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Abstract

Andrews’ generalization of MacMahon’s partition theorem states that the number
of partitions of n in which odd multiplicities are at least 2r+1 is equal to the number
of partitions in which odd parts are congruent to 2r+1 (mod 4r+2). In this note, we
give a bijective proof of this generalization. Our result naturally extends the bijection
of Andrews, Ericksson, Petrov, and Romik for MacMahon’s partition theorem.

1 Introduction

Let n ∈ Z≥1. A partition of n is a sequence of positive integers (λ1, λ2, . . .) where λ1 ≥ λ2 ≥
· · · and

∑

j≥1

λj = n. The components λi are called parts of a partition. If further restrictions

are imposed on the parts, one gets some interesting partition functions. One such example
is the number of partitions of n into distinct parts. This is interesting because it relates
to the number of partitions of n into odd parts, a case of Euler’s partition identity [5]. A
partition identity relates two partition functions. One of the partition identities of interest
in this paper is Theorem 1, which is due to MacMahon.
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Theorem 1 (MacMahon, [4]). The number of partitions of n wherein no part appears with

multiplicity one is equal to the number of partitions of n where parts are even or congruent

to 3 (mod 6).

Andrews, Ericksson, Petrov, and Romik [2] gave the first bijective proof of Theorem 1
which we describe in the sequel.

Let Cn denote the set of partitions of n wherein no part appears with multiplicity one
and let Dn denote the set of partitions of n wherein parts are even or congruent to 3 (mod 6).
The bijection goes as follows: let λ = (lhl , (l − 1)hl−1 , . . . , 3h3 , 2h2 , 1h1) ∈ Cn where hi is the
multiplicity of i. Since no part appears exactly once, it follows that hi ∈ {0, 2, 3, 4, . . .}.
Uniquely decompose hi as

hi = ki + gi, where ki ∈ {0, 3}, gi ∈ {0, 2, 4, 6, 8, . . .}.

For j ≥ 1, define dj as follows:

d6t+1 = d6t+5 = 0,

d6t+2 =
1

2
g3t+1,

d6t+4 =
1

2
g3t+2,

d6t+3 =
1

3
k2t+1 + g6t+3,

d6t+6 =
1

3
k2t+2 + g6t+6,

where t = 0, 1, 2, . . .
The partition (fdf , (f − 1)df−1 , . . . , 2d2 , 1d1) is in Dn. We shall call the above mapping

the Andrews-Ericksson-Petrov-Romik bijection.
Andrews later gave a generalization for Theorem 1 which we recall below.

Theorem 2 (Andrews, [1]). Let Ar(n) denote the set of partitions of n wherein parts ap-

pearing an odd number of times actually appear at least 2r + 1 times and let Br(n) denote

the set of partitions of n wherein odd parts are congruent to 2r + 1 (mod 4r + 2). Then

|Ar(n)| = |Br(n)|.

However, there is no bijective proof that naturally extends Andrews-Ericksson-Petrov-
Romik bijection to prove Theorem 2. For this, you may consult [3] and the references
therein. Our aim in this short note is to supply a bijection for Theorem 2, which naturally
generalizes Andrews-Ericksson-Petrov-Romik bijection and is different from the ones given
in the literature.
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2 The bijection

We now describe our bijection for Theorem 2. We need to establish the one-to-one corre-
spondence between the sets Ar(n) and Br(n).

Let (lhl , (l − 1)hl−1 , . . . , 3h3 , 2h2 , 1h1) ∈ Ar(n). In this notation, hi is the multiplicity of i.
Note that hi can be zero for some i. Clearly, hi ∈ {0, 2, 4, . . . , 2r, 2r + 1, 2r + 2, . . .}.

Write hi as

hi = ki + gi where ki ∈ {0, 2r + 1} and gi ∈ {0, 2, 4, 6, 8, 10, . . .}

This decomposition is unique since ki and gi can be made explicit, i.e.,

ki = (2r + 1)

(

1− (−1)hi

2

)

and gi = hi − (2r + 1)

(

1− (−1)hi

2

)

.

For j ≥ 1, define dj as follows:

d(4r+2)t+2j−1 = 0 for j ∈ {1, 2, . . . , 2r + 1} \ {r + 1},

d(4r+2)t+2j =
1

2
g(2r+1)t+j for j ∈ {1, 2, . . . , 2r},

d(4r+2)t+(2r+1)j =
1

2r + 1
k2t+j + g(4r+2)t+(2r+1)j for j ∈ {1, 2},

where t = 0, 1, 2, . . ..
The image is thus given by

(. . . , fdf , (f − 1)df−1 , . . . , 2d2 , 1d1).

We claim that (. . . , fdf , (f − 1)df−1 , . . . , 2d2 , 1d1) ∈ Br(n). In order to show that

(lhl , (l − 1)hl−1 , . . . , 3h3 , 2h2 , 1h1) 7→ (. . . , fdf , (f − 1)df−1 , . . . , 2d2 , 1d1)

defines a bijection from Ar(n) onto Br(n), it suffices to show that
∑

i≥1

idi = n.

Thus

∑

i≥1

idi =
r

∑

j=1

∞
∑

t=0

((4r + 2)t+ 2j − 1)d(4r+2)t+2j−1 +
2r+1
∑

j=r+2

∞
∑

t=0

((4r + 2)t+ 2j − 1)d(4r+2)t+2j−1

+
2r
∑

j=1

∞
∑

t=0

((4r + 2)t+ 2j)d(4r+2)t+2j +
2

∑

j=1

∞
∑

t=0

((4r + 2)t+ (2r + 1)j)d(4r+2)t+(2r+1)j

=
2r
∑

j=1

∞
∑

t=0

((2r + 1)t+ j)g(2r+1)t+j +
2

∑

j=1

∞
∑

t=0

((4r + 2)t+ (2r + 1)j)g(4r+2)t+(2r+1)j

+
2

∑

j=1

∞
∑

t=0

(2t+ j)k2t+j .
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Using the notation

S(a, b) =
∞
∑

t=0

(at+ b)gat+b and T (a, b) =
∞
∑

t=0

(at+ b)kat+b,

observe that

∞
∑

t=0

((2r + 1)t+ j)g(2r+1)t+j =
∑

ℓ=0,2r+1

∞
∑

t=0

((4r + 2)t+ j + ℓ)g(4r+2)t+j+ℓ

= S(4r + 2, j) + S(4r + 2, 2r + 1)

and

∞
∑

t=0

(2t+ j)k2t+j =
∞
∑

t=0

2r
∑

ℓ=0

((4r + 2)t+ j + 2ℓ)k(4r+2)t+j+2ℓ

=
2r
∑

ℓ=0

T (4r + 2, j + 2ℓ).

Hence

∑

i≥1

idi =
2r
∑

j=1

S(4r + 2, j) +
2r
∑

j=1

S(4r + 2, j + 2r + 1) +
2

∑

j=1

S(4r + 2, (2r + 1)j)

+
2r
∑

ℓ=0

T (4r + 2, 1 + 2ℓ) +
2r
∑

ℓ=0

T (4r + 2, 2 + 2ℓ)

=
2r
∑

j=1

(S(4r + 2, j) + S(4r + 2, j + 2r + 1) + T (4r + 2, 1 + 2j) + T (4r + 2, 2 + 2j))

+
2

∑

j=1

S(4r + 2, (2r + 1)j) + T (4r + 2, 1) + T (4r + 2, 2)

=
2r+1
∑

j=1

(S(4r + 2, j) + S(4r + 2, j + 2r + 1)) +
2r
∑

j=0

(T (4r + 2, 1 + 2j) + T (4r + 2, 2 + 2j))

=
2r+1
∑

j=1

(S(4r + 2, j) + S(4r + 2, j + 2r + 1)) +
2r+1
∑

j=1

(T (4r + 2, 2j − 1) + T (4r + 2, 2j))

=
4r+2
∑

j=1

S(4r + 2, j) +
4r+2
∑

j=1

T (4r + 2, j)
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=
4r+2
∑

j=1

(S(4r + 2, j) + T (4r + 2, j))

=
4r+2
∑

j=1

∞
∑

t=0

((4r + 2)t+ j)(g(4r+2)t+j + k(4r+2)t+j)

=
∞
∑

t=0

4r+2
∑

j=1

((4r + 2)t+ j)h(4r+2)t+j

=
∞
∑

i=1

ihi

= n.

Remark 3. Setting r = 1 in the bijection yields the bijection given by Andrews et al. [2].

For example, consider n = 15 and r = 2. Table 1 demonstrates the correspondence. The
inverse of our map is described in the following section.

A2(15) −→ B2(15)
(2,2,2,2,2,1,1,1,1,1) 7→ (10,5)
(4,4,1,1,1,1,1,1,1) 7→ (8,5,2)
(3,3,2,2,1,1,1,1,1) 7→ (6,5,4)

(3,3,1,1,1,1,1,1,1,1,1) 7→ (6,5,2,2)
(2,2,2,2,1,1,1,1,1,1,1) 7→ (5,4,4,2)

(2,2,1,1,1,1,1,1,1,1,1,1,1) 7→ (5,4,2,2,2)
(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1) 7→ (5,2,2,2,2,2)

Table 1: The map Ar(n) → Br(n) for r = 2, n = 15.

3 The inverse mapping

We now describe the inverse to our bijection.
Given that (. . . , fdf , (f − 1)df−1 , . . . , 2d2 , 1d1) ∈ Br(n). Define gi and ki as

g(2r+1)t+j = 2d(4r+2)t+2j , j = 1, 2, . . . 2r, t = 0, 1, 2, . . .

For the remaining cases, we have, for t = 0, 1, 2, . . .,

g(4r+2)t+(2r+1)j =

{

d(4r+2)t+(2r+1)j, if d(4r+2)t+(2r+1)j ≡ 0 (mod 2), j = 1, 2;

d(4r+2)t+(2r+1)j − 1, if d(4r+2)t+(2r+1)j ≡ 1 (mod 2), j = 1, 2,
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and

k2t+j =

{

0, if d(4r+2)t+(2r+1)j ≡ 0 (mod 2), j = 1, 2;

2r + 1, if d(4r+2)t+(2r+1)j ≡ 1 (mod 2), j = 1, 2.

Then the partition (. . . , 3g3+k3 , 2g2+k2 , 1g1+k1) is in Ar(n).
For example, Table 2 demonstrates the inverse mapping when n = 15.

B2(15) −→ A2(15)
(10,5) 7→ (2,2,2,2,2,1,1,1,1,1)
(8,5,2) 7→ (4,4,1,1,1,1,1,1,1)
(6,5,4) 7→ (3,3,2,2,1,1,1,1,1)
(6,5,2,2) 7→ (3,3,1,1,1,1,1,1,1,1,1)
(5,4,4,2) 7→ (2,2,2,2,1,1,1,1,1,1,1)
(5,4,2,2,2) 7→ (2,2,1,1,1,1,1,1,1,1,1,1,1)
(5,2,2,2,2,2) 7→ (1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)

Table 2: The inverse map Br(n) → Ar(n) for n = 15, r = 2.
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