the set B as an infinite sum, supposing
that B was constructed as above. Let a(k)(i) denote the i-th member of the set Ak. Each
point x belonging to the set B can then be written as

x =
a(1)(ε1)

N1

+
ζ1a

(2)(ε2)

N2

+
ζ1ζ2a

(3)(ε3)

N3

+ · · · , (7)

where εi ranges over all values 1, 2, . . . , |Ai|. This representation is useful in calculating
Fourier-Stieltjes transforms of measures on the set B.

2.2 Fourier correspondence between subsets of N and [0, 1]

Since, as shown in the previous section, we can easily move from N to [0, 1] in a way which
preserves a notion of Hausdorff dimension, the question becomes whether we can do the same
with Fourier dimension. The key to this is to use the decay of the Fourier coefficients of
the indicator functions of the sets AN , seen as contained in the group ZN , to obtain bounds
on the Fourier-Stieltjes transforms of certain discrete probability measures on [0, 1]. These
Fourier-Stieltjes transforms can be used to find the Fourier-Stieljes transform of a certain
probability measure µ on the set B constructed above.
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Letting χAN
denote the indicator function of AN considered as a subset of the cyclic

group ZN , the discrete Fourier transform is defined as follows:

χ̂AN
(k) =

1

N

N−1∑

n=0

χAN
(n)e−2πi kn

N .

We remark that the construction of the measures in this section may seem slightly more
deterministic in character than those constructed by Salem. His probabilistic construction
yields the required dimension only almost surely, whereas our adapted construction will
certainly yield a measure with the required decay. It has to be admitted that this only hides
the probabilistic aspect, since the most likely way to obtain sets with the given properties
would be through probabilistic means. A probabilistic construction of such a set is given in
Potgieter [8].

We now present the proof of Proposition 6. Although we cannot exclude the possibility
that Fourier dimension will be preserved for smaller values, our proof does require the Fourier
decay of the indicator function of A to be rapid, and that it satisfies the above relation to
the fractional density. This is sufficient for our purposes, because the configurations we
are interested in seem to only occur under such conditions, even though weaker conditions
cannot be entirely ruled out in exceptional circumstances.

Proof of Proposition 6. We construct a measure on the set B obtained in the previous sec-
tion, assuming the set A and the numbers Ni, αi, ci, i ∈ N, to be the same as before.
At the k-th stage of the construction we introduce a continuous, non-decreasing func-
tion Fk : [0, 1] → [0, 1], where Fk(0) = 0, with the property that it increases linearly by
(c1 · · · ckNα1

1 · · ·Nαk

k )−1 over each interval of length ζ1 · · · ζk comprising Bk, with all the con-
stants in question satisfying the requirements (2), (3) and (6) of Section 2.1. On intervals
not part of the set Bk, the function remains constant, equal to its previously attained value
on Bk. Hence, for each k we have a piecewise linear function increasing from 0 to 1 over the
unit interval, which is a distribution function for a probability measure µk supported on the
set Bk. These functions converge pointwise to a function F which will be continuous and
non-decreasing, with F (0) = 0 and F (1) = 1, as can be easily seen by showing they form a
Cauchy sequence with respect to the uniform norm. The measure corresponding to F will
be denoted by µ.

Our interest now lies in calculating asymptotic properties of the Fourier-Stieltjes trans-
form of µ as defined in (1). To do so, we must find a way of representing upper bounds on
|µ̂| in terms of the upper bounds of the Fourier coefficients of the sets ANi

.
We let |Ak| denote the number of intervals chosen in the k-th step of the construction of

the set B = B(ζ1, ζ2, . . .) from the given set A. The numbers a(k)(j), k, j = 1, 2, 3, . . ., are
as determined in (7). We define

Q(k)(u) =
1

|Ak|

|Ak|∑

j=1

e
−2πiu

a(k)(j)
Nk ,
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for all k ≥ 1. These may be seen as the Fourier-Stieltjes transforms of discrete measures on
the unit interval. As in Salem [10], the Fourier-Stieltjes transform of the measure µ can then
be written as

µ̂(u) = lim
m→∞

Q(1)(u)
m∏

k=1

Q(k+1)(ζ1 · · · ζku)

(see also, for instance, p. 195 of Zygmund [14]).
Note that Q(k) corresponds closely to the discrete Fourier transform (modulo Nk) on

integer values, as follows:

Q(k)(m) =
1

|Ak|

Nk−1∑

n=0

χAk
(n)e

−2πin m
Nk =

Nk

|Ak|
χ̂Ak

(m).

We can therefore dictate the decay of µ̂ by requiring sufficient decay of χ̂Ak
(m), as in the

statement of the theorem. Thus, for any β satisfying the conditions of the theorem, there
exists some constant C such that for any m ∈ [1, Nk) ⊂ N,

|Q(k)(m)| ≤ C
Nk

|Ak|
(mNk)−β/2 = c−1

k Cm−β/2N
1−β

2
−αk

k . (8)

We will need to consider arbitrarily large arguments in the approximation of |µ̂(u)|, in
which case the m in the above expression ought to be replaced by m mod Nk. However,
once m ≥ Nk, we will use some other |Q(j)(m)| with j > k as the main component of our
approximation, thus avoiding the issue. This also lets us avoid the problem of approximating
|Q(k)(m)| when m is a multiple of Nk, where it would be equal to 1.

Since the inequalities bounding |Q(k)| only hold for integer-valued arguments, we will
need to extend them to arbitrary real arguments in order to approximate |µ̂|. To do so, note
that an elementary calculation gives the upper bound

∣∣∣∣
d

du
|Q(k)(u)|

∣∣∣∣ ≤ |Q(k)(u)|

for any u > 0. For any interval [u, u + a], a > 0, we then have that

max
x∈[0,a]

|Q(k)(u + x)| ≤ a max
x∈[0,a]

∣∣∣∣
d

dw
|Q(k)(w)|

∣∣
w=u+x

∣∣∣∣+ |Q(k)(u)|

≤ a max
x∈[0,a]

|Q(k)(u + x)| + |Q(k)(u)|

and therefore

max
x∈[0,a]

|Q(k)(u + x)| ≤ 1

1 − a
|Q(k)(u)|

when 1 − a > 0. Set a = 1/2. For any integer m we therefore have that for any u ∈
[m,m + 1/2],

|Q(k)(u)| ≤ 2|Q(k)(m)| ≤ 2c−1
k Cm−β/2N

1−β
2
−αk

k .
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To relate the quantities u−β/2 and m−β/2, we use the same method applied to the function
x−β/2. For u ∈ [m,m + 1/2] we have

m−β/2 − u−β/2 ≤ 1

2
max

x∈[m,m+1/2]

∣∣∣∣
d

dx
x−β/2

∣∣∣∣ ,

and therefore

m−β/2 ≤ u−β/2 +
β

4
m−3β/2.

The simple bounds m3 > u and β/4 < 1 imply that

β

4
m−3β/2 ≤ β

4
u−β/2 ≤ u−β/2,

and thus

|Q(k)(u)| ≤ 4c−1
k Cu−β/2N

1−β
2
−αk

k , u ∈ [m,m + 1/2].

Having established this for u ∈ [m,m + 1/2], we can repeat the method on the interval
[m+1/2,m+1). By adjusting the constant C, the inequality (8) now holds with m replaced
by the continuous variable u ≥ 1.

In order to estimate µ̂, notice that for any p ≥ 1,

|µ̂(u)| ≤
p∏

k=1

|Q(k+1)(ζ1 · · · ζku)|. (9)

Given some p, we first consider values of u of the form

2pN1 · · ·NpNp ≤ u < 2pN1 · · ·NpNp+1. (10)

This corresponds to
Np ≤ ζ1 · · · ζpu < Np+1.

Since the first p− 1 terms of (9) may be bounded by 1, it follows that

|µ̂(u)| ≤ Cc−1
p+1(ζ1 · · · ζpu)−β/2N

1−β
2
−αp+1

p+1 .

(By choosing u in this range, we avoid the problematic cases of the argument of |Q(p+1)|
being a multiple of Np+1 or being very small, modulo Np+1.) Because of the choice of the ζi
in our construction, this gives

|µ̂(u)| ≤ c−1
p+1C2pβ/2N

β/2
1 · · ·Nβ/2

p u−β/2N
1−β

2
−αp+1

p+1 .

As stated in Section 2.1, we may assume that ck >
√

2C for each k ∈ N, which means
that

|µ̂(u)| ≤ 2pβ/2u−β/2N
β/2
1 · · ·Nβ/2

p N
1−β

2
−αp+1

p+1 . (11)

10



By requiring the terms Nk to rapidly increase (passing to a subsequence if necessary), we
can assume that

2pβ/2N
β/2
1 · · ·Nβ/2

p N
1−β

2
−αp+1

p+1 = o(1),

This is possible, since by assumption β > 2 − 2α. For given β and αi → α in the prescribed
manner, we also have that β > 2 − 2αi for αi close enough to α, which we assume is the
case, and hence that 1 − β/2 − αp+1 < 0.

Now consider u such that

2pN1 · · ·NpNp+1 ≤ u < 2p+1N1 · · ·NpN
2
p+1,

which corresponds to
1

2
≤ ζ1 · · · ζp+1u < Np+1.

For this range of u we apply the above argument, only with the approximation of |Q(p+2)|
instead of |Q(p+1)|. The case 1/2 ≤ ζ1 · · · ζp+1u < 1 should be mentioned, as the previous
calculation required that ζ1 · · · ζp+1u ≥ 1. However, since the upper bound on the derivative
is valid for all u > 0, we can similarly approximate |Q(k)|:

max
u∈[1/2,1)

|Q(k)(u)| ≤ 2|Q(k)(1)| ≤ 2c−1
k CN

1−β
2
−αk

k .

Since u−β/2 > 1 for u ∈ [1/2, 1), we see that

|Q(k)(u)| ≤ 2c−1
k Cu−β/2N

1−β
2
−αk

k

on this interval. We therefore obtain

|µ̂(u)| ≤ 2(p+1)β/2u−β/2N
β/2
1 · · ·Nβ/2

p+1N
1−β

2
−αp+2

p+2

for all u in the current range. The required decay is ensured by the rapid increase of Nk.
By using increasing values of p, we see that

|µ̂(u)| = o(u−β/2)

for all β satisfying the conditions of Theorem 3.

The result indicates that at least some sets satisfying the conditions of Theorem 3 will
be mapped to sets satisfying the conditions of Theorem 1, meaning that both the original
set and its image will contain 3-arithmetic progressions. The next section further explores
the invariance of the existence of arithmetic progressions under the mapping.
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2.3 Preservation of arithmetic progressions

The purpose of this section is to show that arithmetic progressions are preserved when
transitioning from the integers to the continuum as described in previous sections. This
is not dependent on the Hausdorff- or Fourier-dimensional aspects of the sets, only on the
construction. We shall frequently refer to an arithmetic progression of length n as an nAP.

Although the set B(A) is not uniquely determined by A alone but differs depending on
constants used throughout, we suppress mention of the constants and regard B(A) as fixed,
and refer merely to B throughout the proof.

Proof of Proposition 1.4. We first show that 3APs occurring in a subset of [0, 1] according
to the construction (5) must arise from a 3AP in the integers. Recall that every element of
our set B can be written in the form (7). Suppose that there are a1, a2, a3 ∈ B such that
a2 − a1 = a3 − a2. Each of the ai, i = 1, 2, 3, is the image of a sequence of integers under the
construction of B, and we can write

ai =
a
(i)
1

N1

+
ζ1a

(i)
2

N2

+
ζ1ζ2a

(i)
3

N3

+ · · · ,

where a
(i)
j ∈ [1, Ni) ∩ A for i = 1, 2, 3; j ∈ N.

We therefore have that

2a
(2)
1 − a

(1)
1 − a

(3)
1

N1

+
ζ1(2a

(2)
2 − a

(1)
2 − a

(3)
2 )

N2

+
ζ1ζ2(2a

(2)
3 − a

(1)
3 − a

(3)
3 )

N3

+ · · · = 0.

Let k ∈ N be such that the 3AP occurs within an interval of length ζ1 · · · ζk−1 but not
within an interval of length ζ1 · · · ζk. The choices of the parameters ζi guarantee that such
a k must exist, since the largest distance between any two points in a new subdivision
of an interval is less than the distance to the next interval. This would imply that the
first k − 1 terms of the expression above will be 0 (trivially, since the points have equal
terms in the expansion up to that point) and that the k-th term will only be 0 should

2a
(2)
k −a

(1)
k −a

(3)
k = 0. If the k-th term is not 0, we have either that a

(3)
k −a

(2)
k ≥ a

(2)
k −a

(1)
k +1

or that a
(3)
k − a

(2)
k ≤ a

(2)
k − a

(1)
k − 1. Suppose first that the former of the two alternatives

holds, and consider the restricted case a
(3)
k − a

(2)
k = a

(2)
k − a

(1)
k + 1.

The maximum distance between two points in the two separate intervals indexed by a
(1)
k

and a
(2)
k is strictly less than

ζ1 · · · ζk−1
a
(2)
k − a

(1)
k

Nk

+ ζ1 · · · ζk,

remembering that the intervals are half-open. The minimum distance between two points in
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the intervals indexed by a
(2)
k and a

(3)
k is strictly greater than

ζ1 · · · ζk−1
a
(2)
k − a

(1)
k + 1

Nk

− ζ1 · · · ζk

= ζ1 · · · ζk−1
a
(2)
k − a

(1)
k

Nk

+ ζ1 · · · ζk−1

(
1

Nk

− ζk

)
.

Requiring, as we did in the construction, that ζk = 1/2Nk, we see that it is impossible for

the difference between any two elements in the intervals indexed by a
(2)
k and a

(1)
k to be added

to any element in the interval indexed by a
(2)
k to obtain an element of the interval indexed

by a
(3)
k . Therefore, it cannot be true that a

(3)
k − a

(2)
k = a

(2)
k − a

(1)
k + 1. Since increasing k only

increases the minimum distance, it is not true that a
(3)
k −a

(2)
k = a

(2)
k −a

(1)
k +k for any integer

k ≥ 1.
The same reasoning discounts the case a

(3)
k − a

(2)
k ≤ a

(2)
k − a

(1)
k − 1, by considering the

minimum possible distance between points in the two separate intervals indexed by a
(2)
k

and a
(1)
k and the maximum possible distance between points in the intervals indexed by a

(2)
k

and a
(3)
k . The minimum will always exceed the maximum, as in the previous case. Hence,

a
(3)
k − a

(2)
k = a

(2)
k − a

(1)
k . Therefore, we can conclude that a 3AP in the set B must be the

result of a 3AP in the generating set A.
To pass to the general case of a kAP, we only need notice that such an AP can be seen

as k − 2 3APs, each with the same common difference and the initial point of each shifted
by the common difference each time. Here too, it is important to note the distances between
intervals determined by the ζi. Thus, the second 3AP must also correspond to a 3AP in A,
with initial point the second member of the first 3AP, and so on, yielding a kAP in A.

We now turn to the reverse, to show that a kAP in the generating set always leads to a
kAP in B. Suppose that P = {p1, . . . , pk} ⊆ A, p1 < p2 < . . . < pk, is a kAP with common
difference d occurring in the m-th stage of the construction, that is, pk < Nm. Then, for any
fixed ai ∈ A ∩ [0, Ni), i ∈ N \ {m} there will be elements of B expressible as

cn =
a1
N1

+ ζ1
a2
N2

+ · · · + ζ1 · · · ζm−1
pn
Nm

+ ζ1 · · · ζm
am+1

Nm+1
+ · · ·

for n = 1, 2, . . . , k. Then c1, . . . , ck form a kAP in [0, 1] with common difference ζ1 · · · ζm−1d/N
m.

3 Correspondence in higher dimensions

3.1 Hausdorff and Fourier dimensions

The method for obtaining subsets of [0, 1]n from subsets of Nn is not much different from the
one-dimensional case. First, we need to define the higher-dimensional notion of fractional
density:
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Definition 10. We say that a set A ⊆ Nn has upper fractional density α, 0 ≤ α ≤ n, if

lim sup
N→∞

|A ∩ [0, N) × · · · × [0, N)|
Nβ

is ∞ for any β < α and 0 for any β > α. This is indicated by d∗f (A) = α.

The notions of lower fractional density and fractional density are defined analogously to
the one-dimensional case.

With A given, let AN = A ∩ [0, N) × · · · × [0, N), for some N ∈ N. If a sequence of
natural numbers (Ni)i≥1 is given, we will set Ai = A ∩ [0, Ni) × · · · × [0, Ni). The definition
of a Salem-type set in Nn is as follows:

Definition 11. A set A ⊆ Nn is a Salem-type set if it has upper fractional density α ∈ (0, n]
and for each ~m = (m1, . . . ,mn) ∈ [0, N)n \ {~0},

1

Nn

∑

~n∈[0,N)×···×[0,N)

χAN
(~n)e−2πi ~m·~n

N ≤ C(|~m|N)−β/2

for all large N ∈ N, for some C > 0 and 0 < β ≤ α. The supremum of the β for which the
above holds is the Fourier dimension of A.

The fact that the Fourier dimension will always be less than the fractional density follows
from the correspondences in the next section.

3.2 Constructing a subset of [0, 1]n

Suppose that A ⊆ Zn such that df (A) = α > 0. As before, we choose a strictly increasing
sequence (αi)i≥1 of real numbers such that αi → α, and a strictly increasing sequence (γi)i≥1

tending to infinity. Let (Ni)i≥1 be an increasing sequence for which

ci :=
|A ∩ [0, Ni) × · · · × [0, Ni)|

Nαi

i

> γi.

For each i ∈ N, choose ζi = (2Ni)
−1 for all i ∈ N. Define Ai = A∩ [0, Ni)×· · ·× [0, Ni) ⊂ Nn

for all i ∈ N. Set

B1 =
⋃

(i1,...,in)∈A1

[
i1
N1

,
i1
N1

+ ζ1

)
× · · · ×

[
in
N1

,
in
N1

+ ζ1

)
.

Define the set Jk by

Jk = {(x1, . . . , xn) ∈ Rn : [x1, x1 + ζ1 · · · ζk) × · · · × [xn, xn + ζ1 · · · ζk) ⊆ Bk} .
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Once again, we define Bk+1 recursively:

Bk+1 =
⋃

~x∈Jk

⋃

~i∈Ak+1

[
x1 +

ζ1 · · · ζki1
Nk+1

, x1 +
ζ1 · · · ζki1
Nk+1

+ ζ1 · · · ζk+1

)
× · · · ×

[
xn +

ζ1 · · · ζkin
Nk+1

, xn +
ζ1 · · · ζkin
Nk+1

+ ζ1 · · · ζk+1

)
.

Finally, let

B =
∞⋂

k=1

Bk.

As before, each element of the set B can be expressed as a series

~a(1)(ε1)

N1

+
ζ1~a

(2)(ε2)

N2

+
ζ1ζ2~a

(3)(ε3)

N3

+ · · · ,

where ~a(k)(i) = (a
(k)
1 (i), . . . , a

(k)
n (i)) denotes the i-th element of the set Ak (with some order-

ing) and each εi ranges over all values 1, 2, . . . , |Ai|.

Proposition 12. Suppose that A ⊆ Nn has upper fractional density α and satisfies the
conditions of Definition 3.2 for some β, where β > 2n − 2α. Then the set B constructed
above has Hausdorff dimension α and Fourier dimension no less than β.

Proof. Verifying that the set B has Hausdorff dimension equal to the upper fractional density
is no harder than in the one-dimensional case. For the existence of the measure and the decay
of the Fourier-Stieltjes transform, we proceed analogously to the one-dimensional case, with
only minor differences in the approximation of µ̂. At each stage k of the construction, a
probability measure µk can be defined on the set Bk which assigns equal measure to each
cube comprising Bk, with a distribution function

Fk(~x) = µk([~y ∈ [0, 1]n : yi ≤ xi, i = 1, . . . , n]).

The µk converge weakly to a measure µ. Setting

Q(k)(~u) =
1

|Ak|

|Ak|∑

j=1

e
− 2πi

N
k
~u·~a(k)(j)

,

we can write

µ̂(~u) = lim
n→∞

Q(1)(~u)
m∏

k=1

Q(k+1)(ζ1 · · · ζk~u)

and

|µ̂(~u)| ≤
p∏

k=1

|Q(k+1)(ζ1 · · · ζk~u)|,
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as before. We have the upper bound

|Q(k)(~m)| ≤ C

ck
|~m|−β/2Nn−β

2
−αk

for ~m ∈ [1, Nk) × · · · × [1, Nk) ⊂ Nn, and we can assume that this holds for non-integer
arguments for much the same reasons as before. Specifically, for ~x = (x1, . . . , xn) ∈ Rn and
~u = (u1, . . . , un), ∣∣∣∣

∂

∂ui

|Q(k)(~u)|
∣∣∣∣ ≤ |Q(k)(~u)|

for each i = 1, . . . , n. For a given y ∈ R, let ~ui(y) = (u1, . . . , ui−1, y, ui+1, . . . , un). The
previous inequality implies that

max
y∈[ui,ui+a]

∣∣∣∂xi
|Q(k)(~x)|

∣∣
~x=~ui(y)

∣∣∣ ≤ max
y∈[ui,ui+a]

|Q(k)(~ui(y))| ≤ max
0≤xi≤a
1≤i≤n

|Q(k)(~u + ~x)|,

and consequently

max
0≤xi≤a
1≤i≤n

|Q(k)(~u + ~x)| ≤ a

(
n∑

i=1

(
max

y∈[ui,ui+a]
|∂xi

|Q(k)(~x)|
∣∣
~x=~ui(y)

|
)2
)1/2

+ |Q(k)(~u)|

≤ a
√
n max

0≤xi≤a
1≤i≤n

|Q(k)(~u + ~x)| + |Q(k)(~u)|,

yielding

max
0≤xi≤a
1≤i≤n

|Q(k)(~u + ~x)| ≤ 1

1 − a
√
n
|Q(k)(~u)|

as long as 1 − a
√
n > 0. As with the one-dimensional case, we can now repeatedly extend

the upper bound over cubes of side-length no greater than, for instance, (2
√
n)−1, by using

the inequality
|~m|−β/2 ≤ K|~u|−β/2

for some constant K independent of ~m and ~u, with ~u contained in the cube

{~u = (u1, . . . , un) ∈ Rn : 0 ≤ ui −mi ≤ (2
√
n)−1, i = 1, 2, . . . , n}.

With the upper bound on |Q(k)(~u)| established for this cube, we can repeat the argument
to obtain the same bound for neighboring cubes, and therefore for all ~u ∈ Rn with ui ≥ 1,
i = 1, . . . , n. When ui ∈ [1/2, 1), the argument in the one-dimensional case applies similarly.

The reasoning of Section 2.2 now transfers to the multidimensional case almost seamlessly.
The restrictions on the values of u in the previous must only be replaced by restrictions on
the coordinates of ~u; thus, we consider the cases

2pN1 · · ·NpNp ≤ ui < 2pN1 · · ·NpNp+1, i = 1, 2, . . . , n
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and
2pN1 · · ·NpNp+1 ≤ ui < 2p+1N1 · · ·NpN

2
p+1, i = 1, 2, . . . , n.

Also taking into account that now we have β > 2n− 2α, we find that

|µ̂(~u)| = o(|~u|−β/2).

We can conclude that the Fourier dimension of B is β or greater.

4 Finite configurations in sparse subsets

4.1 Subsets of Rn

In this section we briefly describe the result of Chan,  Laba and Pramanik [2], to which
we shall find a corresponding theorem in the integers. Whereas before we used vector no-
tation to indicate elements of higher-dimensional spaces in order to distinguish from the
one-dimensional case, we abandon that now for readability.

Definition 13. [2] Fix integers n ≥ 2, k ≥ 3 and m ≥ n. Suppose B = {B1, . . . , Bk} is a
collection of n× (m− n) real matrices.

(a) We say that E ⊂ Rn contains a B-configuration if there exist x ∈ Rn and y ∈ Rm−n\{0}
such that {x + Bjy}kj=1 ⊆ E.

(b) Given any finite collection of subspaces V1, . . . , Vq ⊆ Rm−n with dim(Vi) < m− n, we
say that E contains a non-trivial B-configuration with respect to (V1, . . . , Vq) if there
exist x ∈ Rn and y ∈ Rm−n \⋃q

i=1 Vi such that {x + Bjy}kj=1 ⊆ E.

In order to formulate the theorem, we shall need the notion of non-degeneracy for our
configurations. Let A1, . . . , Ak be n × m matrices. For any set of (distinct) indices J =
{j1, . . . , js} ⊆ {1, . . . , k}, define the ns×m matrix AJ by

At
J = (At

j1
· · ·At

js).

Let r be the unique positive integer such that

n(r − 1) < nk −m ≤ nr.

The meaning of this integer is as follows. Suppose that we construct an m ×m matrix
from certain of the matrices At

1, . . . , A
t
k, each of which consists of n columns. If m is not

a multiple of n, we fill up the remaining columns (fewer than n) with columns from one of
the other matrices. The total number of columns of all matrices minus the number used for
the m × m matrix is therefore nk − m. The number r − 1 then represents the maximum
number of groups of n columns that can be entirely contained in nk − m columns, unless
nk−m is a multiple of n, in which case r groups are contained. In other words, r is the total
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number of groups of n columns that are wholly or partly contained in the nk −m columns
not contained in the m ×m matrix. The number of columns fewer than n, outside these r
groups, that remain “outside” the m×m matrix constructed, is then

n′ = nk −m− (r − 1)n.

It is possible that n′ = n, when nk −m is a multiple of n.

Definition 14. [2] We say that {A1, . . . , Ak} is non-degenerate if for any J ⊆ {1, . . . , k}
with |J | = k − r and any j ∈ {1, . . . , k} \ J , the m×m matrix

(At
JÃj

t
)

is non-singular for any choice Ãj
t

a submatrix of Aj consisting of n− n′ rows.

That is, we create an m × m matrix by using as many of the matrices At
i as we can

without obtaining more than m columns in total, then fill out the rest of the matrix by using
columns from one of the matrices not yet used. If all such matrices are non-singular, the
assembly {A1, . . . , Ak} is non-degenerate.

We then have the following theorem from Chan et al. [2]. Note that In×n denotes the
n× n identity matrix.

Theorem 15. Suppose

n

⌈
k + 1

2

⌉
≤ m ≤ nk

and
2(nk −m)

k
< β < n.

Let B = {B1, . . . , Bk} be a collection of n × (m − n) matrices such that Aj = (In×nBj) is
non-degenerate in the sense of Definition 14. Then for any constant C > 0, there exists
a positive number ε = ε(C, n, k,m,B) ≪ 1 with the following property. Suppose the set
E ⊆ Rn with |E| = 0 supports a positive, finite, Radon measure µ satisfying the following
two conditions:

(a) ball condition:

sup
x∈E

0<r<1

µ(B(x, r))

rα
≤ C if n− ε < α < n,

(b) Fourier decay:

|µ̂(ξ)| ≤ C

(1 + |ξ|)β/2 .

for every ξ ∈ Rn.

Then
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(i) E contains a B-configuration.

(ii) For any finite collection of subspaces V1, . . . , Vq ⊆ Rm−n with dim(Vi) < m−n, E con-
tains a non-trivial B-configuration with respect to (V1, . . . , Vq) in the sense of Definition
13.

We remark that condition (b) is fulfilled when |µ̂(ξ)| = o(|ξ|−β/2).

4.2 Subsets of Zn

Matrices of the form specified in Theorem 9 will be said to define “parallelogram-like” con-
figurations. This will be further illustrated in Section 4.3, which will also discuss the issue
of degeneracy in the configurations, such as when some of the points of the parallelogram
are equal, leading to a trivial configuration.

Proof of Theorem 1.5. The proof is already largely accomplished, due to the constructions
and correspondences of previous sections. Suppose that A satisfies the conditions of the
theorem. Let B be the subset of [0, 1]n obtained via the construction in Section 3.2. By
the dimensional correspondence of the construction, we see immediately that B satisfies the
conditions of Theorem 15, and must contain a B-configuration. The rest of the proof aims
to show that this configuration corresponds to one in A ⊆ Nn, much as we earlier showed
that arithmetic progressions in B ⊆ [0, 1] must correspond to arithmetic progressions in the
generating set A ⊆ N.

Without loss of generality, we suppose that N1 is large enough to separate the points
of the configuration (since no matter which N1 we start with, B must contain the required
configuration). Partition Rn and Rm−n into cubes so that

Rl =
⋃

z∈Zl

N1−1⋃

i1,...,il=0

z +

[
i1
N1

,
i1 + 1

N1

)
× · · · ×

[
il
N1

,
il + 1

N1

)
,

for l = n,m− n.
Let x = (x1, . . . , xn) ∈ Rn and y = (y1, . . . , ym−n) ∈ Rm−n be the two points whose

existence is guaranteed by Theorem 15. By assumption, B1 is the zero matrix, and hence
x ∈ B. The N1-approximation x(1) = (x

(1)
1 , . . . , x

(1)
n ) ∈ Zn of the point x in Rn is then the

corner of the cube with side-lengths 1/N1 containing the point with the smallest coordinates
in each dimension (in two dimensions, this would be the southwest corner of the containing
square). More precisely,

for each i = 1, 2, . . . , n : 0 ≤ xi − x
(1)
i <

1

2N1

and ∃ai ∈ N such that x
(1)
i =

ai
N1

.

Note that the nature of the construction of B, specifically the choice of ζ1, ensures that
this approximation is possible and unique. For any z ∈ Rn, z(1) shall denote the N1-
approximation of z in the above sense. Elements of Rm−n (considered as a distinct space
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for the purposes of the argument even when n = m − n), will be approximated slightly
differently. Approximate y ∈ Rm−n by the closest corner available, that is, the point y(2) =
(y

(2)
1 , . . . , y

(2)
m−n) such that

for each i = 1, 2, . . . ,m− n : |yi − y
(2)
i | ≤ 1

2N1

and ∃bi ∈ N such that y
(2)
i =

bi
N1

.

If, for any coordinate, there are two possible choices for an approximation, we choose the
one for which y − y

(2)
i > 0, thus ensuring that y − y

(2)
i > −(2N1)

−1 for all i.
We can write

x =




x
(1)
1 + ǫ(x

(1)
1 )

x
(1)
2 + ǫ(x

(1)
2 )

...

x
(1)
n + ǫ(x

(1)
n )


 , y =




y
(2)
1 + ǫ(y

(2)
1 )

y
(2)
2 + ǫ(y

(2)
2 )

...

y
(2)
m−n + ǫ(y

(2)
m−n)


 ,

where 0 ≤ ǫ(x
(1)
i ) < (2N1)

−1, 1 ≤ i ≤ n, and −(2N1)
−1 < ǫ(y

(2)
j ) ≤ (2N1)

−1, 1 ≤ j ≤ m− n.
We shall use the notation

ǫ(x(1)) = (ǫ(x
(1)
1 ), . . . , ǫ(x(1)

n ))t

ǫ(y(2)) = (ǫ(y
(2)
1 ), . . . , ǫ(y

(2)
m−n))t.

We assert that x(1) + Bjy
(2) is the N1-approximation of the point x + Bjy, j = 1, . . . , k.

Observe the j-th error term

ǫ(x(1)) + Bjǫ(y
(2)) =




ǫ(x
(1)
1 )

ǫ(x
(1)
2 )
...

ǫ(x
(1)
n )


+ Bj




ǫ(y
(2)
1 )

ǫ(y
(2)
2 )
...

ǫ(y
(2)
m−n)


 .

Each component of this term represents the extent to which each coordinate of x(1) +Bjy
(2)

differs from a multiple of 1/N1. Our assertion is then that

0 ≤ (ǫ(x(1)) + Bjǫ(y
(2)))i <

1

N1

for the i-th component of ǫ(x(1)) + Bjǫ(y
(2)), i = 1, 2, . . . , n. For the moment, consider only

j = 1, 2, . . . ,m/n. For the assertion to be violated, we must have that

(ǫ(x(1)) + Bjǫ(y
(2)))i ≥

1

N1

or
(ǫ(x(1)) + Bjǫ(y

(2)))i < 0
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for some value of i. The first case is eliminated by the bounds on the error terms and the
restrictions on entries of Bj. Since we have x + Bjy ∈ B (and must therefore be contained
in one of the cubes specified by the construction at the first stage), the second case can only
occur when

(ǫ(x(1)) + Bjǫ(y
(2)))i ≤ − 1

2N1

in some coordinate i, which represents the case where the N1-approximation (x + Bjy)(1) is
less in some coordinate than x(1) + Bjy

(1). Once again, this is prohibited by the bounds on
ǫ(x(1)) and ǫ(y(2)).

By construction, the point x(1) corresponds to a point in the original set A, specifically
xA = (N1x

(1)
1 , . . . , N1x

(1)
n ). In turn, y(2) defines an element yA = (N1y

(2)
1 , . . . , N1y

(2)
m−n) of

Zm−n. For each point x(1) + Bjy
(2), j = 1, 2, . . . ,m/n, there therefore exists some aj ∈ A

such that
x(1) + Bjy

(2) =
aj
N1

,

and we have that
xA + BjyA = aj, j = 1, 2, . . . ,m/n.

To deal with the matrices Bj, m/n < j ≤ k, observe again that the point x + Bly, l =
1, . . . ,m/n, is an element of the set B. This implies that, for each coordinate i,

0 ≤ (ǫ(x(1)) + Blǫ(y
(2)))i <

1

2N1

, l = 1, 2, . . . ,m/n.

Since for j = m/n + 1, . . . , k we have Bj = Bj1 + Bj2 for some j1, j2 ∈ {2, 3, . . . ,m/n}, the
above implies that

− 1

2N1

< (ǫ(x(1)) + Bj1ǫ(y
(2)) + Bj2ǫ(y

(2)))i <
1

N1

for any i = 1, 2, . . . , n, and hence that

− 1

2N1

< (ǫ(x(1)) + Bjǫ(y
(2)))i <

1

N1

for any j = m/n + 1, . . . , k. By the same argument as above, taking into account that
x + Bjy ∈ B also for j = m/n + 1, . . . , k, we can conclude that

0 ≤ (ǫ(x(1)) + Bjǫ(y
(2)))i <

1

N1

and hence
x(1) + Bjy

(2) =
aj
N1

for some aj ∈ A, m/n < j ≤ k. This establishes the result.

21



4.3 Existence of parallelograms

Fix n ≥ 2, k = 4 and m = 3n and suppose the set A ⊆ Zn satisfies the conditions of Theorem
9. Let

B1 = 0n×2n

B2 = (In×n0n×n)

B3 = (0n×nIn×n)

B4 = B2 + B3.

Chan et al. [2] show that the collection of matrices {A1, A2, A3, A4}, formed from {B1, B2, B3, B4}
in the manner described in Theorem 9, are non-degenerate and satisfy all other conditions
of the theorem. This means that there are some x ∈ Zn, y ∈ Z2n such that the points

x, x +



y1
...
yn


 , x +



yn+1

...
y2n


 , x +



y1 + yn+1

...
yn + y2n




are all contained in A. In other words, there are points x, u, v ∈ Zn such that

{x, x + u, x + v, x + u + v} ⊂ A.

It is important to mention the possibility of degenerate configurations, where not all points
are distinct. Setting v = 0 in the above configuration would mean that sets could trivially
contain parallelograms as long as they consist of more than two elements. This is addressed
by part (ii) of the conclusion of Theorem 15. By defining the subspaces V1, V2, V3, V4 suitably,
we can conclude that the points obtained are all distinct; see Chan et al. [2, Sec. 7]. Since
the points are also separated by our N1-approximation in Theorem 9, we can conclude that
the elements of A obtained are also distinct.

4.4 Possible generalizations of configurations

The following generalizations of Theorem 9 suggest themselves.

1. There is of course no need to require that y ∈ Zm−n in Theorem 9, nor even that
the matrices must all have integer entries, as long as the configuration obtained exists
in Zn. For instance, if we consider assemblies B in which the matrices have some
rational but non-integer coefficients that satisfy the constraints of Theorem 15, such
configurations could still exist in the set B if conditions are satisfied. This would imply
that we could consider y ∈ Qm−n instead, for which the corresponding configuration
exists in A. This could be useful in establishing analogues of Corollary 1.7 in Chan et
al. [2], concerning the existence of certain triangle configurations.
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2. It is not necessary to assume that ζi = (2Ni)
−1 during the construction in Section 2.

The ζi could be taken to be, for instance, (3Ni)
−1 (as long as some small extra growth

condition is applied to (Ni)), which would open the door to proving Theorem 9 for
configurations with some matrices being the sum of three other matrices. This could
allow one to prove the existence of parallelogram-like configurations in A such as {x, x+
u, x + v, x + z, x + u + v + z}, for instance.

3. Only a single value of m, the smallest possible, was considered in Theorem 9. Larger
values should be considered for more general configurations, although the non-degeneracy
conditions on the matrices A1, . . . , Ak complicate the proof of Theorem 9

4. Just as arithmetic progressions of length greater than 3 seem to require higher-order
uniformity conditions (see Conlon et al. [3], for instance), we can conjecture that more
general configurations in Zn and [0, 1]n will require such conditions. It seems feasible,
given the results of this paper, that these conditions will be preserved under the current
construction.
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