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Abstract

A curious number is a palindromic number whose base-ten representation has the
forma---ab---ba---a. Inthis paper, we determine all curious numbers that are perfect
squares. Our proof involves reducing the search for such numbers to several single
variable families. From here, we complete the proof in two different ways. The first
approach is elementary, though somewhat ad hoc. The second entails studying integral
points on elliptic curves and is more systematic. Following these proofs, we consider
curious numbers with respect to other bases. We use the elliptic curve technique to
determine all perfect squares among the curious numbers in bases 2, 4, 6, and 12.

1 Introduction

[an Stewart begins his popular recreational mathematics book Professor Stewart’s Hoard of
Mathematical Treasures [15] with the following “calculator curiosity”:

(8 x8)+13=77
(8 x 88) 413 =717
(8 x 888) + 13 = 7117
(8 x 8888) + 13 = 71117

(8 x 88888) + 13 = 711117
(8 x 888888) -+ 13 = 7111117
(8 x 8888888) + 13 = 71111117
(8 x 88888888) + 13 = 711111117.
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The numbers on the right of the equations above are examples of what we call curious
numbers.

Definition 1. Let m,n be integers with m > 0 and n > 1. An integer is an (m,n)-curious
number if its base-ten representation is

a-..ab...ban--a
S~
m n m

for some integers a, b satisfying 1 < a <9 and 0 < b < 9. By convention, when m = 0,

a---ab---ba---a=>b---b.
—— —— —— ——

0 n 0 n

A nonnegative integer is called a curious number if it is an (m,n)-curious number for some
integers m,n with m > 0 and n > 1.

The sequence of curious numbers, listed as A335779 in the On-Line Encyclopedia of
Integer Sequences (OEIS) [14], begins with

0,1,2,3,4,5,6,7,8,9,11,22, 33,44, 55, 66, 77, 88,99, 101, 111, 121, 131, 141, 151, . . ..

The sequence of palindromes, listed as A002113, contains the sequence of curious numbers
as a subsequence. The smallest palindrome that is not a curious number is 10101. On the
other hand, the sequence of curious numbers contains the sequence of repdigits, listed as
A010785, as a subsequence. The smallest curious number that is not a repdigit is 101.

Looking at the curious numbers in Stewart’s “calculator curiosity”, we notice that none
are perfect squares. This follows from the observations that each number in the family
71---17 is congruent to 2 modulo 5 and that 2 is a quadratic non-residue modulo 5.

The question of which repdigits (i.e., (0,n)-curious numbers) are perfect squares is a
pleasant exercise in elementary number theory. There are 28 repdigits of length at most
three. Among those, only 0,1,4, and 9 are perfect squares. No repdigit of length at least
four is a perfect square since one may verify that each of

1111, 2222, 3333, 4444, 5555, 6666, 7777, 8888, and 9999

is a quadratic non-residue modulo 10000. Thus the only repdigits that are perfect squares
are 0, 1, 4, and 9.

The general question of which repdigits are perfect powers is known as Obldth’s problem.
After Oblath’s [11] partial solution, the problem was fully solved by Bugeaud and Mignotte
[4] using bounds on p-adic logarithms. Variations on Obldth’s problem have been studied by
several authors. For instance, Gica and Panaitopol [6] determined all perfect squares among
the near repdigits, which are integers for which all but a single digit are equal. Recently,
Goddard and Rouse [7] determined the perfect squares that may be written as the sum of
two repdigits. Whereas other authors relied on techniques related to Pell equations to settle
difficult cases, Goddard and Rouse used a powerful technique involving elliptic curves.

The objective of this paper is to determine all curious numbers that are perfect squares
(i.e., curious squares). Specifically, we prove the following result, which is our main theorem.
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Theorem 2. The curious numbers that are perfect squares are precisely the following:
0,1, 4,9, 121, 484, 676, and 44944.

Broadly speaking, our proof of Theorem 2 runs as follows. First, in §2, we recast the
problem in algebraic terms. Next, in §3, we reduce modulo 107 to narrow down our search
for curious squares to thirteen single variable families. From here, we complete the proof
in two distinct ways. The first approach, given in §4, proceeds by studying the families via
modular arithmetic. This approach is somewhat ad hoc, whereas our second method, given
in §5, is more systematic. Here we study the families via integral points on elliptic curves,
along the lines of Goddard and Rouse [7, §4].

Related to Oblath’s problem is the problem of Nagell-Ljunggren [8, 9, 10]. Here the
objective is to find all triples (B, n,q) such that the length-n base-B repunit 1---15 is a
perfect gth power. This problem and variants of it have been studied extensively [1, 2, 5].
It serves as motivation for us to consider our main problem in other bases and for higher
powers. In §6, we solve our problem for certain other bases that are amenable to the elliptic
curve technique. In §7, we comment on some of the difficulties that arise in considering cubic
and higher powers.

2 Algebraic reformulation

In this section, we recast our problem in algebraic terms. To do so, we start by developing
an algebraic expression for curious numbers. We recall the following standard expression for
repdigits,

10m™ — 1 (1>
m=aa=a —.
“ u 10—-1
Now observe that
b =a---ab---ba---a=10""-qa,, + 10™ - b, + ay,. (2)
—— N ——

Note that in the shorthand a,,b,a,,, juxtaposition denotes concatenation rather than multi-
plication.
Upon combining equations (1) and (2), we obtain an expression for curious numbers,

10m -1 10" —1 10m —1
mbntm =a - 10mT" . ———— . 10™ . . .
Apbpa a-10 10_1+b 0 10_1—1—@ 01 (3)
To streamline matters, we define the integers
Mapm =10"-(a—b) —a and Nypm =10"-(a-10" +b—a). (4)

After some regrouping, (3) becomes

(Napm - 10" + My pom). (5)

ambnam -

O =



We are interested in determining the collection of a,,b,a.,, that are perfect squares. Thus,
by multiplying (5) through by 9, we record that our problem reduces to solving the equation

(3y)* = Nupm - 10" + My pom (6)

in the nonnegative integers a, b, m,n,y with the restrictions that n > 1, 1 < a < 9, and
0<b<9.

3 Narrowing search to several single variable families

Let C,,,, denote the set of (m,n)-curious numbers and write C = Um>07n>1 Cpn,n for the set
of all curious numbers. Let S denote the set of all perfect squares. For each positive integer
k, define the set

8k22{826828§]€}.

Finally, we denote the reduction modulo 107 map by
7:7 — ZJ10"Z.

In the notation above, our ultimate objective is to determine the intersection C N'S. We
start by computing the intersection 7(C) N 7(S). Here, our choice to reduce modulo 107 is
somewhat arbitrary. In fact, what follows works provided that we reduce modulo 10* for
any k > 4. However, we choose k = 7 because this is the smallest exponent for which the
number of families that we will need to consider in the next section is minimal.

Observe that 7(C) and 7(S) may be realized as

7(C) = U 7(Cpypn) and 7w(S) = 7(Sior).
(m,n)
0<m<7
1<n<7—m
As the sets C,, ,, and Syo7 are finite and of reasonable size, it is straightforward to determine
7(C) and 7(S) with a computer. We do so using SageMath [12], and find their intersection

r(C)Nm(S) =10, 1, 4, 9, 121, 161, 484, 656, 676, 929, 969, 1001, 1441, 1881,
4004, 4224, 5225, 6116, 6336, 9009, 9449, 9889, 10001, 14441, 18881,
40004, 44544, 44644, 44944, 52225, 67776, 90009, 94449, 98889,
100001, 144441, 188881, 400004, 442244, 447744, 522225, 655556,
677776, 900009, 944449, 988889, 1000001, 1444441, 1888881, 2222224,
2222225, 2222244, 3333444, 4000004, 4222224, 4222244, 4333444,
4422244, 4433344, 4433444, 4441444, 4444441, 4444449, 4445444,
4449444, 4477444, ATTTAA4, ATTTT44, 5222225, 5555556, 6555556,
TTT7444, 8888881, 8888889, 9000009, 9444449, 9838889 }.

We have that 7(CN'S) C 7(C) N 7(S). Those elements of 7(C) N 7(S) whose preimage
under the map C — Z/107Z consists of a single non-square integer are not members of
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m(CN'S). For instance, the preimage of 4333444 under C —+ Z/107Z is the singleton
{444333444}. Since 444333444 is not a perfect square, we ascertain that 4333444 € 7(CNS).
Proceeding in this way, we find that

m(CNS)CH{0,1,4,9, 121, 484, 676, 44944, 2222224 2222225 2222244, 3333444,
4444441, 4444449, 5555556, 7777444, 8888881, 8888889 }.

Taking the preimage of the above set inclusion under C — 7Z/107Z, we deduce that

CNSC{0,1,4,09,121, 484, 676, 44944, 10---01, 14---41, 18 ---81,40---04,  (7)
4224, 442244, 4443 - - - 3444, 4447 --- 7444, 52---25, 65 - - - 56,
90---09, 94---49, 98---89 }.

The elements above that are listed with an ellipsis are placeholders for the appropriately
corresponding single variable family of curious numbers. For instance, we write 4443 - - - 3444
to denote the family
4443 - - - 3444 = {4443 ---3444 : n > 1}.
——

n

The assertion of Theorem 2 is that CN'S = {0, 1, 4, 9, 121, 484, 676, 44944}. Thus, by
(7), it suffices to prove that there does not exist a perfect square in any of the thirteen single
variable families in the set F below

F={10---01,14---41, 18 ---81, 40 -~ 04, 42 - - 24, 442 - - - 244, 4443 - - - 3444,
A447 7444, 52+ 25,6556, 90 -- 09, 94 - - - 49, 98- - - 89}.

4 Considering families via modular arithmetic

In this section, we use modular arithmetic considerations to prove that none of the families
in F contain a square. Let us begin by considering 10---01. Observe that each number
in this family is congruent to 2 modulo 3. As 2 is a quadratic non-residue modulo 3, it
follows at once that no number in this family is a square. In fact, since each of the numbers
in 40---04 and 90---09 is a square multiple of a number in 10---01, neither of these two
families contain any squares as well.

Given the above, our problem is reduced to proving that the ten remaining families of F
contain no squares. For each of these families, in Table 1 we record the coefficients M,
and N, pm, as defined in (4). We rule out the possibility of perfect squares in each of the
families in Table 1 via two elementary lemmas.

Lemma 3. If M, is a quadratic non-residue modulo Ny, then ap,bya,, s not a square
for each n > 1.

Proof. This follows from (6) upon reducing modulo Ng . O



Family a b m Myym Neapm
14---41 1 4 1 -31 130
18---81 1 8 1 —-71 170
42---24 4 2 1 16 380
442 - .- 244 4 2 2 196 39800
4443 ---3444 4 3 3 996 3999000
4447 ---7444 4 7 3 —3004 4003000
52---25 5 2 1 25 470
65--- 56 6 5 1 4 590
94---49 9 4 1 41 850
98 ---89 9 8 1 1 890

Table 1: Families of possible solutions.

For instance, let us consider the family 14---41 in view of the above lemma. From
Table 1, we read that (a,b,m) = (1,4,1), Myp.m = —31, and N, = 130. Note that —31
is a quadratic non-residue modulo 130. Thus, we deduce that the family 14 ---41 contains
no perfect squares. Applying Lemma 3 to the data from Table 1 in this way for each of the
ten families, we conclude that none of the following five families contain a perfect square:

14---41, 18 ---81, 4443 - - - 3444, 4447 - - - 7444, and 94 - - - 49.

This leaves the five other families to consider. We do so via our next lemma. For coprime
integers M and N, we write ordy (M) to denote the order of M modulo N.

Lemma 4. Let N be a positive integer with gcd(N,10) = 1. If for each integer k with
0 < k < ordy(10), we have that Ngp ., - 10%F + Mg pm 15 a quadratic non-residue modulo N,
then a,,b,a,, is not a square for each n > 1.

Proof. We prove the contrapositive. Suppose that ng is such that a,,b,,a., is a square. Then
a,b,m,ng, and y = \/a,b,,a, give a solution to (6). Write kg to denote the integer for
which 0 < ky < ordy(10) and ky = ng (mod ordy(10)). Then 10" = 10% (mod N), so
upon reducing (6) modulo N, we find that

Na,bﬁn . 1Ok0 + Ma,b,m = Na,b,m : 10”0 + Ma7b7m = (By)z (mOd N)
Hence, Ny p.pm - 10k + Mg is a quadratic residue modulo N. O

Using SageMath [12], we search for (and find) appropriate N as in Lemma 4 for each of
five remaining families. The relevant data is tabulated in Table 2.

Together with Lemma 4, this data proves that none of the five remaining families contain
a perfect square. To highlight an example, let us consider the family 42---24. We read
the values 396, 819, and 54 from the fourth column of the first row of data. Because each
of these is a quadratic non-residue modulo N = 999, Lemma 4 implies that the family in
question contains no perfect squares.



Family N ordy(10)  Napm - 108 + My, mod N for 0 < k < ordy(10)
42---24 999 3 396, 819, 54

442 ---244 77 6 33, 29, 66, 51, 55, 18

52---25 91 6 40, 84, 69, 10, 57, 72

65---56 13837 8 594, 5904, 3656, 8850, 5442, 12873, 4161, 63
98---89 1001 6 891, 893, 913, 112, 110, 90

Table 2: Data for the five remaining families.

5 Considering families via elliptic curves

In this section, we give a systematic method that determines the squares in a given single
variable family. As we shall see, the squares are in one-to-one correspondence with the
integral points of a specific form on certain elliptic curves. An elliptic curve E (defined over
the rationals) is a projective curve with an affine equation

E:y*=2+ax+0

for some a,b € Q with nonzero discriminant A := —16(4a® +270?). The set of integral points
of £ is
E(Z) ={(z,y) €ZXZL:y* =2+ ax + b}.

This set is finite and fairly computable. See, for instance, Silverman [13, Chp. IX] for
a thorough treatment of integral points on elliptic curves. In what follows, we use the
IntegralPoints command in Magma [3] to rigorously compute the integral points of various
elliptic curves.

We start with some notation. Let a,b, and m be nonnegative integers with 1 < a < 9,
0 <b<9. Consider the single variable family

{ambpay, :n > 1}.
We are interested in determining its squares, i.e., the set
Qapm = {n >1:anb,a, is a perfect square}.
For each j € {0, 1,2}, we define
Bapm,j = N2

a,b,m

10% - My pm
and consider the elliptic curve
Eqpm,: 2= 4 B pm,j-
Indeed, the above equation defines an elliptic curve since
A=-16(4-0°+27-B2,  )=-16-27-B., . #0.

We are interested in the integral points of E, ,, ; and, more specifically, the subset

Lapmj = Eapmj(Z) N {(Nopm - 100 Nypp - 107 - 3y) EZ X Z: k,y > 0} .
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Proposition 5. In the notation above, we have a bijection
o : Qa,b,m — La,b,m,() ) La,b,m,l U La,b,m,Z

n=3k+ 7+ (Napm - 1075 Nypp - 107 - 3v/ambpan),
where we write n = 3k + j for integers j, k with j € {0,1,2}.
Proof. The map @ is well-defined. Indeed, the decomposition n = 3k + j with j € {0, 1,2}
is unique and we now verify that the image of ® is contained in the stated codomain. If
n =3k +j € Qupm, then
(3V/@mbnam)? = Nojpn - 10°H 4+ My
holds by (6). Multiplying through by N, ib,m - 10% and regrouping, we find that

(Napim - 107 - 33/ @nbnn)? = (Nopom - 1075)3 4 ijb,m 10% - My gym-

Consequently, ®(n) € Lgpm,;, establishing that the image of ® is contained in the stated
codomain. On reading this argument backward, we deduce that ® is surjective. What
remains is to show that ® is injective.
For this, suppose that n = 3k + j € Qupm and n' = 3k' + j° € Qupm are such that
®(n) = ®(n'). Then
(Na,b,m : 10j+k7 Na,b,m : 10] -3 ambnam) = (Na,b,m : 10j/+k/7 Na,b,m . 1Oj, -3 ambn’am)' (8)
By comparing the first coordinates, we find that j + k& = j' + k. Note that since a,m
are Nonzero, a,,b,a,, is not divisible by 10. Thus v/a,,b,a,, is not divisible by 10 (nor is

Vambpa,y,). Thus comparing the second coordinates of (8), we find that j = j'. Since
j+ k=7 4k and j = j, we have that n = n’. ]

The above proposition, along with the data from Table 4 (Appendix), gives an alternate
proof that none of the thirteen families in F contain a perfect square. To illustrate, let us
consider the family 42---24. Here, (a,b,m) = (4,2, 1) and the corresponding elliptic curves
for j € {0,1,2} are

Eio10:y* = 2> 423104 - 10

Eyp1q:y? =2 +23104 - 10*

Ein12:y* =2 + 23104 - 10°,
Using Magma (3], we compute their integral points:

Ey210(Z) = {(80,£1680), (0, £1520), (1520, +59280), (—76, +1368)}
Ey211(Z) = {(0,£15200)}
Ey212(Z) = {(0,£152000)}.
None of these points are of the form (Ngpm, - 107+*, Nopm - 107 - 3y) for nonnegative integers
y, k. Hence,
Lygio = Lioi1 = Lap12 =0.
So, by Proposition 5, we conclude that the family 42 - --24 contains no perfect squares.
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6 Other bases

So far, we have defined and studied curious numbers in base-ten. A natural generalization
is to consider curious numbers represented in an arbitrary base. For a base B > 2, we
say that an integer is a curious number base-B if its base-B representation is of the form
a---ab---ba---a. While little is mathematically special about base-ten, there are two for-
tuitous properties that we exploited in our search for perfect squares among the base-ten
curious numbers. Namely, for B = 10, the following two properties both hold.

1. The integer 9, which is B — 1, is a perfect square.
2. For j sufficiently large, there is no base-ten repdigit square modulo BY.

The first property is used in §2, specifically in the left-hand side of (6), which yields
the relevant elliptic curves. While this property is useful in reducing the complexity of the
coefficients of the elliptic curves, it not essential, and we can proceed without it. On the
other hand, the second property listed above critical for our method. As we shall discuss
below, it is responsible for the existence of the positive integer k£ (which we took to be 7)
appearing in §3.

Regarding the first property above: Fix a base B > 2 to be considered. Proceeding as in
§2, one finds that the base-B analog of (6), without the assumption that B — 1 is a perfect
square, is

(B—=1)y* = NpapmB" + Mp apm, (9)

where
Mpapm = B"™(a—b)—a and Ng,pm = B™(aB™ +b—a).

Write n = 3k + j with j € {0,1,2}. Multiplying (9) through by (B —1)?B¥ N3 ., ..,
(B —=1)B'Npapm¥y)? = (Npapm(B —1)BF)? + MpapmNg o pm(B—1)°B>. (10)

In analogy with Proposition 5, the base-B curious squares in a given base-B single variable
family (a,b,m) correspond to certain integral points on the elliptic curves with j € {0, 1,2}
given by

(B—1)*B¥.

.2 3 . 2
Epapmi:y” =2+ Bapmyj, where Bpapmj = MpabmNpapm

As with base-ten, in order to apply the above method, we need to first limit the search
to only finitely many single variable families. Here the second property above is pivotal.
The property fails to hold if, for instance, B > 3 is an odd integer. For such a B, it is
easy to verify that for each positive integer j, the integer % is both a base-B repdigit (its
base- B representation is 1--- 1, with 1 repeated j times) and a square modulo B’. However
the preimage of a base-B repdigit under the reduction map {curious numbers base-B} —
7/ BIZ is neither a singleton nor a single variable family. For this reason, the methods of §4
and §5 cannot be used if B > 3 is odd.



We now consider those bases for which the analogue of the second property above holds.
Let B denote the set of such bases, i.e., those B > 2 with the property that for j sufficiently
large, there is no base-B repdigit square modulo B’. Via a computer search, we determine
that

Bn{2,3,...,100000} = {2,4,6,10,12,20,28,42,60} .

Considering this numerical evidence, we conjecture that B is equal to the set on the right-
hand side of the above equation. A proof of this claim has remained elusive to the authors,
except the partial results that B contains no odd integers (mentioned above) and contains
no integers divisible by 8 (via a similar argument).

For a base B € B, let jp be a positive integer such that there are no base-B repdigits
that are squares modulo B/2. Let m : Z — 7Z/B’BZ denote the reduction map. Let X
denote the intersection of the set of base-B curious numbers and the set of perfect squares.
Each member of 7(X') contains two distinct base-B digits, including leading zeros. Hence the
preimage of each member of 7(X) under the map {curious numbers base-B} — Z/B’EZ
is either a singleton or a single variable family. In this way, the search for base-B curious
squares is reduced to searching within finitely many single variable families, which may be
done via the elliptic curve method of §5.

By the steps described above and Siegel’s theorem [13, Thm. IX.3.1], it follows that for
each B € B, the set of base-B curious squares is finite and effectively computable. For
B € {2,4,6,12}, we determine all base-B curious squares by computing integrals points on
the corresponding elliptic curves. In principle, the same process works for B € {20, 28, 42,60}
as well. However, the quantity and complexity of the elliptic curves involved makes this a
daunting computational task.

Theorem 6. For each B € B, the set of base-B curious squares is finite and effectively
computable. Moreover, for B € {2,4,6,12}, the base-B curious squares are listed below in
base-B representation.

Base B Curious squares base-B

2 0, 1, 1001

4 0,1, 121

6 0,1, 4, 121

12 0,1,4,9, 121, 484, 16661, 44944

Table 3: Curious squares in other bases.

A preliminary computer search hints that there might be only finitely many curious
squares base-B for each base B > 2. Aside from those bases addressed above, both the
finiteness question and the problem of actually determining all base- B curious squares remain
open for these other bases.
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7 Higher powers

Another natural direction is to determine for a fixed integer ¢ > 2, the curious numbers that
are perfect gth powers. There are two significant difficulties with applying our approach to
odd ¢ > 2. Whereas for ¢ = 2 we are successful in reducing the search to finitely many
single variable families in base ten (as well as certain other bases in §6), computations reveal
that for odd ¢ with 3 < ¢ < 100 no such reduction can be made. The second challenge with
such a consideration is that the exponent of y appearing in the gth-power analogue of (6) is
greater than 2. Namely, (6) becomes

9T = Ny pm - 10" + My p - (11)

The solutions to this equation are integral points on certain superelliptic curves. Whereas
for elliptic curves Magma and SageMath have commands for determining integral points, less
is known for superelliptic curves and no such functionality yet exists in these programming
languages. Hence, the question for higher powers would likely require techniques outside of
those given in this paper.
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Appendix
Family j Bapmy Integral points of Eqpmj : y* = 2° 4+ Bapm,; up to sign
10---01 0 729-102  {(—36, 162), (0, 270), (40, 370), (45, 405), (180, 2430),
(216, 3186), (23940, 3704130)}
1 729-100  {(0, 2700)}
729 - 106 {(=900, 0), (1800, 81000), (0, 27000)}

14---41 0 —5239-10%2 {(100, 690), (140, 1490), (160, 1890), (1589, 63337),
(28261, 4750959)}

1 —5239-10*  {(376, 876)}

2 —5239-10°  {(3500, 194000)}
18---81 0 —20519-102 {(960, 29710)}

1 —20519-10*

2 —20519-105 §

Table 4: Integral points data for §5
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40---04 0 46656 - 102 {(—144, 1296), (—135, 1485), (0, 2160), (160, 2960),
(180, 3240), (720, 19440), (864, 25488), (95760,
29633040)}
1 46656 - 10* {(0, 21600)}
2 46656 - 10° { (=3600, 0), (0, 216000), (7200, 648000)}
42...24 0 23104 -10° {(—76, 1368), (0, 1520), (80, 1680), (1520, 59280)}
1 23104 - 10 {(0, 15200)}
2 23104 -10° {(0, 152000)}
442...244 0 31047184 -10* {(—4975, 432825), (0, 557200), (5600, 697200), (44576,
9427824)}
1 31047184 - 10° {(0, 5572000), (8959776, 26819194976)}
2 31047184 - 108 {(=84000, 50120000), (0, 55720000), (1671600,
2161936000) }
4443 ---3444 0 15928032996 - 10° {(198400, 154070000)}
1 15928032996 - 108 {(—356000, 1244060000)}
2 15928032996 - 10 0
4447 --.7444 0 —48136123036 - 10 0
1 —48136123036-10° 0
2 —48136123036 - 101° 0
52---25 0 55225-10? {(0, 2350)}
1 5522510 {(0, 23500)}
2 55225 10° {(0, 235000)}
65---56 0 13924 -10° {(0, 1180), (80, 1380), (944, 29028)}
1 13924 -10* {(0, 11800)}
2 13924 -10° {(—2400, 10000), (0, 118000), (4425, 317125), (751296,
651203344)}
90---09 0 531441 - 10? { (—324, 4374), (0, 7290), (360, 9990), (405, 10935),
(1620, 65610), (1944, 86022), (215460, 100011510)}
1 531441 - 10* {(0, 72900)}
2 531441 - 10° {(=8100, 0), (0, 729000), (16200, 2187000)}
94---49 296225 - 10? {(—200, 4650), (—100, 5350), (349, 8493), (10300,
1045350)}
1 296225 - 10* {(—800, 49500), (200, 54500), (625, 56625), (11416,
1220964)}
2 296225 - 10° 0
98---89 0 7921102 {(0, 890)}
1 7921-10% {(—400, 3900), (0, 8900), (1424, 54468)}
2 7921106 {(0, 89000), (8400, 775000)}

Table 4 (Continued): Integral points data for §5
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