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Abstract

Andrews’ generalization of MacMahon’s partition theorem states that the number
of partitions of n in which odd multiplicities are at least 2r 4+ 1 is equal to the number
of partitions in which odd parts are congruent to 2r +1 (mod 47 +2). In this note, we
give a bijective proof of this generalization. Our result naturally extends the bijection
of Andrews, Ericksson, Petrov, and Romik for MacMahon’s partition theorem.

1 Introduction

Let n € Z>1. A partition of n is a sequence of positive integers (A1, Ag,...) where Ay > Ay >

-and Y A; = n. The components \; are called parts of a partition. If further restrictions
>1

are impéged on the parts, one gets some interesting partition functions. One such example

is the number of partitions of n into distinct parts. This is interesting because it relates

to the number of partitions of n into odd parts, a case of Euler’s partition identity [5]. A

partition identity relates two partition functions. One of the partition identities of interest

in this paper is Theorem 1, which is due to MacMahon.
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Theorem 1 (MacMahon, [4]). The number of partitions of n wherein no part appears with
multiplicity one is equal to the number of partitions of n where parts are even or congruent
to 3 (mod 6).

Andrews, Ericksson, Petrov, and Romik [2] gave the first bijective proof of Theorem 1
which we describe in the sequel.

Let C, denote the set of partitions of n wherein no part appears with multiplicity one
and let D,, denote the set of partitions of n wherein parts are even or congruent to 3 (mod 6).
The bijection goes as follows: let X = (1" (I — 1)h-1 .. 3" 2M2 1M) € C, where h; is the
multiplicity of 7. Since no part appears exactly once, it follows that h; € {0,2,3,4,...}.
Uniquely decompose h; as

hi = kl + g, where kl € {0, 3}, g; € {O, 2, 47 6, 8, .. }
For j > 1, define d; as follows:

det+1 = det45 = 0,
1

dei42 = 593t+17
1

detya = 5 Jst+2;
1

dei43 = §k2t+1 + Gbt+3,
1

dei6 = §k2t+2 + G6t 16,

where t =0,1,2,...

The partition (f%,(f — 1)%-1,...,2% 19) is in D,. We shall call the above mapping
the Andrews-Ericksson-Petrov-Romik bijection.

Andrews later gave a generalization for Theorem 1 which we recall below.

Theorem 2 (Andrews, [1]). Let A.(n) denote the set of partitions of n wherein parts ap-
pearing an odd number of times actually appear at least 2r + 1 times and let B,(n) denote
the set of partitions of n wherein odd parts are congruent to 2r + 1 (mod 4r + 2). Then

[Ar(n)] = [Br(n)].

However, there is no bijective proof that naturally extends Andrews-Ericksson-Petrov-
Romik bijection to prove Theorem 2. For this, you may consult [3] and the references
therein. Our aim in this short note is to supply a bijection for Theorem 2, which naturally
generalizes Andrews-Ericksson-Petrov-Romik bijection and is different from the ones given
in the literature.



2 The bijection

We now describe our bijection for Theorem 2. We need to establish the one-to-one corre-
spondence between the sets A,(n) and B,.(n).

Let (1M, (1 — 1)l-1 ... 3hs 2h2 1My € A (n). In this notation, h; is the multiplicity of .
Note that h; can be zero for some i. Clearly, h; € {0,2,4,...,2r,2r +1,2r +2,...}.

Write h; as

hi = k; + g; where k; € {0,2r + 1} and g¢; € {0,2,4,6,8,10,...}

This decomposition is unique since k; and g; can be made explicit, i.e.,

ki = (2r +1) (#) and g; = h; — (2r + 1) (#) .

For j > 1, define d; as follows:

dar+op2j—1 =0 for j € {1,2,...,2r + 1} \ {r + 1},

1

d(art2ytro; = F9er+De for j € {1,2,...,2r},

d(ar2)t+(2r1)j = ﬁk’%ﬂ + 9(ar+2)t+(2r+1);  for j € {1,2},

T+

where t =0,1,2,.. ..
The image is thus given by

(oo fY(f =Y 2%,
We claim that (..., f& (f —1)4-1 ... 2% 1%) € B.(n). In order to show that
(lhl,(l—1)hl_1,...,3h3,2h2,1h1) ( fdf (f )df 1 ‘72d2’1d1)

defines a bijection from A,(n) onto B,.(n), it suffices to show that > id; = n.

i>1
Thus
2r+1 oo
Zld - Z Z ((4r +2)t +2j — Ddarrapr2-1 + Z Z ((4r +2)t + 25 — 1)durs2y42i1
i>1 j=1 t=0 j=r+2 t=0
2r oo 2
+ D> ((4r +2)t + 2))d(arsoypa; + Z Z ((4r +2)t + (2r + 1)) d(ar+2)0+ 2r1);
j=1 t=0
0o 2 oo
= Z Z<<2T + 1)t + j)g(2r+1)t+j + Z Z((4T + Q)t + (27“ + 1)j>g(4r+2)t+(2r+1)j
J=1t=0 j=1 t=0
2 o]
+ 30 (2t + )k
7j=1 t=0



Using the notation

Z (at +b)gares and T'(a,b) = Z (at + b)katrp,
t=0 t=0
observe that

Y@+ Dt goris = Y, D ((Ar+2)t+ )+ O)gurianje
=0 (=0,2r+1 t=0

=SMAr+2,7)+ SM@r+2,2r+1)

and
0o co 2r
D@+ G)kay = > (4 + 20+ + 20 kgars2yeesar
t=0 t=0 ¢=0
2r
= T(4r+2,j+20).
£=0
Hence
2r 2r 2
D idi =Y SMAr+2,7)+ ) SMEr+2,j+2r+1)+ > S(4r+2,(2r +1)j)
i>1 j=1 j=1 j=1
2r 2r
+Y TAr 42,1420+ > T(4r +2,2+20)
=0 =0

2r
= (S(Ar+2,5) + SMAr+2,j+2r + 1) + T(4r + 2,1+ 2j) + T(4r + 2,2 + 2j))
j=1
2
+) S(Ar+2,(2r +1)5) + T(4r +2,1) + T(4r +2,2)

j=1
=) (SMAr+2,5)+S@r+2,j+2r+1) + > _(T(4r +2,1+2j) + T(4r + 2,2 + 2j))

2r+1 2r+1

= (SMr+2,7)+S@r+2,j+2r+1))+ > (T(4r +2,2j — 1) + T(4r + 2,2j))

4r4-2 4r4-2

=Y SUr+2,5)+ Y T(dr+2,j)

j=1 j=1
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Remark 3. Setting r = 1 in the bijection yields the bijection given by Andrews et al. [2].

For example, consider n = 15 and r = 2. Table 1 demonstrates the correspondence. The
inverse of our map is described in the following section.

Ay(15) —  By(15)
(2.2,2221,1,1,1,1) — (10,5)
(4,4,1,1,1,1,1,1,1) — (8,5,2)
(3,3,2,2,1,1,1,1,1) — (6,5,4)

(3,3,1,1,1,1,1,1,1,1,1) = (6,5,2,2)
(2,2,2.2,1,1,1,1,1,1,1) = (5,4,4,2)
(2,2,1,1,1,1,1,1,1,1,1,1,1)  —  (54,2,2,2)
(L,1,1,1,1,1,1,1,1,1,1,1,1,1,1) = (5,2,2,2,2,2)

Table 1: The map A,(n) — B,(n) for r = 2,n = 15.

3 The inverse mapping

We now describe the inverse to our bijection.
Given that (..., f4 (f — 1)%-1, ..., 2% 14) € B,.(n). Define g; and k; as

J@r+1)t+j = 2d(47‘+2)t+2j7j = 17 27 SR 27’,t = 07 17 27 s

For the remaining cases, we have, for t =0,1,2, ...,

Gar+2)ea(arat)) = d(ar2)t+(2r1)55 if dary2)e4-(2r11); =0 (mod 2), j=1,2;
Adr+2)t+(2r+1)7 — . .
’ d(4r+2)t+(2r+1)j —1, if d(4r+2)t+(2fr+1)j =1 (mod 2), Jj=12,



and
s = {0, if diirsayesaranyy = 0 (mod 2), j = 1,2
2r +1, if durioysrr); =1 (mod 2), 7 =1,2.
Then the partition (..., 393+ks 292k2 191+k1) ig in A, (n).
For example, Table 2 demonstrates the inverse mapping when n = 15.

(10,5) = (2.22221111,1)
852) (4,4,1,1,1,1,1,1,1)
(6,54) (3,3,2,2,1,1,1,1,1)
(6,5,2,2) — (3,3,1,1,1,1,1,1,1,1,1)
(5,4,4,2) — (2,2,22,1,1,1,1,1,1,1)
(5,4,2,2,2) —> (2,2,1,1,1,1,1,1,1,1,1,1,1)
(5,2,2222) +~ (1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)

Table 2: The inverse map B,(n) — A,(n) for n = 15, r = 2.
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