

Journal of Integer Sequences, Vol. 24 (2021), Article 21.5.6

A Note on the Andrews-Ericksson-Petrov-Romick Bijection for MacMahon's Partition Theorem

Beaullah Mugwangwavari and Darlison Nyirenda School of Mathematics University of the Witwatersrand P. O. Wits 2050 Johannesburg South Africa 712040@students.wits.ac.za darlison.nyirenda@wits.ac.za

Abstract

Andrews' generalization of MacMahon's partition theorem states that the number of partitions of n in which odd multiplicities are at least 2r + 1 is equal to the number of partitions in which odd parts are congruent to $2r + 1 \pmod{4r+2}$. In this note, we give a bijective proof of this generalization. Our result naturally extends the bijection of Andrews, Ericksson, Petrov, and Romik for MacMahon's partition theorem.

1 Introduction

Let $n \in \mathbb{Z}_{\geq 1}$. A partition of n is a sequence of positive integers $(\lambda_1, \lambda_2, \ldots)$ where $\lambda_1 \geq \lambda_2 \geq \cdots$ and $\sum_{j\geq 1} \lambda_j = n$. The components λ_i are called *parts* of a partition. If further restrictions are imposed on the parts, one gets some interesting partition functions. One such example is the number of partitions of n into distinct parts. This is interesting because it relates to the number of partitions of n into odd parts, a case of Euler's partition identity [5]. A partition identity relates two partition functions. One of the partition identities of interest in this paper is Theorem 1, which is due to MacMahon.

Theorem 1 (MacMahon, [4]). The number of partitions of n wherein no part appears with multiplicity one is equal to the number of partitions of n where parts are even or congruent to 3 (mod 6).

Andrews, Ericksson, Petrov, and Romik [2] gave the first bijective proof of Theorem 1 which we describe in the sequel.

Let C_n denote the set of partitions of n wherein no part appears with multiplicity one and let D_n denote the set of partitions of n wherein parts are even or congruent to 3 (mod 6). The bijection goes as follows: let $\lambda = (l^{h_l}, (l-1)^{h_{l-1}}, \ldots, 3^{h_3}, 2^{h_2}, 1^{h_1}) \in C_n$ where h_i is the multiplicity of i. Since no part appears exactly once, it follows that $h_i \in \{0, 2, 3, 4, \ldots\}$. Uniquely decompose h_i as

$$h_i = k_i + g_i$$
, where $k_i \in \{0, 3\}, g_i \in \{0, 2, 4, 6, 8, \ldots\}$.

For $j \ge 1$, define d_j as follows:

$$d_{6t+1} = d_{6t+5} = 0,$$

$$d_{6t+2} = \frac{1}{2}g_{3t+1},$$

$$d_{6t+4} = \frac{1}{2}g_{3t+2},$$

$$d_{6t+3} = \frac{1}{3}k_{2t+1} + g_{6t+3},$$

$$d_{6t+6} = \frac{1}{3}k_{2t+2} + g_{6t+6},$$

where t = 0, 1, 2, ...

The partition $(f^{d_f}, (f-1)^{d_{f-1}}, \ldots, 2^{d_2}, 1^{d_1})$ is in D_n . We shall call the above mapping the Andrews-Ericksson-Petrov-Romik bijection.

Andrews later gave a generalization for Theorem 1 which we recall below.

Theorem 2 (Andrews, [1]). Let $A_r(n)$ denote the set of partitions of n wherein parts appearing an odd number of times actually appear at least 2r + 1 times and let $B_r(n)$ denote the set of partitions of n wherein odd parts are congruent to $2r + 1 \pmod{4r + 2}$. Then

$$|A_r(n)| = |B_r(n)|.$$

However, there is no bijective proof that naturally extends Andrews-Ericksson-Petrov-Romik bijection to prove Theorem 2. For this, you may consult [3] and the references therein. Our aim in this short note is to supply a bijection for Theorem 2, which naturally generalizes Andrews-Ericksson-Petrov-Romik bijection and is different from the ones given in the literature.

2 The bijection

We now describe our bijection for Theorem 2. We need to establish the one-to-one correspondence between the sets $A_r(n)$ and $B_r(n)$.

Let $(l^{h_l}, (l-1)^{h_{l-1}}, \dots, 3^{h_3}, 2^{h_2}, 1^{h_1}) \in A_r(n)$. In this notation, h_i is the multiplicity of *i*. Note that h_i can be zero for some *i*. Clearly, $h_i \in \{0, 2, 4, \dots, 2r, 2r+1, 2r+2, \dots\}$.

Write h_i as

$$h_i = k_i + g_i$$
 where $k_i \in \{0, 2r + 1\}$ and $g_i \in \{0, 2, 4, 6, 8, 10, \ldots\}$

This decomposition is unique since k_i and g_i can be made explicit, i.e.,

$$k_i = (2r+1)\left(\frac{1-(-1)^{h_i}}{2}\right)$$
 and $g_i = h_i - (2r+1)\left(\frac{1-(-1)^{h_i}}{2}\right)$

For $j \ge 1$, define d_j as follows:

$$d_{(4r+2)t+2j-1} = 0 \text{ for } j \in \{1, 2, \dots, 2r+1\} \setminus \{r+1\},$$

$$d_{(4r+2)t+2j} = \frac{1}{2}g_{(2r+1)t+j} \text{ for } j \in \{1, 2, \dots, 2r\},$$

$$d_{(4r+2)t+(2r+1)j} = \frac{1}{2r+1}k_{2t+j} + g_{(4r+2)t+(2r+1)j} \text{ for } j \in \{1, 2\},$$

where t = 0, 1, 2, ...

The image is thus given by

$$(\ldots, f^{d_f}, (f-1)^{d_{f-1}}, \ldots, 2^{d_2}, 1^{d_1}).$$

We claim that $(\ldots, f^{d_f}, (f-1)^{d_{f-1}}, \ldots, 2^{d_2}, 1^{d_1}) \in B_r(n)$. In order to show that

$$(l^{h_l}, (l-1)^{h_{l-1}}, \dots, 3^{h_3}, 2^{h_2}, 1^{h_1}) \mapsto (\dots, f^{d_f}, (f-1)^{d_{f-1}}, \dots, 2^{d_2}, 1^{d_1})$$

defines a bijection from $A_r(n)$ onto $B_r(n)$, it suffices to show that $\sum_{i\geq 1} id_i = n$.

Thus

$$\sum_{i\geq 1} id_i = \sum_{j=1}^r \sum_{t=0}^\infty ((4r+2)t+2j-1)d_{(4r+2)t+2j-1} + \sum_{j=r+2}^{2r+1} \sum_{t=0}^\infty ((4r+2)t+2j-1)d_{(4r+2)t+2j-1} + \sum_{j=1}^{2r} \sum_{t=0}^\infty ((4r+2)t+(2r+1)j)d_{(4r+2)t+(2r+1)j} = \sum_{j=1}^{2r} \sum_{t=0}^\infty ((2r+1)t+j)g_{(2r+1)t+j} + \sum_{j=1}^2 \sum_{t=0}^\infty ((4r+2)t+(2r+1)j)g_{(4r+2)t+(2r+1)j} + \sum_{j=1}^2 \sum_{t=0}^\infty ((2r+1)t+j)g_{(2r+1)t+j} + \sum_{j=1}^2 \sum_{t=0}^\infty ((4r+2)t+(2r+1)j)g_{(4r+2)t+(2r+1)j} + \sum_{j=1}^2 \sum_{t=0}^\infty ((2t+j)k_{2t+j}.$$

Using the notation

$$S(a,b) = \sum_{t=0}^{\infty} (at+b)g_{at+b}$$
 and $T(a,b) = \sum_{t=0}^{\infty} (at+b)k_{at+b}$,

observe that

$$\sum_{t=0}^{\infty} ((2r+1)t+j)g_{(2r+1)t+j} = \sum_{\ell=0,2r+1} \sum_{t=0}^{\infty} ((4r+2)t+j+\ell)g_{(4r+2)t+j+\ell}$$
$$= S(4r+2,j) + S(4r+2,2r+1)$$

and

$$\sum_{t=0}^{\infty} (2t+j)k_{2t+j} = \sum_{t=0}^{\infty} \sum_{\ell=0}^{2r} ((4r+2)t+j+2\ell)k_{(4r+2)t+j+2\ell}$$
$$= \sum_{\ell=0}^{2r} T(4r+2,j+2\ell).$$

Hence

$$\begin{split} \sum_{i\geq 1} id_i &= \sum_{j=1}^{2^r} S(4r+2,j) + \sum_{j=1}^{2^r} S(4r+2,j+2r+1) + \sum_{j=1}^2 S(4r+2,(2r+1)j) \\ &+ \sum_{\ell=0}^{2^r} T(4r+2,1+2\ell) + \sum_{\ell=0}^{2^r} T(4r+2,2+2\ell) \\ &= \sum_{j=1}^{2^r} (S(4r+2,j) + S(4r+2,j+2r+1) + T(4r+2,1+2j) + T(4r+2,2+2j)) \\ &+ \sum_{j=1}^2 S(4r+2,(2r+1)j) + T(4r+2,1) + T(4r+2,2) \\ &= \sum_{j=1}^{2^r+1} (S(4r+2,j) + S(4r+2,j+2r+1)) + \sum_{j=0}^{2^r} (T(4r+2,1+2j) + T(4r+2,2+2j)) \\ &= \sum_{j=1}^{2^r+1} (S(4r+2,j) + S(4r+2,j+2r+1)) + \sum_{j=1}^{2^r+1} (T(4r+2,2j-1) + T(4r+2,2j)) \\ &= \sum_{j=1}^{4^r+2} S(4r+2,j) + \sum_{j=1}^{4^r+2} T(4r+2,j) \end{split}$$

$$= \sum_{j=1}^{4r+2} (S(4r+2,j) + T(4r+2,j))$$

= $\sum_{j=1}^{4r+2} \sum_{t=0}^{\infty} ((4r+2)t+j)(g_{(4r+2)t+j} + k_{(4r+2)t+j})$
= $\sum_{t=0}^{\infty} \sum_{j=1}^{4r+2} ((4r+2)t+j)h_{(4r+2)t+j}$
= $\sum_{i=1}^{\infty} ih_i$
= n .

Remark 3. Setting r = 1 in the bijection yields the bijection given by Andrews et al. [2].

For example, consider n = 15 and r = 2. Table 1 demonstrates the correspondence. The inverse of our map is described in the following section.

$A_2(15)$	\longrightarrow	$B_2(15)$
(2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1)	\mapsto	(10,5)
(4, 4, 1, 1, 1, 1, 1, 1, 1)	\mapsto	(8,5,2)
(3, 3, 2, 2, 1, 1, 1, 1, 1)	\mapsto	(6,5,4)
(3,3,1,1,1,1,1,1,1,1,1)	\mapsto	(6,5,2,2)
(2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1)	\mapsto	(5,4,4,2)
(2,2,1,1,1,1,1,1,1,1,1,1,1,1)	\mapsto	(5,4,2,2,2)
(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)	\mapsto	(5,2,2,2,2,2)

Table 1: The map $A_r(n) \to B_r(n)$ for r = 2, n = 15.

3 The inverse mapping

We now describe the inverse to our bijection. Given that $(\ldots, f^{d_f}, (f-1)^{d_{f-1}}, \ldots, 2^{d_2}, 1^{d_1}) \in B_r(n)$. Define g_i and k_i as

$$g_{(2r+1)t+j} = 2d_{(4r+2)t+2j}, j = 1, 2, \dots, 2r, t = 0, 1, 2, \dots$$

For the remaining cases, we have, for $t = 0, 1, 2, \ldots$,

$$g_{(4r+2)t+(2r+1)j} = \begin{cases} d_{(4r+2)t+(2r+1)j}, & \text{if } d_{(4r+2)t+(2r+1)j} \equiv 0 \pmod{2}, \ j = 1, 2; \\ d_{(4r+2)t+(2r+1)j} - 1, & \text{if } d_{(4r+2)t+(2r+1)j} \equiv 1 \pmod{2}, \ j = 1, 2, \end{cases}$$

and

$$k_{2t+j} = \begin{cases} 0, & \text{if } d_{(4r+2)t+(2r+1)j} \equiv 0 \pmod{2}, \ j = 1, 2; \\ 2r+1, & \text{if } d_{(4r+2)t+(2r+1)j} \equiv 1 \pmod{2}, \ j = 1, 2. \end{cases}$$

Then the partition $(\ldots, 3^{g_3+k_3}, 2^{g_2+k_2}, 1^{g_1+k_1})$ is in $A_r(n)$.

For example, Table 2 demonstrates the inverse mapping when n = 15.

$B_2(15)$	\longrightarrow	$A_2(15)$
(10,5)	\mapsto	(2,2,2,2,2,1,1,1,1,1)
(8,5,2)	\mapsto	(4, 4, 1, 1, 1, 1, 1, 1, 1)
(6,5,4)	\mapsto	(3, 3, 2, 2, 1, 1, 1, 1, 1)
(6,5,2,2)	\mapsto	(3,3,1,1,1,1,1,1,1,1,1)
(5,4,4,2)	\mapsto	(2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1)
(5, 4, 2, 2, 2)	\mapsto	(2,2,1,1,1,1,1,1,1,1,1,1,1,1)
(5,2,2,2,2,2)	\mapsto	(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)

Table 2: The inverse map $B_r(n) \to A_r(n)$ for n = 15, r = 2.

References

- G. E. Andrews, A generalization of a partition theorem of MacMahon, J. Combin. Theory 3 (1967), 100–101.
- [2] G. E. Andrews, H. Eriksson, F. Petrov, and D. Romik, Integrals, partitions and MacMahon's theorem, J. Combin. Theory Ser. A 114 (2007), 545–554.
- [3] S. Fu and J. A. Sellers, Bijective proofs of partition identities of MacMahon, Andrews, and Subbarao, *Electron. J. Combin.* 21 (2014), P2.41.
- [4] P. A. MacMahon, Combinatory Analysis, Vol. 2, Cambridge University Press, 1916.
- [5] D. Nyirenda, A note on a finite version of Euler's partition identity, Australas. J. Combin. 71 (2018), 241–245.

2010 Mathematics Subject Classification: Primary 11P81; Secondary 11P83, 05A15. Keywords: partition, bijection.

Received June 27 2020; revised versions received August 25 2020; April 25 2021. Published in *Journal of Integer Sequences*, April 25 2021.

Return to Journal of Integer Sequences home page.