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Abstract

Let a and b be positive integers and f an arithmetic function. In this article, we
investigate whether or not a certain condition on the value of f implies a = b. For
example, if f is the sum of divisors function and f(an) = f(bn) for all positive integers
n, then a = b.

1 Introduction

Let ϕ be the Euler function, which counts the number of positive integers k ≤ n with
(k, n) = 1. For each nonnegative integer s and a positive integer n, let σs(n) =

∑

d|n d
s,

where d runs over the positive divisors of n, σ(n) = σ1(n), and τ(n) = σ0(n). Problems on
the ranges of arithmetic functions have been a popular area of research. For example, it is
easy to see that if n is a prime, then ϕ(n) = n−1; Lehmer asked whether ϕ(n) | n−1 implies
that n is a prime, but this question is still open. In addition, Carmichael’s longstanding open
problem on the range of ϕ states that if ϕ(x) = n, then there exists y ∈ N distinct from
x such that ϕ(y) = n too. Moreover, whether or not there are infinitely many n ∈ N with
σ(n) = 2n has been an open question for a very long time.

Many mathematicians have worked on these problems and made some progress. For
example, Pomerance [7] obtained a result concerning the maximal order of A(n), where
A(n) is the number of solutions to ϕ(x) = n. Ford [1] gave a comprehensive study of
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the range of ϕ including A(n). In particular, Ford [2] solved Sierpiński’s conjecture, and
partially solved Carmichael’s problem stated above. That is, Ford showed that for each
integer k ≥ 2, there exists a positive integer n for which the equation ϕ(x) = n has exactly k

solutions. Furthermore, Ford, Luca, and Pomerance [3] completely answered Erdös’ question
on the range of ϕ and σ by showing that ϕ(x) = σ(y) has infinitely many solutions in
x, y ∈ N. Ford and Pollack [4] also gave a result complementary to that of Ford, Luca,
and Pomerance [3]. For more information on the range of ϕ and σ, we refer the reader to
the sequences A000010, A007617, and A000396 in OEIS [10]. Finally, in a recent Thailand
Online Mathematical Olympiad TOMO 2021, an interesting arithmetic problem [9] was to
show that if a, b ∈ N and τ(τ(an)) = τ(τ(bn)) for all n ∈ N, then a = b. This naturally
suggests various generalizations, where τ may be replaced by σs or by other arithmetic
functions.

Definition 1. We call a function f : N → C a quasi-injective function if for all a, b ∈ N, the
condition f(an) = f(bn) for all n ∈ N implies a = b. In addition, if f : N → N and ℓ ∈ N,
then we say that f is quasi-injective of order ℓ if f, f (2), f (3), . . . , f (ℓ) are quasi-injective, that
is, for any a, b, k ∈ N with 1 ≤ k ≤ ℓ,

if f (k)(an) = f (k)(bn) for all n ∈ N, then a = b. (1)

In the above definition and throughout this article, if k ∈ N, then f (k) is the k-fold
composition of f . In addition, N is the set of positive integers but we may need to replace
N by the set N0 of nonnegative integers. Therefore, the problem in TOMO 2021 mentioned
above asks to show that (1) holds when k = 2 and f = τ . In fact, (1) also holds when k = 1
and f = τ . So τ is quasi-injective of order 2. In general, if f is quasi-injective of order ℓ,
then it is also quasi-injective of order m ≤ ℓ. For the concept of quasi-injectivity in algebra,
see, for example, the articles by Yavari [11] and Yavari and Ebrahimi [12].

In this article, we study quasi-injectivity of f when f = σs and other popular arithmetic
functions such as the Euler totient function, the Jordan totient function, functions counting
prime divisors, the Möbius function, and the Alladi-Erdös function. We also give some open
problems at the end of this paper.

2 Preliminaries and lemmas

In this section, we recall some basic terminologies and give some useful results for the reader’s
convenience. From this point on, p is always a prime, s and n are positive integers, µ is
the Möbius function, ϕ is the Euler totient function, ω(n) is the number of distinct prime
factors of n, Ω(n) is the number of prime divisors of n counted with multiplicity, and Js
is the Jordan totient function. So Js(n) is the number of s-tuples (a1, a2, . . . , as) such that
1 ≤ ai ≤ n for all i = 1, 2, . . ., s and (a1, a2, . . . , as, n) = 1. Therefore ϕ = J1. Furthermore,
it is well known that

ϕ(n) = n
∏

p|n

(

1−
1

p

)

and Js(n) = ns
∏

p|n

(

1−
1

ps

)

.
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An arithmetic function f is called multiplicative if f is not the zero function and f(mn) =
f(m)f(n) for all m, n ∈ N with (m,n) = 1; and f is called additive if f(mn) = f(m)+ f(n)
for all m, n ∈ N with (m,n) = 1. In addition, µ(1) = 1, µ(n) = (−1)ω(n) if n is squarefree,
and µ(n) = 0 if n is not squarefree. It is well known that the functions τ , σs, µ, and Js are
multiplicative, while ω and Ω are additive. Furthermore,

if c ∈ N, then σs(p
c) =

p(c+1)s − 1

ps − 1
.

For more details about this, see for instance, the books by Hardy and Wright [5] and Mc-
Carthy [6].

Recall that the p-adic valuation of n, denoted by vp(n), is the exponent of p in the
prime factorization of n. A useful formula for vp(x

n − yn), sometimes called the “Lifting
the Exponent Lemma”, is well known and popular among students taking mathematical
Olympiad exams. For the proof, see, for example, [8, pp. 14–15].

Lemma 2 (“Lifting the Exponent Lemma”). Let x, y ∈ Z, n ∈ N, and let p be a prime
such that p ∤ x and p ∤ y. Then the following statements hold:

(i) If p is odd and p | x− y, then vp(x
n − yn) = vp(x− y) + vp(n).

(ii) If p is odd, n is odd, and p | x+ y, then vp(x
n + yn) = vp(x+ y) + vp(n).

When p = 2 (so x and y are odd integers), we have

(iii) if n is odd, then v2(x
n − yn) = v2(x− y) and v2(x

n + yn) = v2(x+ y);

(iv) if n is even, then v2(x
n − yn) = v2(x

2 − y2) + v2(n)− 1.

The conditions (A), (B), (C) in the following lemma are used throughout this article.

Lemma 3. Let a, b ∈ N and let f : N → N be a multiplicative function satisfying the
following conditions:

(A) f(pk) > f(pr) for all primes p and nonnegative integers k > r;

(B) for any prime p and nonnegative integers x, y, c1, c2, if c1 6= c2 and f(px+c2)f(py+c1) =
f(py+c2)f(px+c1), then x = y;

(C) for each prime p dividing ab, there are c1, c2 ∈ N∪{0} such that c1 6= c2 and f(apc) =
f(bpc) for c ∈ {c1, c2}.

Then a = b.
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Proof. Since f : N → N, f(n) ≥ 1 for all n. If a = 1 but b ≥ 2, then there are a prime p and
k ∈ N such that b = pkb1, p ∤ b1, and so by the condition (C), there exists c ∈ N such that

f(pc) = f(apc) = f(bpc) = f(pc+kb1) = f(pc+k)f(b1) ≥ f(pc+k) > f(pc),

which is a contradiction. So if a = 1, then b = 1 = a. Similarly, if b = 1, then a = 1 = b. So
assume throughout that a, b ≥ 2. Let

a = pa11 pa22 . . . pakk and b = pb11 p
b2
2 . . . pbkk ,

where p1, p2, . . ., pk are distinct primes and a1, a2, . . ., ak, b1, b2, . . ., bk are nonnegative
integers with a2j + b2j 6= 0 for any j = 1, 2, . . ., k. To show that a = b, it suffices to show
that aj = bj for all j. So let j ∈ {1, 2, . . . , k} and p = pj. Then p | ab. By the condition (C),
there are c1, c2 ∈ N ∪ {0} such that c1 6= c2, f(ap

c1) = f(bpc1), and f(apc2) = f(bpc2). Then

f(p
aj+c1
j )

∏

1≤i≤k
i 6=j

f (paii ) = f(p
bj+c1
j )

∏

1≤i≤k
i 6=j

f
(

pbii
)

(2)

f(p
aj+c2
j )

∏

1≤i≤k
i 6=j

f (paii ) = f(p
bj+c2
j )

∏

1≤i≤k
i 6=j

f
(

pbii
)

(3)

Dividing (3) by (2) gives

f(p
aj+c2
j )

f(p
aj+c1
j )

=
f(p

bj+c2
j )

f(p
bj+c1
j )

(4)

By (4) and the condition (B), we obtain aj = bj, as required.

The next lemma is used in the calculation of the p-adic valuation of σs(n).

Lemma 4. Assume that p and q are primes, q ≡ 1 (mod p), and c ∈ N ∪ {0}. Then the
following statements hold.

(i) If p is odd, then vp(σs(q
c)) = vp(c+ 1).

(ii) If p = 2 and s is even, then vp(σs(q
c)) = vp(c+ 1).

(iii) If p = 2, s is odd, and c is odd, then vp(σs(q
c)) = vp(c+ 1) + vp(q + 1)− 1.

(iv) If p = 2, s is odd, and c is even, then vp(σs(q
c)) = 0.

Proof. Since p ∤ q, p ∤ 1, and p | q − 1, we obtain by Lemma 2 that if p is odd, then

vp(σs(q
c)) = vp(q

(c+1)s − 1)− vp(q
s − 1)

= (vp(q − 1) + vp((c+ 1)s))− (vp(q − 1) + vp(s)) = vp(c+ 1).
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Similarly, if p = 2 and s is even, then

vp(σs(q
c)) = (v2(q

2 − 1) + v2((c+ 1)s)− 1)− (v2(q
2 − 1) + v2(s)− 1) = v2(c+ 1);

if p = 2, s is odd, and c is odd, then

vp(σs(q
c)) = v2(q

2 − 1) + v2((c+ 1)s)− 1− v2(q − 1)

= v2(c+ 1) + v2(q + 1)− 1;

and if p = 2, s is odd, and c is even, then vp(σs(q
c)) = 0. This completes the proof.

3 Main results

Theorem 5. Let a, b, s ∈ N. Then the functions τ and σs satisfy the conditions (A) and
(B) in Lemma 3.

Proof. If k > r, then every divisor of pr is also a divisor of pk while pk is not a divisor of pr.
From this, it is easy to see that τ and σs satisfy the condition (A). Let p be a prime, x, y,
c1, c2 ∈ N ∪ {0}, and c1 6= c2. Suppose that

τ(px+c2)τ(py+c1) = τ(py+c2)τ(px+c1).

Then (x+c2+1)(y+c1+1) = (y+c2+1)(x+c1+1). Dividing both sides by (y+c1+1)(x+c1+1),
subtracting both sides by 1, and then dividing both sides by c2−c1 leads to x = y, as required.
Next, suppose that

σs(p
x+c2)σs(p

y+c1) = σs(p
y+c2)σs(p

x+c1). (5)

Let x1 = x+ c1 + 1, x2 = x+ c2 + 1, y1 = y + c1 + 1, and y2 = y + c2 + 1. Then (5) implies
that

px2s − 1

px1s − 1
=

py2s − 1

py1s − 1
. (6)

Observing that y2− y1 = c2 − c1 = x2− x1 and subtracting both sides of (6) by 1, we obtain

px1s(p(c2−c1)s − 1)

px1s − 1
=

py1s(p(c2−c1)s − 1)

py1s − 1
. (7)

Dividing both sides of (7) by p(c2−c1)s − 1, and then subtracting both sides by 1 leads to
px1s = py1s. Therefore x1 = y1, which implies x = y, as required. This shows that τ and σs

satisfy the condition (B).

Corollary 6. Let a, b ∈ N and f = τ or f = σs. Suppose that for each prime p | ab, we
can find distinct nonnegative integers c1, c2 such that f(apc) = f(bpc) for c ∈ {c1, c2}. Then
a = b. In particular, if f(an) = f(bn) for all n ∈ N, then a = b. In other words, τ and σs

are quasi-injective.
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Proof. By Theorem 5, f satisfies the conditions (A) and (B), and the above supposition is,
in fact, the condition (C). Therefore a = b, as required.

Modifying the proof of Theorem 5, we see that τ is in fact quasi-injective of order ℓ for
any ℓ ∈ N, as shown in the next theorem.

Theorem 7. If m, a, b are positive integers and τ (m)(an) = τ (m)(bn) for all n ∈ N, then
a = b.

Proof. We prove by induction on m. If m = 1, the result follows from Corollary 6. So let
m ≥ 2 and assume that the result holds for m− 1. Let a, b ∈ N and

τ (m)(an) = τ (m)(bn) for all n ∈ N. (8)

Let k ∈ N and d ∈ N ∪ {0}. Choosing a prime p ∤ abk and substituting n = pdk in (8), we
obtain

τ (m−1)((d+ 1)τ(ak)) = τ (m−1)(τ(an)) = τ (m−1)(τ(bn)) = τ (m−1)((d+ 1)τ(bk)). (9)

Since (9) holds for all d ∈ N∪{0}, we obtain by the induction hypothesis that τ(ak) = τ(bk).
Since k is arbitrary, we obtain by Corollary 6 that a = b.

We now know that if τ (m)(an) = τ (m)(bn) for all n, then a = b; and if σs(an) = σs(bn) for

all n, then a = b. We would like to extend the result for σs to σ
(m)
s for any m but it seems

much more complicated than that of τ (m), so we do it only for σ
(2)
s . We conjecture that the

result holds for m ≥ 3 as well but we currently do not have a proof.

Theorem 8. For each positive integer x ≥ 2 and for each prime p dividing x, there are
positive integers m, n, c1, c2, A, B such that c2 > c1, (ABmn, x) = 1, σs(m) = pc1A, and
σs(n) = pc2B.

Proof. Let x = pa11 pa22 . . . pakk , where p1, p2, . . ., pk are distinct primes and a1, a2, . . ., ak are
positive integers. Let p be a prime dividing x, say p = pj for some j ∈ {1, 2, . . . , k}. Let

M =
∏

1≤i≤k

pi and Mj =
M

p
.

By Dirichlet’s theorem for primes in arithmetic progressions, there exists a prime q ≡ 1
(mod M). To find the integers m, n, c1, c2, A, B as above, we divide the calculation into
two cases:

Case 1: pi is odd for all i 6= j. By the Chinese remainder theorem, there exists a positive
integer w such that

w ≡ −1 (mod p) and w ≡ 0 (mod Mj). (10)
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Let L be a positive integer larger than vp(w+1)+vp(q+1). Applying the Chinese remainder
theorem again to obtain y ∈ N such that

y ≡ −1 (mod pL) and y ≡ 0 (mod Mj). (11)

Let m = qw and n = qy. By Lemma 4, we obtain

vpi(σs(m)) = vpi(σs(q
w)) = vpi(w + 1) = 0 for all i 6= j.

In addition, if p is odd or if p = 2 and s is even, then vp(σs(m)) = vp(σs(q
w)) = vp(w+1) > 0;

if p = 2 and s is odd, then w is odd, q is odd, vp(q + 1) ≥ 1, and

vp(σs(m)) = vp(σs(q
w)) = vp(w + 1) + vp(q + 1)− 1 > 0.

This shows that vp(σs(m)) > 0 and vpi(σs(m)) = 0 for all i 6= j. Let c1 = vp(σs(m)). Then
c1 ∈ N and σs(m) = pc1A, where A ∈ N and (A, x) = 1. Similarly, we obtain vpi(σs(n)) = 0
for all i 6= j and

vp(σs(n)) ≥ vp(y + 1) ≥ L > vp(w + 1) + vp(q + 1) ≥ vp(σs(m)).

Let c2 = vp(σs(n)). Then c2 ∈ N, c2 > c1, and σs(n) = pc2B, where B ∈ N and (B, x) = 1.
Since (m,x) = (n, x) = (A, x) = (B, x) = 1, we obtain (mnAB, x) = 1.

Case 2: pi = 2 for some i 6= j. Without loss of generality, assume that p1 = 2. We still
choose w, L, y, m = qw and n = qy as in Case 1 and apply Lemma 4 to calculate the p-adic
valuation of σs(m) and σs(n). If i 6= 1, then pi is odd and so

vpi(σs(m)) = vpi(w + 1) = 0, vpi(σs(n)) = vpi(y + 1) = 0.

In addition, p is odd, and so

vp(σs(m)) = vp(w + 1) > 0, vp(σs(n)) = vp(y + 1) ≥ L > vp(σs(m)).

Since p1 = 2 and w, y ≡ 0 (mod Mj), w and y are even. If s is even, then vp1(σs(m)) =
v2(w + 1) = 0 = v2(y + 1) = vp1(σs(n)). If s is odd, then vp1(σs(m)) and vp1(σs(n)) are also
zero. This shows that vp(σs(n)) > vp(σs(m)) > 0 and vpi(σs(m)) = vpi(σs(n)) = 0 for all
i 6= j. Therefore we can choose c1, c2, A, B as in the previous case. This completes the
proof.

Theorem 9. Let a and b be positive integers and

σs(σs(an)) = σs(σs(bn)) for all n ∈ N. (12)

Then a = b.
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Proof. Let p be a prime dividing ab and d ∈ N ∪ {0}. Let n1 be a positive integer such that
(n1, ab) = 1. Substituting n = pdn1 in (12), we obtain

σs(σs(ap
d)σs(n1)) = σs(σs(bp

d)σs(n1)), (13)

which holds for any n1 ∈ N with (n1, ab) = 1. Next, let a1 = σs(ap
d), b1 = σs(bp

d), x = aba1b1
and let q be a prime dividing a1b1. Then q | x. By Theorem 8, there are positive integers m,
n, c1, c2, A, B such that c2 > c1, (ABmn, x) = 1, σs(m) = qc1A, and σs(n) = qc2B. Since
(13) holds for any n1 ∈ N with (n1, ab) = 1 and (m, ab) = (n, ab) = 1, we can substitute
n1 = m and n1 = n in (13) to obtain

σs(a1q
c1A) = σs(b1q

c1A) and σs(a1q
c2B) = σs(b1q

c2B). (14)

Since (AB, x) = 1, we see that (A, qa1b1) = (B, qa1b1) = 1. Therefore (14) reduces to

σs(a1q
c1)σs(A) = σs(b1q

c1)σs(A) and σs(a1q
c2)σs(B) = σs(b1q

c2)σs(B),

which imply
σs(a1q

c1) = σs(b1q
c1) and σs(a1q

c2) = σs(b1q
c2). (15)

This shows that for any prime q | a1b1, we can find distinct c1, c2 ∈ N such that (15) holds.
By Corollary 6, we obtain a1 = b1. Therefore

σs(ap
d) = σs(bp

d). (16)

Since (16) holds for each prime p | ab and each d ∈ N ∪ {0}, we apply Corollary 6 again to
obtain a = b. This completes the proof.

Before proceeding to the case of Js, we give an example to show that ω, Ω, and µ are not
quasi-injective.

Example 10. Let k ≥ 2, p1, p2, . . ., pk distinct primes, c = p1p2 . . . pk, a = p1c, and b = p2c.
Then ω(a) = ω(b), Ω(a) = Ω(b), and µ(a) = µ(b). Since Ω is completely additive, that is,
Ω(mn) = Ω(m) +Ω(n) for all m, n ∈ N, we see that Ω(an) = Ω(bn) for all n ∈ N but a 6= b.
Therefore Ω is not quasi-injective. Similarly, it is not difficult to see that ω(an) = ω(bn) and
µ(an) = µ(bn) for all n ∈ N but a 6= b, and so ω and µ are not quasi-injective.

We can generalize the idea in Example 10 as follows.

Theorem 11. Let f : N → C be completely additive. Then f is quasi-injective if and only
if f is injective.

Proof. Suppose f is quasi-injective, a, b ∈ N, and f(a) = f(b). Then for each n ∈ N, we
have

f(an) = f(a) + f(n) = f(b) + f(n) = f(bn). (17)

Since (17) holds for all n ∈ N and f is quasi-injective, we obtain a = b, as required. The
converse is obvious.
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Example 12. Let A be the Alladi-Erdös function defined by A(n) =
∑

pα‖n αp. It is easy

to verify that A is completely additive, that is, A(mn) = A(m) + A(n) for all m, n ∈ N. In
addition, A(23) = 6 = A(32), so A is not injective. By Theorem 11, A is not quasi-injective.

A variation of Alladi-Erdös function can defined by A0(n) =
∑

p|n p. Then A0(6) =

2 + 3 = 5 = A0(12), and it is not difficult to see that A0(6n) = A0(12n) for all n ∈ N.
Therefore A0 is not quasi-injective.

Theorem 13. Suppose that f : N → C is strongly additive, that is, f is additive and
f(pk) = f(p) for all primes p and positive integers k. If there are distinct positive integers
a, b ≥ 2 such that f(a) = f(b) and a, b have the same prime factors, then f is not quasi-
injective.

Proof. Since a and b have the same prime factors, we write

a = pa11 pa22 . . . pakk and b = pb11 p
b2
2 . . . pbkk ,

where p1, p2, . . ., pk are distinct primes and a1, a2, . . ., ak, b1, b2, . . ., bk are positive integers.
We show that f(an) = f(bn) for all n ∈ N. For each n ≥ 2, we write n = pn1

1 pn2

2 . . . pnk

k m,
where m ∈ N, (m, ab) = 1, and n1, n2, . . ., nk are nonnegative integers, and so

f(an) = f(pa1+n1

1 pa2+n2

2 . . . pak+nk

k m) = f(a)f(m) = f(b)f(m) = f(bn).

Therefore f(an) = f(bn) for all n ∈ N but a 6= b. This completes the proof.

Theorem 14. Let a, b, c, k, m, s be positive integers. Then the following statements hold.

(i) If a | b, then Js(ab) = asJs(b).

(ii) If a | c and b | c, then bsJs(ac) = asJs(bc).

(iii) If a | b, then J
(m)
s (a) | J

(m)
s (b).

(iv) Js(a
kb) = a(k−1)sJs(ab).

(v) If k ≥ m+ 1, then J
(m)
s (akb) = as

m

J
(m)
s (ak−1b).

(vi) If k ≥ m+ 1, then as
m

| J
(m)
s (ak).

(vii) If k ≥ m+ 1 and c ≥ m+ 1, then as
m

| J
(m)
s (akbc) and bs

m

| J
(m)
s (akbc).

Proof. For (i) and (iii), assume that a | b. Then p | ab if and only if p | b. Therefore

Js(ab) = (ab)s
∏

p|ab

(

1−
1

ps

)

= asbs
∏

p|b

(

1−
1

ps

)

= asJs(b),
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which proves (i). If a = 1, then (iii) is obvious. So assume that a ≥ 2. Let a = pa11 pa22 . . . pakk
and b = pb11 p

b2
2 . . . pbkk b0, where p1, p2, . . ., pk are distinct primes, ai, bi, b0 ∈ N, bi ≥ ai for all

i = 1, 2, . . ., k, and (b0, p1p2 . . . pk) = 1. Then

Js(a) =
k
∏

i=1

(

p
(ai−1)s
i

)

k
∏

i=1

(psi − 1) ,

Js(b) =
k
∏

i=1

(

p
(bi−1)s
i

)

k
∏

i=1

(psi − 1) Js(b0).

From this, it is easy to see that Js(a) | Js(b). So (iii) is proved for m = 1. If m ≥ 2, we can
apply the result when m = 1 repeatedly and obtain the chain of implication as follows:

a | b ⇒ Js(a) | Js(b) ⇒ J (2)
s (a) | J (2)

s (b) ⇒ · · · ⇒ J (m)
s | J (m)

s (b).

Therefore (iii) is proved for every m ≥ 1. For (ii), if a | c and b | c, then we obtain by (i)
that

bsJs(ac) = bsasJs(c) = asbsJs(c) = asJs(bc).

Next, we prove (iv) by induction on k. If k = 1, then (iv) is obvious. So let k ≥ 1 and
assume that (iv) holds for k. Since a | akb, we obtain by (i) that

Js(a
k+1b) = Js(a(a

kb)) = asJs(a
kb) = aksJs(ab),

where the last equality is obtained from the induction hypothesis. Next, we prove (v) by

induction on m. If m = 1 and k ≥ 2, then we obtain by (i) that J
(m)
s (akb) = Js(a · a

k−1b) =
asJs(a

k−1b). So let m ≥ 1 and assume that the result holds for m. Suppose k ≥ m+ 2. By
the induction hypothesis, we obtain

J (m+1)
s (akb) = Js(J

(m)
s (akb)) = Js(a

smJ (m)
s (ak−1b)). (18)

Since k − 1 ≥ m + 1, we apply the induction hypothesis again to conclude that as
m

|

J
(m)
s (ak−1b). Then (i) implies that the right-hand side of (18) is equal to as

m+1

J
(m+1)
s (ak−1b).

Therefore (18) becomes

J (m+1)
s (akb) = as

m+1

J (m+1)
s (ak−1b),

which proves (v). Then (vi) is a special case of (v) when b = 1. For (vii), if k ≥ m+ 1 and
c ≥ m+ 1, then we use (vi) and (iii) to obtain

as
m

| J (m)
s (ak) | J (m)

s (akbc) and bs
m

| J (m)
s (bc) | J (m)

s (akbc).

Here x | y | z means that x | y and y | z. Hence the proof is complete.

Theorem 15. Let a, b, m, s ∈ N and J
(m)
s (an) = J

(m)
s (bn) for all n ∈ N. Then a = b. In

other words, Js is quasi-injective of any order.
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Proof. Substituting n = ambm in the above condition, we have J
(m)
s (am+1bm) = J

(m)
s (bm+1am).

By (v) of Theorem 14, we obtain

J (m)
s (am+1bm) = as

m

J (m)
s (ambm) and J (m)

s (bm+1am) = bs
m

J (m)
s (bmam).

Therefore
as

m

J (m)
s (ambm) = bs

m

J (m)
s (bmam),

which implies a = b. This completes the proof.

4 Conclusion and some open problems

We have proved that τ and Js are quasi-injective of order m for any m ∈ N while we only
show that σs is quasi-injective of order 2. We believe that it can be extended to any order.
In addition, Example 10 shows that µ, ω, and Ω are not quasi-injective. This leads us to the
following problems.

Question 16. If a, b, m, s ∈ N, m ≥ 3, and σ
(m)
s (an) = σ

(m)
s (bn) for all n ∈ N, can we

conclude that a = b?

Question 17. For each m ≥ 2, is there a function f : N → N such that f is quasi-injective of
order m− 1 but not of order m?

We may also consider the mix between τ , σs, and Js.

Question 18. Let a, b, k, m, s ∈ N. Are the functions τ (m) ◦ σ
(k)
s , σ

(k)
s ◦ τ (m), τ (m) ◦ J

(k)
s ,

J
(k)
s ◦ τ (m), σ

(m)
s ◦ J

(k)
s , and J

(k)
s ◦ σ

(m)
s quasi-injective? That is, if f is one of the above

functions and f(an) = f(bn) for all n, can we show that a = b? This may be easy when k

or m is less than 3. Can we say something when both k and m are larger than 2?

Question 19. Suppose f and g are quasi-injective. Is the composition f ◦ g quasi-injective?
Can we categorize those functions f and g for which f ◦ g must be quasi-injective? An
obvious sufficient condition for f ◦ g to be quasi-injective is that g is both surjective and
completely multiplicative, but there may be a weaker condition.

For each n ∈ N and b ≥ 2, let Sb(n) be the sum of digits of n in base b, and let
S(n) = S10(n) be the sum of the decimal digits of n.

Question 20. If a, c ∈ N and S(an) = S(cn) for all n ∈ N, is it true that a = c? More
generally, if a, c, m ∈ N and S(m)(an) = S(m)(cn) for all n ∈ N, can we prove that a = c?
Can we replace S by Sb for any b ≥ 2?
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